旧法屋外タンク貯蔵所の保安検査のあり方に係る調査検討

中間報告書

平成24年3月

消防庁危険物保安室

はじめに

昭和49年に岡山県倉敷市において発生した屋外タンク貯蔵所のタンク底部からの重 油流出事故を契機に、屋外タンク貯蔵所の技術基準が整備・強化され、一定期間ごとに タンクを開放し、タンク内部を検査する保安検査の制度が創設された。保安検査の時期 については、タンクの技術基準に応じて定められた基本開放周期に加え、保安のための 措置を講じたものに対しては、開放周期を延長することができる制度が設けられている。 最近では、平成21年11月27日に実施された行政刷新会議による「国家備蓄石油管理等 委託費」の事業仕分けの結果を踏まえ、連続板厚測定法を用いた検査周期のあり方の検 討を行い、昭和52年以降に設置された特定屋外タンク貯蔵所について、新たな保安検査 の時期の決定方法を提案することができたところであるが、規制・制度改革に係る対処 方針(平成22年6月18日閣議決定)において、昭和52年以前に設置された特定屋外タ ンク貯蔵所(以下「旧法タンク」という。)を含めた特定屋外タンク貯蔵所全体について 保安検査の検査周期のあり方を総合的に検討することとされたものである。

旧法タンクについては、タンクの溶接部の信頼性が劣るものがあること及びタンクの 基礎地盤の堅固さについて具体的な基準がなく建設されていることから、腐食による板 厚の減少対策のみでは安全性を担保することができないという問題が残っている。旧法 タンクの保安検査のあり方に係る検討はその項目が多岐にわたるため、基礎地盤に関す る検討、溶接部に関する検討を実施したうえで、総合的に保安検査のあり方について検 討することが必要である。

こうしたことから、消防庁危険物保安室が設置した「旧法屋外タンク貯蔵所の保安検 査のあり方に係る調査検討会」において、本年度は基礎地盤の堅固さに関する評価手法 について調査検討を行ったところである。今回実施した水張試験時における地盤の沈下 量測定及び有限要素法を利用した沈下シミュレーション手法については、地盤の持つ工 学的性質を確認するために必要な条件等について、いくつかの有益な知見と課題が得ら れたところである。

調査検討会の委員各位には、ご多忙中にも関わらず、熱心なご議論をいただいた。本 報告書がとりまとめられたのは、委員各位の熱意とご協力によるところが大であり、深 く感謝申し上げる次第である。

> 平成24年3月 旧法屋外タンク貯蔵所の保安検査の あり方に係る調査検討会

> > 座 長 亀井 浅道

中間報告書目次

第1章	検討の概要	
1.1	検討の背景と目的	1-1
1.2	検討体制	1-2
1.3	検討経過	1-2
第2章	屋外貯蔵タンクからの危険物流出事故について	
2.1	底部からの危険物流出事故の分析	2-1
2.2	危険物流出事故が発生したタンクの経年分析	2-1
2.3	底部板溶接部の破断による危険物流出事故事例	2-2
2.4	経年劣化による危険物流出事故の発生プロセス	2-7
2.5	底部板の腐食による危険物流出に対する安全性の確保	2-8
第3章	屋外タンクの技術基準、保安検査の現状と課題	
3.1	特定屋外タンク貯蔵所に係る技術基準	3-1
3.2	保安検査	3-1
3.3	底部板破断による危険物流出事故を踏まえた課題	3-4
第4章	側板外周部およびタンク内底板の沈下量の計測	
4.1	目的と概要	4-1
4.2	計測した旧法タンクと地盤条件	4-1
4.3	側板外周部およびタンク内底板の沈下量の計測	4-4
第5章	有限要素法を用いた沈下シミュレーション	
5.1	屋外貯蔵タンクの基礎地盤沈下に係るFEM解析の方法	5-1
5.2	平板載荷試験のFEM解析	5-7
5.3	水張試験のFEM解析(地盤の沈下シミュレーション)	5-15
第6章	まとめ	
6.1	水張試験時の底部鉛直方向変位計測のまとめ	6-1
6.2	FEM解析のまとめ	6-1
6.3	旧法タンクの基礎地盤の堅固さを確認するための課題	6-2
6.4	タンク底板と地盤基礎面の空隙がタンク底板の強度に与える影響について	6-3

第1章 検討の概要

1.1 検討の背景と目的

容量が 1 万キロリットル以上の液体の危険物を貯蔵する屋外タンク貯蔵所については消 防法の規定により、一定期間ごとに市町村長等による保安検査を受けることとされている。 平成 21 年 11 月 27 日に行われた行政刷新会議による「国家備蓄石油管理等委託費」の事業 仕分けにおいて、消防法におけるタンクの保安検査間隔について、安全性は十分に検証し ながら規制緩和の可能性を探ることが求められた。これを受けて平成 22 年度に「屋外タン ク貯蔵所の保安検査の周期に係る調査検討会」を開催し、昭和 52 年政令第 10 号の施行後 に設置許可の申請がなされた特定屋外貯蔵タンク(以下「新法タンク」という。)に関する 保安検査周期を延長した場合の安全性について検討し、保安のための措置が講じられたタ ンクにおいて連続板厚測定法を活用して得られた1年当たりの板の腐食量と最小板厚に基 づいて計算された8年以上15年以下の保安検査周期を定めることができる制度を確立した。 また、規制・制度改革に係る対処方針(平成 22 年6月 18 日閣議決定)においても、新法 タンクの保安検査周期の延長を検討し結論を得るとともに、特定屋外貯蔵タンク全体につ いて保安検査の検査周期のあり方について総合的に検討することとされた。昭和52年以前 に設置された特定屋外貯蔵タンク(以下「旧法タンク」という。)については、タンクの溶 接部の信頼性が劣るものがあること及びタンクの基礎地盤の堅固さについて具体的な基準 がなく建設されていることから、腐食による板厚の減少対策のみでは安全性を担保するこ とができないという問題が残っている。旧法タンクの保安検査のあり方に係る検討はその 項目が多岐にわたるため、基礎地盤に関する検討、溶接部に関する検討を実施したうえで、 総合的に保安検査のあり方について検討する必要がある。

このような状況を踏まえ、本検討会では基礎地盤に関する事項について検討を行うもの である。

1-1

1.2 検討体制

旧法屋外タンク貯蔵所の保安検査のあり方に係る調査検討会(五十音順)

座 長 亀井 浅道 元横浜国立大学 特任教授

- 委 員 大谷 英雄 横浜国立大学大学院環境情報工学研究院 教授
 - 国松 直 独立行政法人産業技術総合研究所 地圈資源環境研究部門 主任研究員
 - 越谷 成一 川崎市消防局 予防部 危険物課長
 - 龍岡 文夫 東京理科大学 理工学部土木工学科 教授
 - 龍川 恒 社団法人石油化学工業協会
 - 田中 敏 社団法人日本建設業連合会 安全部 参事
 - 西浦 教之 堺市消防局 予防部 指導課長
 - 村上 沢 石油連盟
 - 森 修一 倉敷市消防局 副参事兼危険物保安課長事務取扱
 - 八木 高志 危険物保安技術協会 土木審査部 上席調查役
 - 山田 實 消防庁消防大学校消防研究センター 研究統括官
- 事務局 鈴木 康幸 消防庁危険物保安室長 永友 義夫 消防庁危険物保安室課長補佐 宮内 孝 消防庁危険物保安室パイプライン係長 宮本 紳利 消防庁危険物保安室総務事務官

