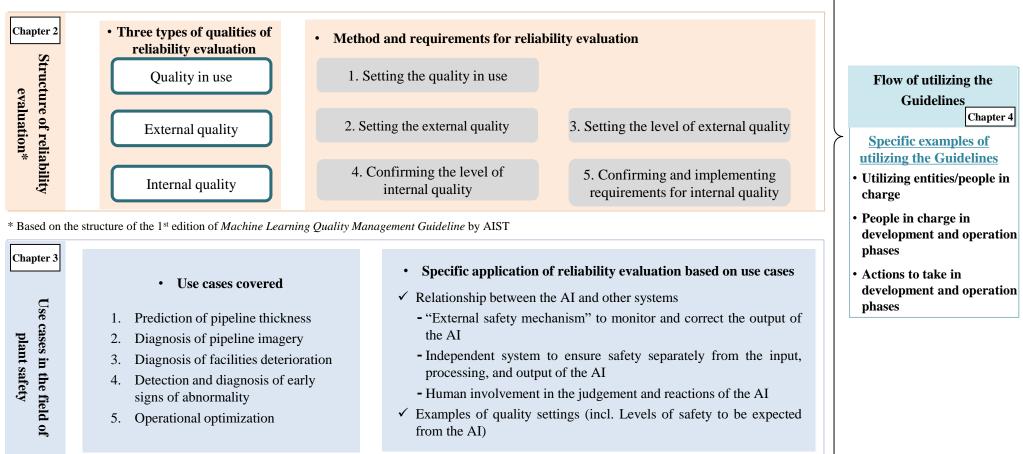

Revision of Guidelines on Assessment of AI Reliability in the Field of Plant Safety

- The Guideline provides the **methodology to fulfill AI's desired quality in terms of safety and productivity enhancement**, in order to promote the usage of AI in the field of plants where safety is considered vital.
- The Guideline has seen wider adoption since its publication in November 2020. With these adoptions in consideration, real-life examples of guideline adoption are hereby provided, as well as a revision of the Guideline to promote its appropriate adoption.

KEY POINTS OF REVISION


- CLARIFIED the relationship between AI safety evaluation and plant safety evaluation based on traditional risk evaluation methods e.g. HAZOP, FMEA^{*}
- 2. ADDED **explanatory comments** to the Format for Recording Actions Taken, enhancing its usability
- 3. PROVIDED **Q&A comments** regarding common questions and uncertainties in adopting the Guideline
- 4. PROVIDED practical examples of the Template for Reliability Records, based on actual reliability assessment pursuant to the Guideline (Seven examples in total, covering all five use cases)

cf. Structure of the Guidelines on Assessment of AI Reliability in the Field of Plant Safety

- The Guideline provides quality management methods using the "three types of quality" in terms of reliability evaluation, as well as "five uses cases" regarding plants.
- This allows plant owners and AI vendors to resolve the challenges regarding AI reliability evaluation.
 - Plant owners can: explain the AI's reliability within and without the company; set adequate requirements for vendors.
 - AI vendors can: explain their AI's reliability to plant owners; share plant owners' vision regarding the requirements.

Three types of qualities, evaluation method, and requirements of reliability evaluation

1

Real-world examples of utilizing AI in the field of plant safety