1.3 検討経過

第1回検討会 平成23年9月13日
第2回検討会 平成24年2月10日
第3回検討会 平成24年3月7日

1.2 検討体制

旧法屋外タンク貯蔵所の保安検査のあり方に係る調査検討会(五十音順)

座 長 亀井 浅道 元横浜国立大学 特任教授

- 委 員 大谷 英雄 横浜国立大学大学院環境情報工学研究院 教授
 - 国松 直 独立行政法人産業技術総合研究所 地圈資源環境研究部門 主任研究員
 - 越谷 成一 川崎市消防局 予防部 危険物課長
 - 龍岡 文夫 東京理科大学 理工学部土木工学科 教授
 - 龍川 恒 社団法人石油化学工業協会
 - 田中 敏 社団法人日本建設業連合会 安全部 参事
 - 西浦 教之 堺市消防局 予防部 指導課長
 - 村上 沢 石油連盟
 - 森 修一 倉敷市消防局 副参事兼危険物保安課長事務取扱
 - 八木 高志 危険物保安技術協会 土木審査部 上席調査役
 - 山田 實 消防庁消防大学校消防研究センター 研究統括官
- 事務局 鈴木 康幸 消防庁危険物保安室長 永友 義夫 消防庁危険物保安室課長補佐 宮内 孝 消防庁危険物保安室パイプライン係長 宮本 紳利 消防庁危険物保安室総務事務官

1.3 検討経過

第1回検討会 平成23年9月13日
第2回検討会 平成24年2月10日
第3回検討会 平成24年3月7日

第2章 屋外貯蔵タンクからの危険物流出事故について

消防庁が全国の消防機関を通じて調査を行っている「危険物に係る事故事例」や消防庁 消防大学校消防研究センターによる地震被害の調査報告書を基に、1974年(昭和49年) から2009年(平成21年)までの間に発生した屋外貯蔵タンクにおけるタンク底部及び側 板からの危険物流出事故の概要を表2.1(通常時の事故)及び表2.2(地震時の事故)に列 挙するとともに、事故の傾向について分析した。

2.1 底部からの危険物流出事故の分析

通常時の屋外貯蔵タンクにおけるタンク底部及び側板からの危険物流出事故(対象:153 件)について分析した結果を図 2.1に示す。対象とした全タンクについて、底部からの危険 物流出事故に着目して整理すると、底部の腐食によるものが 53%、き裂によるものが 10% を占める結果となった。内部開放検査や保安検査において底部の板厚及び溶接部の検査が 義務付けられている特定屋外貯蔵タンクに対象を限定すると(対象:55件)、底部の腐食に よるものが 40%、き裂によるものが 11%を占めている。底部の腐食による危険物流出事故 は大きな割合を占めるものの、特定屋外貯蔵タンクでは開放時の板厚確認が一定の効果を 果たしているものと考えることができる。一方、底部のき裂による危険物流出事故は特定 屋外貯蔵タンクにおいてもその割合が減少していないことから、き裂に対する安全性につ いては慎重に検討する必要がある。

図 2.1 危険物流出事故の発生部位

2.2 危険物流出事故が発生したタンクの経年分析

通常時の屋外貯蔵タンクにおけるタンク底部及び側板からの危険物流出事故について、 タンクの設置から事故発生までの経過年数別に整理したものを図 2.2 に示す。1974 年から 2009 年までに発生した危険物流出事故 153 件について分析した結果は、必ずしも経年が進 んだタンクに危険物流出事故が多いわけではないが、2000年以降に発生した危険物流出事 故49件について分析した結果は、設置からの経年が30年を超えるタンクが8割を占める ことが分かった。経年劣化が危険物流出事故に及ぼす影響は顕著であるといえる。

図 2.2 危険物流出事故発生時のタンク経年

2.3 底部板溶接部の破断による危険物流出事故事例

過去の主要な底部き裂からの危険物流出事故の3事例と、最近発生した底部き裂からの 危険物流出事故2事例について、事故原因報告書等から得られた事故の情報を以下にまと める。

(1) 不等沈下による溶接部の割れ(図2.3参照)

①事故概要

岡山県倉敷市の製油所内のタンクにおいて、基礎の不等沈下を誘因として側板とアニ ュラ板を接合する溶接部が破断し、重油 42,888 キロリットルが流出、そのうち 7,500 キ ロリットルから 9,500 キロリットルが海上へ流出し、瀬戸内海の約3分の1を汚染した。 ②発生日時 1974 年 12 月 18 日 20 時 40 分ごろ

③タンク概要

- ·形式 固定屋根式
- ・寸法 直径 52.307m×高さ 23.67m
- ・容量 48,000 キロリットル
- ·内容物 重油
- ・アニュラ板:材質 HW50 板厚 12mm 底板;材質 SS41 板厚 9mm

④事故原因

側板に近いアニュラ板と地盤に隙間が形成され、側板とアニュラ板を接合する溶接部 の部分的割れが生じたことにより、溶接部が破断し危険物が流出した。

図 2.3 倉敷市におけるタンク事故概略

(2) 腐食減肉したアニュラ部の溶接部の地震による割れ(図2.4参照)

①事故概要

昭和 53 年宮城県沖地震により、宮城県仙台市の製油所の 3 基のタンクにおいて、側板 とアニュラ板とを接合する溶接部分が破断し、貯蔵中の危険物 68,100 キロリットル(3 基分)が、タンク周囲に設置されている防油堤を超え、また、防油堤下の地盤を洗掘し て流出し、製油所構内に流出した。うち、2,900 ないし 5,000 キロリットルが海上へ流出 した。

②発生日時 1978年6月12日 17時14分(地震発生)
 ③タンク概要(ア:T-217、イ:T-218、ウ:T-224)

- ・形式 固定屋根式 (ア、イ、ウ)
- ・寸法 直径 43.588m×高さ 21.855m(ア、イ)
 直径 37.776m×高さ 21.855mm(ウ)
- ・容量 31,500 キロリットル(ア、イ)
 23,700 キロリットル(ウ)
- ・内容物 C重油(ア、イ)
 - 減圧軽油(ウ)

④事故原因

宮城県沖地震により、タンクはかなり大きな地震動を受けたと考えられる。また、ア ニュラ板裏面全面に腐食が見られた。このような要因により、溶接部の貫通割れ、不貫 通割れが伝播し互いにつながり破断したものと考えられる。

図 2.4 宮城県沖地震によるタンク事故概略

(3)局部沈下及び溶接部内部の欠陥の相乗効果による割れ(図2.5参照)

①事故概要

横浜市内の製油所のタンクで底板相互の重ね継手溶接部が破断し、原油が排水溝に 50 キロリットル流出した。

②発生日時 1979年2月4日 12時30分ごろ

③タンク概要

- ・形式 浮き屋根式
- ・寸法 直径 69.765m×高さ 15.29m
- ・容量 50,000 キロリットル
- ·内容物 原油

・アニュラ板:材質 HT60 板厚 12mm 底板;材質 SS41 板厚 8mm
④事故原因

基礎の局部沈下、溶着金属の腐食及び溶接部内部の欠陥の相乗効果によって底板相互 溶接部の重ね継手が破断したもの。

図 2.5 基礎の局部沈下と溶接内在欠陥の相乗効果による溶接破断部概略

(4) 低サイクル疲労による底部板溶接部の割れ(図 2.6 参照)

①事故概要

千葉県市原市の製油所の旧法新基準適合タンクの底部板溶接部が割れ、ジェット燃料が流出したもの。流出量は0.14キロリットルと算定されている。
②発生日時 2010年1月24日 16時50分ごろ

(直近の保安検査から約5か月後)

③タンク概要

- ・形式 浮き屋根式
- ・寸法 直径 67.37m×高さ 18.24m
- ・容量 51,252 キロリットル
- ・内容物 ジェット燃料
- ・アニュラ板:材質 SM50C 板厚 15mm 底板;材質 SS41 板厚 6mm

④事故原因

タンクを開放して危険物流出箇所を特定したところ、ルーフサポート用当板近傍のタンク底板の重ね溶接の溶接線に長さ約 350mm のコーティング及び底板の割れが発見された。低サイクル疲労による割れと事業所では推定している。

図 2.6 低サイクル疲労による溶接破断部

(5) ルーフサポート用当板近傍の底部板溶接部の割れ(図 2.7 参照)

①事故概要

横浜市内の製油所の旧法新基準適合タンクで底板相互の重ね継手溶接部が破断し、ガ ソリンが流出した。

②発生日時 2011年1月5日 11時15分ごろ

(直近の保安検査から約3年5か月後)

③タンク概要

- ・形式 浮き屋根式
- ・寸法 直径 46.500m×高さ 15.275m
- ·容量 20,171 キロリットル
- ・内容物 ガソリン
- ・アニュラ板:材質 SS41 板厚 8mm 底板;材質 SS41 板厚 8mm

④事故原因

タンクを開放して危険物流出箇所を特定したところ、ルーフサポート用当板近傍のタンク底板の重ね溶接の溶接線に長さ約 450mm のコーティング及び底板の割れが発見された。原因については現在調査中である。

図 2.7 ルーフサポート用当板近傍の溶接破断部

これらの5事例からは、底部の破断による危険物流出事故の発生要因として次の点の 影響が密接であると考えられる。これらの項目は保安検査のあり方の検討において評価 が必要になると考えられる。

(1)	基礎地盤の堅固さ(不等沈下、局部沈下など)
2	耐震性(保有水平耐力:既に技術基準化済)
3	溶接部の健全性(内在欠陥、低サイクル疲労など)

2.4 経年劣化による危険物流出事故の発生プロセス

タンクの底部の経年劣化から危険物流出事故に至る過程を図 2.8 にまとめた。タンクには 経年とともに腐食や溶接部欠陥(またはこれらの複合)により強度が低下した劣化箇所が 発生する。開放点検によって事前に劣化箇所が見つかれば補修され、タンクは再度健全な 状態に戻るが、開放点検より前にさらに劣化が進行した場合及び開放点検で劣化箇所が見 落とされた場合は、液圧(変動)や地震を誘因として危険物流出事故に至る。

図 2.8 事故発生プロセスフロー図

2.5 底部板の腐食による危険物流出に対する安全性の確保

平成 22 年度に実施した「屋外タンク貯蔵所の保安検査の周期に係る調査検討会」では、 新法タンクの底部板の腐食の実態について詳細な調査を行った結果、現在の検査方法(定 点板厚測定)を維持したまま基本周期を延長することは流出危険性が大幅に高まることか ら適当でないとし、腐食による流出事故に対する安全性を確保するために、連続板厚測定 によって底部板全面にわたって確認された腐食データから、1年当たりの腐食量及び底部 板の最小値に基づいた保安検査周期を定めることが出来るとされた。板厚の測定方法につ いて図 2.9 に示す。連続板厚測定は、30mm 以下のピッチで底部板の板厚を連続的に測定 する測定方法であり、旧法タンクにおいても詳細な腐食データを把握する意味で有効であ ると考える。ただし、保安検査の対象となる1万キロリットル以上の屋外貯蔵タンクにお いて、新法タンクの底部板の最小板厚は12mmと規定されているのに対し、旧法タンクの それは3.2mmとなっており、技術基準の違いによる差が大きく、旧法タンクの腐食に対す る安全性を評価するにあたっては、旧法タンクの腐食データに基づいた検証が必要になる ものと考えられる。

定点板厚測定 アニュラ板:2m ピッチ 底板:板1枚当たり3点

連続板厚測定 アニュラ板:30mm ピッチ以下 底板:30mm ピッチ以下

図 2.9 底部板の板厚測定方法

NT	▼	許可容量	貯蔵	発生	箇所	机墨左耳口	経過	地中於国	流出量
No.	光 生年月日	(k1)	油種	箇所	詳細	設直年月日	年	攸吉軋囲	(k1)
1	1974/04/15	不明	重油	不明	不明	不明	不明	防油堤内	160
0	1074/06/19	不明	重油	底板	腐食	不明	不明	吃油担内	0.1
Z	1974/00/12	小叻	里田	母材部	開孔部	/下9月	个叻	例伸定P1	0.1
3	1074/08/08	不明	重油	底板	腐食	不明	不明	防油坦内	不胆
5	1974/00/00	1.62	里仰	母材部	開孔部	1.67	1197	PIIIVEPI	
1	1074/10/31	不明	莅嚴	側板	腐食	不明	不明	防油坦内	0.0001
4	1974/10/31	1.62	刊儿日久	母材部	開孔部	1.67	不切	PIIIUEPI	0.0001
5	1974/12/17	50,000	ミナス	不明	不明	不明	不明	不明	0.5
			重油						
6	1974/12/18	50,000	C重油	底板	き裂部	1973/12/15	1.0	海上	42,888
				溶接部					
7	1974/12/28	1,000	A重油	不明	不明	不明	不明	防油堤内	0.5
8	1975/02/20	不明	重油	底板	腐食	不明	不明	敷地内	不明
				母材部	開孔部				
9	1975/04/01	3, 350	重油	側板	腐食	不明	不明	敷地内	0.1
		,		母材部	開孔部				
10	1975/04/22	10	A重油	底板	腐食	1964/04/01	11.1	付近水田	3.5
				母材部	開孔部			・ハス田	
11	1975/05/30	不明	粗ター	底板	腐食	不明	不明	防油堤内	192
			ル	母材部	開孔部				
12	1975/08/29	不明	クロールス	底板	腐食	不明	不明	敷地内	0.01
		1 24	ルホン酸	母材部	開孔部			<i>72</i> 0 21 7	
13	1975/09/12	不明	塩酸	側板	腐食	1973/06/25	2.2	敷地内	0, 1
	10.0, 00, 12	1 24		母材部	開孔部	10.00, 000, 10			
14	1975/09/20	1, 084	A重油	側板	腐食	不明	不明	防油堤内	0.2
	10.0, 00, 20	-, ••• -	··· 王 IF	母材部	開孔部		1 24		
15	1976/05/14	30,000	重油	底板	腐食	1969/07/31	6.8	防油堤内	0.2
	10.0,00,11	,		母材部	開孔部	1000, 00, 01			
16	1976/09/28	44	ミナス	底板	腐食	1961/12/07	14.8	防油堤内	0.8
	,,,		重油	母材部	開孔部		0		
17	1976/10/8	不明	重油	底板	腐食	不明	不明	敷地内	0.1
	10.0, 10, 0	1 24		母材部	開孔部	+ < I	1 /1		~· 1

表 2.1 通常時の危険物流出事故事例

NT	▼※牛左日日	許可容量	貯蔵	発生	箇所	机墨左耳口	経過	地中於国	流出量
INO.	光 生平月日	(k1)	油種	箇所	詳細		年	攸舌軋囲	(k1)
10	1077/01/01	20,000	0 毛油	底板	腐食	1071/00/10	Γ 4	7十34月4日	05
18	1977/01/31	30, 000	し里油	母材部	開孔部	1971/09/16	5.4	防油堤内	85
			廃液、トルエ						
10			ン及び塩素	底板	腐食				0.1
19	1977/02/07	个明	化炭化水素	母材部	開孔部	1975/05/22	1.7	防沺堤内	0.1
			の混合物						
	1055 (00 (15	0.11	H	底板	腐食	 101		公共下水	0
20	1977/03/17	241	<u>車</u> 沺	母材部	開孔部	个明	个明	管	9
				底板	腐食				
21	1977/11/07	个明	JEI A-I	母材部	開孔部	个明	个明	海上	0.5
0.0	1055 (10 (00	4 700	177.)H	底板	チ 知[中国	1050/04/00	10.0		
22	1977/12/08	4,700	 	溶接部	さ裂部	1958/04/28	19.6	防沺堤内	个明
0.0	1070/00/07	000	书油	底板	腐食	1000/00/07	0.0	ドレンボッ	0 0005
23	1978/02/27	988	里田	母材部	開孔部	1968/03/27	9.9	クス下部	0.0005
0.4	1070 /05 /15	4 740	专注	側板	腐食			またした子	0.04
24	1978/05/15	4,740	里田	母材部	開孔部	个明	个明	敫地內	0.04
0.5	1079/06/16	94 000	百洲	底板	腐食	1072 /00 /17	4 7	时油相古	40.7
25	1978/06/16	24,000	原田	母材部	開孔部	1973/09/17	4. (的油堤的	49.7
0.0	1079 /07 /90	2,000	毛汗	底板	腐食	1000/00/00	10 5	載ないという	1.0
20	1978/07/29	3,000	里佃	母材部	開孔部	1968/02/02	10. 5	规地内	1.2
07	1070/01/09	200	D 舌油	底板	腐食	不明	不明	構内排水	0.7
21	1979/01/08	300	D里佃	母材部	開孔部	个明	个明	溝	2.1
90	1070/02/04	E0,000	百油	底板	キ刻如	1064/09/97	14.0	構内排水	FO
20	1979/02/04	50, 000	尿田	溶接部	ら交助	1904/02/27	14.9	溝	50
20	1070/09/19	7 250	C 重洲	底板	腐食	1069/02/02	11 0	載+hu 大	1 0
29	1979/02/13	7, 550	し里伯	母材部	開孔部	1908/02/02	11.0	苏科巴巴丁	1.2
30	1070/04/22	22 855	C 重油	底板	腐食	不明	不明	載·hh 内	0.02
- 30	1979/04/22	22, 000	し里伯	母材部	開孔部	1.67	1197	苏江已下了	0.02
21	1070/08/08	160	重油	底板	腐食	不明	不明	載抽内	22
51	1979/00/00	100	里仰	母材部	開孔部	1.01	1.61	苏江巴广门	22
20	1070/11/94	不胆	第1石油	側板	腐食	不胆	不明	動地内	0.9
52	1313/11/24	נסיון	類	母材部	開孔部	[ריין	ገማን	历天中巴ドゴ	0.2
22	1070/19/91	不胆	ミナス	底板	キ刻如	不胆	不明	防油坦内	05
55	1313/14/41	1.61	重油	母材部	日本し	11771	1.61	アノコロウモドリ	0.0

NT	▼※牛左日日	許可容量	貯蔵	発生	箇所	机墨左耳口	経過	地中於国	流出量
NO.	光 生平月日	(k1)	油種	箇所	詳細	 	年	攸舌軋囲	(k1)
34	1980/02/06	99, 000	原油	底板 溶接部	き裂部	1971/09/14	8.4	敷地内	0.07
35	1980/02/23	4,000	C重油	底板 母材部	腐食 開孔部	1958/04/01	21.9	防油堤内	10.9
			酢酸エチル						
36	1980/05/12	30	とジクロル	底板	腐食	不明	不明	動地内	0.003
50	1500/ 05/ 12	50	メタンの混	母材部	開孔部	(1.61	1.01	从山口	0.003
			合液						
27	1080/06/12	不明	ポリブ	側板	腐食	不明	不明	防油担内	不明
57	1980/00/12	1197	テン	母材部	開孔部		1197	例 佃 堤 P J	1197
20	1090/06/16	200	C 重沖	底板	腐食	不明	不明	献地内	0
30	1980/00/10	290	し里佃	母材部	開孔部	1197	1197	苏叶巴巴	ა
20	1090/06/96	20,000	灯油	底板	腐食	1050/09/10	91 4	献地内	16
39	1980/00/20	50,000	为田	母材部	開孔部	1959/02/10	21.4	苏叶巴巴	10
10	1000/00/01		ガソリ	底板	腐食			またした子	
40	1980/08/01	个明	ン	母材部	開孔部	个明	个明	敫地內	个明
4.1	1000/00/00	一日	ミナス	側板	腐食	一日	一日	載ないという	1.0
41	1980/08/09	个明	重油	母材部	開孔部	个明	个明	叛地內	1.6
10	1000 (00 (00		н.н.	底板	腐食				0
42	1980/09/28	个明	里田	母材部	開孔部	个明	个明	防油堤内	2
10	1000 /10 /00	0 100	1	底板	腐食	1070/01/17	0	またした子	
43	1980/12/06	3, 180	シンサ	母材部	開孔部	1972/01/17	8.9	叛地內	个明
4.4	1000/10/00	10,000	書Z 》中	底板	腐食	1070/02/04	0.0	載ないた	一一日
44	1980/12/22	10, 926	軽佃	母材部	開孔部	1972/03/04	8.8	叛地內	个明
4 -	1001/02/00	一日	アセト	底板	腐食	一日	一日	載ないという	0.0
45	1981/03/20	个明	ン	母材部	開孔部	个明	个明	敫地內	0.2
4.0	1001/06/00		0.手油	側板	腐食			またした子	0.0000
46	1981/06/22	个明	し里油	母材部	開孔部	个明	个明	敫地內	0.0002
47	1001/00/00	00	4 手油	側板	腐食	1070/00/10	0.4	またした子	0.001
47	1981/08/06	28	A里佃	溶接部	開孔部	1978/03/18	3.4	叛地內	0.001
40	1001/00/01		0 毛冲	側板	腐食	1070/00/01		載ないない	0.0105
48	1991/09/01	4,655	し里畑	溶接部	開孔部	1972/02/21	9.5	<u></u> 新地内	0.0195
40	1001/10/00	150	▲重洲	底板	腐食	不明	不明	[米位日	
49	1901/12/02	190	Λ里佃	母材部	開孔部	个叻	个坍	沙井1女 口	Э

N	▼※牛左日日	許可容量	貯蔵	発生	箇所	机墨左耳口	経過	地中於国	流出量
NO.	光 生平月日	(k1)	油種	箇所	詳細		年	攸吉軋囲	(k1)
50	1082/02/05	9	灯油	底板	腐食	1070/10/27	11 9	楼 从 河 川	0 1
50	1982/02/03	ა	入 伯	母材部	開孔部	1970/10/27	11. 5	1冉2ト1月7日	0.1
51	1099/07/01	140	メタノ	側板	腐食	1070/07/22	19 0	載+hu 大	不明
51	1982/07/01	140	ール	母材部	開孔部	1970/07/22	12.0	苏廷巴巴丁	1.67
52	1082/08/10	1 094	ガソリ	底板	腐食	1064/01/24	18 6	樺 幼 畑 地	46 1
52	1902/00/10	1,024	ン	母材部	開孔部	1304/01/24	10.0	「舟ノトノ川・山」	40.1
53	1982/09/29	2 000	(重油	底板	腐食	1969/05/01	13 /	動地内	0.8
00	1982/09/29	2,000	し里伯	母材部	開孔部	1909/03/01	15.4	苏廷巴巴丁	0.0
54	1082/10/21	005	十二油	底板	腐食	1070/05/00	19 5	載·m 内	不明
54	1902/10/21	990	八豆田	母材部	開孔部	1970/05/09	12. 0	苏乂坦巴卜丁	1197
55	1099/19/00	500	重油	底板	キ刻如	1061/11/19	91 1	防油担内	0.002
55	1962/12/09	500	里田	溶接部	何次ら	1901/11/10	21.1	的佃埞的	0.003
EC	1000/10/00	0.1	0 重油	底板	腐食	1071/10/10	11 0	时油相中	0.0
50	1982/12/22	31	し里田	母材部	開孔部	1971/10/19	11.2	的佃埞的	0.2
F 7	1000/10/04	100	电油	底板	腐食	1000/05/00	14.0	》 注	60
57	1982/12/24	120	里田	母材部	開孔部	1968/05/23	14.6	御上	60
50	1004/04/02	10	▲毛油	底板	腐食	一日	一日	推动演出	0.1
58	1984/04/23	10	A里佃	母材部	開孔部	个明	个明	伸2下 他川	0.1
50	1094/05/15	510	▲重油	底板	腐食	1062/11/01	20 6	献地内	17.0
59	1984/05/15	510	A里佃	母材部	開孔部	1963/11/01	20.6	叛地內	17.8
60	1004/11/00	200	0 毛油	底板	腐食	1071/06/00	10 4	載ないと	0.0
60	1984/11/22	300	し里油	母材部	開孔部	1971/06/28	13.4	叛地內	0.3
01	1004/10/10	1 500	D 壬油	底板	腐食	1059/06/19	00 F	またした	0.6
61	1984/12/10	1,500	B 里佃	母材部	開孔部	1952/06/12	32.5	叛地內	0.6
60	1005 /00 /11	100 017	百洲	底板	腐食	1070/10/00	10.7	附近日日	0.1
62	1985/06/11	109, 817	原田	母材部	開孔部	1972/10/03	12.7	的油堤的	0.1
60	1005 /00 /00	0.000	クレオソ	側板	腐食	1000/05/07	5.0	时油田山	1
63	1985/08/23	2,000	ート油	母材部	開孔部	1980/05/07	5.3	的油埞的	1
6.4	1005 /10 /04	145	بلد جرا	底板	チ 空 午1	1079/10/05	10.0	学生	0.0
64	1985/10/04	145	灯油	溶接部	さ殺部	1973/10/25	12.0) 厥 按 水 田	0.2
05	1005 /10 /00	102	い曲アナエム	底板	腐食	1070/10/00	0.0	n+>i+⊥i= i+→	1.0
65	1985/10/29	106	侲呱酸	母材部	開孔部	1976/12/02	8.9	的油堤内	1.9
	1005/11/00	500	事 五 沙中	底板	腐食	1066/04/04	10.7	际动电子	-
00	1909/11/29	500	11111111111111111111111111111111111111	母材部	開孔部	1900/04/04	19. /	的佃埞的	5

NT	▼	許可容量	貯蔵	発生	箇所	机墨左耳口	経過	地中於国	流出量
NO.	光 生午月日	(k1)	油種	箇所	詳細		年	攸吉軋囲	(k1)
67	1096 /01 /06	600	エピクロル	底板	腐食	1067/19/16	10 1	防治相由	4 5
67	1986/01/06	600	ヒドリン	母材部	開孔部	1967/12/16	18.1	的油埞的	4.5
60	1000 /00 /00	15	D 壬油	底板	腐食	1074/00/07	10.4	17十3年1月1日	0 1
68	1986/08/30	15	B 里佃	母材部	開孔部	1974/03/27	12.4	的油埞的	0.1
60	1096 /11 /07	107	江沪	底板	腐食	1074/09/04	10.0	+++ 20 立7	了旧
69	1980/11/07	107	灯佃	母材部	開孔部	1974/02/04	12.8	人走り部	个明
70	1007/06/11	50	加加	底板	腐食	1072 /02 /02	14.0	17十3年1月1日	一口日
70	1987/06/11	50	(闺)(肎)(田	母材部	開孔部	1973/03/28	14.2	的油埞的	个明
71	1007/00/00	00	脱硫C重	側板	腐食	1070/10/07	16.0	17十344月14日	10.4
(1	1987/09/08	20	油	母材部	開孔部	1970/10/07	16. 9	的油埞的	10.4
70	1007/00/00	145	▲毛油	底板	と 201 年7	1071/06/00	16 0	海口	0.7
12	1987/09/09	145	A里佃	母材部	さ妥部	1971/06/29	16.2	御上	9.7
70	1000 /07 /05	00 641	百油	底板	チ 至 午17	1075 /00 /00	10 0	またした	0.1
73	1988/07/05	82,641	原油	溶接部	さ殺部	1975/03/06	13.3	敫地闪	0.4
	1000 /00 /00	0.000	н.н.	底板	腐食	1000/07/10	00.1		0.0
74	1988/08/26	2,000	里沺	母材部	開孔部	1968/07/18	20. 1	防油堤内	0.2
	1000 /10 /17	04 540	百法	底板	腐食	1070 /00 /00	10.4		0.0
75	1989/12/17	84, 548	原沺	母材部	開孔部	1973/08/03	16.4	防沺堤内	0.8
= 0	1001 (00 (01		H	底板	腐食	1020 (00 (00		±/. 1041-	
76	1991/02/24	15	<u>車</u> 沺	母材部	開孔部	1969/03/03	22.0	敷地内	2
	1001 (00 (00	4 . 0.00	溶融硫	側板	腐食	1000 (00 (10	0.0	±/. 104 ±-	0.0
77	1991/09/06	4,000	黄	母材部	開孔部	1969/09/10	22.0	敷地内	0.3
-			溶融硫	側板	腐食				10 -
78	1991/10/04	2,400	黄	母材部	開孔部	1976/11/18	14.9	防沺堤内	43.7
-	1000 (07 (00		H	側板	腐食				0 001
79	1992/07/29	40	<u>車</u> 沺	母材部	開孔部	1979/03/28	13.3	防沺堤内	0.001
			F.V.	底板	腐食	1001 (00 (00			_
80	1992/08/21	995	重沺	母材部	開孔部	1961/03/23	31.4	防沺堤内	5
			ガソリ	側板					
81	1992/11/24	1,750	ン	母材部	き裂部	1961/12/06	31.0	防油堤内	0.2
				側板	腐食			to to so tom	
82	1994/07/01	50	軽油	母材部	開孔部	1973/11/29	20.6	犬走り部	0.0005
				底板	腐食				
83	1994/08/10	125	润滑油	母材部	開孔部	1964/10/05	29.9	大走り部 	0.9

NT	▼※牛左日日	許可容量	貯蔵	発生	箇所	机墨左耳口	経過	地中於国	流出量
NO.	光 生平月日	(k1)	油種	箇所	詳細	议 直午月日	年	攸舌軋囲	(k1)
0.4	1004/00/05	FOO	17 M	側板	腐食	1070/10/00			0.001
84	1994/08/25	500	灯油	母材部	開孔部	1973/10/03	20.9	大走り部	0.001
05	1005 (01 (05	100		側板	腐食	1005 (10 (00			~
85	1995/01/07	420	A里畑	母材部	開孔部	1967/12/22	27.1	被害なし	个明
0.0	1005 (01 (10	00.070	封 又))上	底板	ケ 至日午日	1000/05/15	0.0 5		1.40.0
86	1995/01/13	28,970	輇沺	溶接部	さ殺部	1968/05/15	26.7	防油堤内	142.6
07	1005 /00 /07	100	4 手油	底板	チ 空[[午1]	1000/00/05	00.0		0.0
87	1995/03/27	192	A里佃	溶接部	さ衆部	1966/06/05	28.8	御上	0.2
00	1005 /05 /10	10	毛油	側板	腐食	1079 /07 /00	01 0	推动演出	0.5
88	1995/05/18	10	里佃	母材部	開孔部	1973/07/06	21.9	伸2下伸刀1	8.5
20	1006/09/90	20	毛油	底板	腐食	1060/04/92	26.0	演し	1.0
89	1996/02/29	30	里佃	母材部	開孔部	1909/04/23	26.9	御上	1.2
00	1007/04/12	110,000	百洲	底板	腐食	1079/00/99	94 6	时油相中	1 0
90	1997/04/13	110, 000	原田	母材部	開孔部	1972/09/28	24.0	奶油埞的	1.3
01	1007/05/00	200	ガソリ	底板	腐食	1070/11/09	96 Б	推从河川	不明
91	1997/05/09	300	ン	母材部	開孔部	1970/11/02	20. 5	伸2下伸刀1	个明
0.0	1007/05/22	200	▲重油	底板	腐食	1071/06/09		演し	96
92	1997/05/28	200	A里佃	母材部	開孔部	1971/06/02	26.0	御上	20
0.2	1007/07/10	670	₩Z)/H	底板	腐食	1076/11/16	90.7	时油相中	0 1
95	1997/07/10	670	粗田	母材部	開孔部	1970/11/10	20.7	仍但定的	0.1
0.4	1007/11/19	20	▲重沖	底板	腐食	1072/02/02	94 9	捷 初 河 川	0.2
94	1997/11/13	20	A里伯	母材部	開孔部	1973/02/03	24.0	1円クト1円ノロ	0.2
05	1009/02/04	500	在油	底板	腐食	1071/11/10	<u> </u>	海上	不明
95	1990/03/04	500	入一田	母材部	開孔部	1971/11/19	20. 3	伊上	1197
06	1008/05/23	200	重油	底板	腐食	1072/02/28	26.2	防油坦内	20
90	1996/05/25	200	里田	母材部	開孔部	1972/03/20	20.2	例佃埂P1	20
07	1008/07/04	30	∧ 舌油	底板	腐食	1071/08/20	26.0	構 从 河 III	0.5
91	1990/01/04	50	Λ里佃	母材部	開孔部	1971/00/30	20. 9	1月2下1月7日	0. 5
00	1000/01/00	10	电油	底板	キ刻如	1070/07/20	00 E	防油担内	0.7
90	1999/01/09	12	里仰	母材部	いなり	1970/07/30	20. 0	PIIIVEPI	0.7
00	1000/01/15	54	赵汕	側板	腐食	1072/00/02	26 4	流上	1
59	1333/01/13		<u>キエ</u> 1川	母材部	開孔部	1312/03/02	20.4	1	1
100	1000/05/91	1 450	ガソリ	側板	腐食	1979/11/12	26 5	防油坦内	0 003
100	1000/00/21	1,400	ン	母材部	開孔部	1312/11/13	20.0	1971HI 7EF J	0.003

NT	▼	許可容量	貯蔵	発生	箇所	机平左日日	経過	地中於国	流出量
NO.	光 生午月日	(k1)	油種	箇所	詳細		年	攸吉軋囲	(k1)
101	1000/06/11	1	权汕	底板	腐食	1076/12/08	22 F	大主の立	不明
101	1999/00/11	4	牲但	母材部	開孔部	1970/12/08	22. 3	八疋り印	1197
102	1000/08/12	/01	C 重油	側板	腐食	1062/10/24	35.8	防油担内	0.02
102	1999/00/12	401	し重価	母材部	開孔部	1903/10/24	55.0	PJ1U4EP J	0.02
103	1000/10/11	2 160	(重油	側板	腐食	1072/10/05	27 0	動地内	0.5
100	1555/10/11	2,100	○重山	母材部	開孔部	1372/10/03	21.0	成山口	0.0
104	1999/10/20	880	∆ 重油	底板	腐食	1980/12/15	18 9	海上	63
104	1999/10/20	000	Λ里佃	母材部	開孔部	1900/12/13	10. 5	1毋二	0.5
105	2001/06/01	4 880	ガソリ	側板	腐食	1070/00/20	30.7	防油坦内	不胆
105	2001/00/01	4,000	ン	母材部	開孔部	1970/09/29	50.1	PJ1U4EP J	1.01
106	2001/06/27	50,000	百油	底板	腐食	1970/12/04	30.6	防油垾内	8
100	2001/00/21	50,000	/示 (四	母材部	開孔部	1970/12/04	50.0	PJ1U4EP J	0
107	2001/08/15	15	重油	側板	腐食	1066/02/23	35 5	防油坦内	0.3
107	2001/08/13	10	里田	母材部	開孔部	1900/ 02/ 23	55.5	PJ1U4EP J	0.5
108	2001/07/31	2 050	TFT Λ-1	側板	腐食	1070/11/10	30.7	防油坦内	0 1
100	2001/07/31	2,030	JELAI	母材部	開孔部	1970/11/19	50.7	的佃咗的	0.1
100	2001/12/20	35,000	百汕	側板	腐食	1060/04/10	297	防油担内	0.002
109	2001/12/29	55,000	床佃	母材部	開孔部	1909/04/10	52.1	PJI田址PJ	0.002
110	2002/04/01	455	FCCボト	底板	腐食	1057/02/05	45.2	流上	不明
110	2002/04/01	400	ム油	母材部	開孔部	1957/02/05	40.2	1毋二.	イ ト ウカ
111	2002/06/07	1 255	C 重油	側板	腐食	1075/12/00	26 5	載·hh 内	0.005
111	2002/00/01	1,200	し重価	母材部	開孔部	1975/12/09	20. 5	苏江巴广门	0.003
119	2002/07/02	40,000	百汕	側板	腐食	1071/05/26	21 1	載·hh 内	不明
112	2002/01/02	40,000	床祖	母材部	開孔部	1971/03/20	51.1	苏江巴广门	1.01
112	2002/09/05	500	C 重油	側板	腐食	1970/10/27	31 0	防油垾内	2
110	2002/03/03	500	○重山	母材部	開孔部	1310/10/21	51.5	ЮЛЩ V EP J	2
11/	2003/01/25	9 800	百油	底板	腐食	1967/12/26	35-1	動地内	0.03
114	2003/01/23	3,000	ЛГ I Ш	母材部	開孔部	1301/12/20	55.1	从山口	0.00
115	2003/02/07	005	赵冲	底板	腐食	1062/01/18	41 1	動地内	0 1
110	2003/02/01	990	种 的	母材部	開孔部	1902/01/10	41.1	苏江巴广门	0.1
116	2003/02/24	700	キシレ	底板	腐食	1065/12/28	379	海上	不胆
110	2000/02/24	100	ン	母材部	開孔部	1300/12/20	51.2	1#-1-	נפיו
117	2003/03/15	50 000	百油	底板	腐食	1970/03/15	33 U	動地内	0 12
111	2003/03/13	50,000	亦但	母材部	開孔部	1910/00/10	55.0	<i>方</i> 入 + LL Y 门	0.13

NT	▼	許可容量	貯蔵	発生	箇所	机要左耳口	経過	地中於国	流出量
NO.	光 生平月日	(k1)	油種	箇所	詳細		年	伮舌軋囲	(k1)
110	0000 /00 /00	- 7	书油	側板	腐食	1070/04/15	06.0	武山山	0.0
118	2003/03/20	57	里田	母材部	開孔部	1976/04/15	26.9	敫地内	0.2
110	0000 /00 /07	0	手油	側板	腐食	1000 /00 /04	10.0	武山山	0 1
119	2003/03/27	8	里田	母材部	開孔部	1992/09/04	10.6	敫地内	0.1
100	0000 /00 /11	100	毛汗	底板	と 201 年7	1071 /00 /11	20.0	推动河口	一日
120	2003/06/11	100	里田	溶接部	で表す	1971/06/11	32.0	伸外的川	个明
101	2002/07/07	9,000	スチレ	底板	腐食	1001/11/04	91 7	献业	0.0
121	2003/07/07	2,000	ン	母材部	開孔部	1981/11/04	21. (规地内	0.2
100	2002 /10 /22	40	电油	底板	腐食	1067/10/19	26 1	陆洲相中	0 1
122	2003/10/23	40	里田	母材部	開孔部	1907/10/12	30.1	仍但定的	0.1
199	2002/12/15	0 <u>2</u> 20	电油	側板	腐食	1069/00/19	25.2	店油担内	0.04
125	2003/12/13	2, 330	里田	母材部	開孔部	1900/09/10	55.5	別佃堤門	0.04
194	2004/06/01	120	重油	底板	腐食	1073/07/25	30 0	防油担内	0.4
124	2004/00/01	150	里田	母材部	開孔部	1973/01/23	30.9	例研始と	0.4
195	2004/07/22	7 830	重油	側板	腐食	1080/10/21	02 Q	防油担内	0.045
120	2004/01/22	7,000	里田	母材部	開孔部	1900/10/21	23.0	別佃姓門	0.043
196	2005/01/06	28	重油	側板	腐食	1068/12/27	36 1	防油坦内	0.4
120	2003/01/00	20	里田	母材部	開孔部	1900/12/27	50.1	例研始と	0.4
197	2005/05/26	10	重油	側板	腐食	1076/11/02	28 G	防油担内	0.001
121	2003/ 03/ 20	10	里田	母材部	開孔部	1970/11/02	20.0	PJ III VEP J	0.001
190	2005/07/01	1 680	重油	側板	腐食	1060/03/27	26.2	防油担内	0 1
120	2003/07/01	1,000	里仰	溶接部	開孔部	1909/03/21	50.5	PJ III VEP J	0.1
190	2005/09/15	12 000	赵冲	側板	腐食	1079/19/97	39 7	防油坦内	0.2
129	2003/03/13	12,000	种 的	母材部	開孔部	1912/12/21	52.7	PJ III VEP 1	0.2
130	2005/09/21	7 000	重油	側板	腐食	1959/04/03	46 5	防油垾内	0 1
100	2000/03/21	1,000	重加	母材部	開孔部	1000/04/00	40.0		0.1
131	2005/11/14	620	メチルイソブ	側板	腐食	1970/02/12	35.8	防油堤内	0 003
101	2000/11/14	020	チルケトン	母材部	開孔部	1310/ 02/ 12	50.0		0.000
132	2005/11/22	620	酢酸ブ	側板	腐食	1970/01/27	35.8	防油堤内	不明
102	2000/11/22	020	チル	母材部	開孔部	1310/01/21	55.0		.1.91
122	2005/12/07	3 400	ナフサ	底板	腐食	1973/09/17	39.9	構从河川	80
100	2000/12/01	0,100	, , ,	母材部	開孔部	1010/00/11	04.4	די לנירו אדדו	00
134	2006/03/01	10	灯油	底板	腐食	1974/11/09	31 २	水路	不明
101	2000/00/01	10		母材部	開孔部	1011/11/00	01.0	こして	נקידי

NT	▼	許可容量	貯蔵	発生	箇所	机墨左耳口	経過	地中於国	流出量
NO.	光 生午月日	(k1)	油種	箇所	詳細	<u> </u>	年	倣吉軋囲	(k1)
105	0000 /04 /00	0.0	书社	底板	腐食	1075 /07 /10		構内排水	
135	2006/04/08	20	里田	母材部	開孔部	1975/07/16	30.8	溝	个明
100	0000 /00 /00	00.4		底板	チ 知 中国	1000/00/11		叶叶旧山	0.0000
136	2006/06/08	234	伸酸	溶接部	さ裂部	1968/06/11	38.0	防沺堤内	0.0002
107	0000 /07 /01	15	书社	側板	腐食	1077/00/10	00.4	http://www.com	1.0
137	2006/07/01	15	里田	母材部	開孔部	1977/02/18	29.4	/捕クト/\/ 田	1.2
100	0000 /07 /00	04.050	#7.)/H	側板	腐食	1071/10/07	04 5		
138	2006/07/06	24, 250		母材部	開孔部	1971/12/27	34.5	奶油堤內	个明
100	0000 /07 /10	0.0	书社	底板	腐食	1001/07/11	05 0	内山田山	1
139	2006/07/16	20	里田	母材部	開孔部	1981/07/11	25.0	奶油堤內	1
140	0000 /00 /01	0.050	电油	側板	腐食	1070/02/04	94.4	74:14:14	一日
140	2006/08/01	9,950	里田	母材部	開孔部	1972/03/04	34.4	奶油堤內	个明
1 4 1	0000 /00 /10	F 0.00	ガソリ	側板	腐食	1070/02/04	94 5	また」という	一日
141	2006/08/10	5,060	ン	母材部	開孔部	1972/03/04	34.5	叛地內	个明
140	0007/00/15	740	毛汗	底板	腐食	1072 /00 /00	<u>эр</u> г	載ないた	50
142	2007/03/15	740	里田	母材部	開孔部	1973/09/06	33.5	叛地內	50
1.40	0007/04/01	000	书社	底板	腐食	1070/06/10	00.0	内山田山	0.000
143	2007/04/01	200	里田	溶接部	開孔部	1978/06/19	28.8	奶油堤內	0.002
1 4 4	2007/05/12	200	スラッ	側板	腐食	1079/19/17	22.4	防治相合	不明
144	2007/05/13	200	ジ	母材部	開孔部	1973/12/17	33.4	奶油堤內	个明
145	0007/11/00	FD 600	ガソリ	側板	腐食	1074/10/15	0.0 1	74:14:14:14	0.010
145	2007/11/26	53, 620	ン	母材部	開孔部	1974/10/15	33.1	奶油堤內	0.012
140	0000 /00 /00	C	エチレンジ	底板	腐食	1071/10/11	26.7	74:14:14	0.04
146	2008/08/20	6	クロライド	母材部	開孔部	1971/12/11	36.7	奶油堤內	0.04
1.47	2002/04/20	176	ポリエ	側板	腐食	1070/11/90	97 5	防治相合	1 00
147	2008/04/30	170	ーテル	母材部	開孔部	1970/11/20	37.5	奶油埞的	1.02
140	2002/06/12	1.4	アタブロ	底板	腐食	1075 /11 /14	<u> </u>	防治相合	0,000
148	2008/06/13	14	ン乳剤	母材部	開孔部	1975/11/14	32.0	奶油埞的	0.002
1.40	0000 /00 /01	1 700	0. 手油	側板	腐食	1000/05/00	40.0	内山田山	0.000
149	2009/08/31	1,730	し里油	母材部	開孔部	1960/05/20	49.3	奶油堤內	0.006
150	0000 /00 /17	0	# 又、)- 上	側板	腐食	1074/07/10	05 0	内山田山	+++ - - -
190	2009/09/17	2	11111111111111111111111111111111111111	母材部	開孔部	1974/07/10	35. Z	的佃埞的	石十
151	2000 /01 /10	F00	メタクリル	底板	腐食	1074/10/00	01 O	[[七]][[]][[]][[]][[]][[]][[]][[]][[]][[
191	2009/01/16	520	酸メチル	母材部	開孔部	1974/10/03	34. 3	则佃埞凹	0.045

No.	発生年月日	許可容量	貯蔵	発生	箇所設置年月日	<u>設署年日日</u> 経過	流出量				
		5. 完全千万百	(k1)	油種	箇所	詳細	叹 但十月日	以 但十万日	以 直十月日	詳細	年
159	2000/12/24	40	1.4-ブタン	底板	キ列如	1086/01/20	-03-0	防油担内	0.4		
152	2009/12/24	40	ジオール	母材部	いたり	1980/01/30	23.9	的加坡的	0.4		
159	2000 /12 /22	000	百七油	底板	腐食	1077/07/07	20 F	吃油担内	20		
192	2009/12/22	900	丹生曲	母材部	開孔部	1977/07/07	32. 9	的佃埞的	50		

表 2.2 地震時の危険物流出事故事例

N	発生年月日	許可容量	貯蔵	発生		経過	水牛地雷	流出量
NO.		(k1)	油種	箇所		年	光 生地辰	(k1)
1	1978/06/12	31, 421	灯油	底部隅角部	底部隅角部 1972/08/15 5.8 宮城県沖地震		宮城県沖地震	滲み
2	1978/06/12	31, 470	重油	底部き裂	底部き裂 1972/11/08 5.6 宮城県沖地震		宮城県沖地震	26, 798
3	1978/06/12	31, 508	重油	底部き裂	1972/12/18	5.5	宮城県沖地震	23, 705
4	1978/06/12	23,608	減圧軽油	底部き裂	1973/01/25	5.4	宮城県沖地震	45
5	1978/06/12	23, 588	減圧軽油	底部き裂	1973/01/25	5.4	宮城県沖地震	17,644
6	1983/05/26	2,000	軽油	底部隅角部	不明	12.7	日本海中部地震	滲み
7	1983/05/26	1,000	軽油	底部ドレン部	不明	11.6	日本海中部地震	滲み
8	1993/01/15	1,035	アスファ ルト	側板座屈部	1972/07/29	20.5	釧路沖地震	900t
9	1993/01/15	5,000	重油	側板座屈部	不明	不明	釧路沖地震	不明
10	1995/01/17	420	A重油	側板	1967/12/22	27.1	兵庫県南部地震	滲み
11	1995/01/17	990	エチルア ルコール	側板座屈部	1973/09/21	21.3	兵庫県南部地震	3
12	2011/03/11	4, 920	A重油	底部溶接部	1973/07/16	37.7	東北地方太平洋 沖地震	滲み

第3章 屋外タンクの技術基準、保安検査の現状と課題

3.1 特定屋外タンク貯蔵所に係る技術基準

3.1.1 新法タンク

いわゆる「新法」とは、昭和 52 年政令第 10 号(以下「昭和 52 年政令」という。)に よる改正後の危険物の規制に関する政令(以下「危政令」という。)第 11 条第1項第3 号の2(基礎及び地盤)及び第4号(タンク本体)に基づく技術基準をいい、この危政 令施行日以降に設置許可申請された特定屋外タンク貯蔵所は、一般的に「新法タンク」 とよばれている。

3.1.2 旧法タンク

いわゆる「旧法」とは、昭和34年政令第306号に基づく屋外タンク貯蔵所に係る技術 基準をいい、この「旧法」により設置されている特定屋外タンク貯蔵所を一般的に「旧 法タンク」と呼んでいる。

昭和 52 年政令附則第3項により、「新法」に適合しないタンクについては、従前の例 によることとされたため、昭和 52 年政令の施行後も旧法タンクが残ることとなった。

なお、平成6年政令第214号により、昭和52年政令附則が改正され、旧法タンクの耐 震改修のための技術基準として「新基準」が制定され、改修等のための一定の経過期間 が設けられた。(1万キロリットル以上:平成21年21月31日まで)

(1) 新基準(第二段階基準)

新基準(改正後の昭和52年政令附則第3項)に適合し、適合している旨の「新基準 適合届出」をした旧法タンクのうち、「第一段階基準」以外の旧法タンクをいう。

(2) 第一段階基準

新基準に適合し新基準に適合している旨の「新基準適合届出」をした旧法タンクの うち、第一段階基準に適合し第一段階基準に適合している旨の「第一段階基準適合届 出」をしたタンクをいう。

3.2 保安検査

3.2.1 保安検査の概要

保安検査とは、容量1万キロリットル以上の液体の危険物を貯蔵する屋外タンク貯蔵所 について、タンク所有者等が自ら点検を行った後に市町村長等がタンクの底部を定期的に 検査するものである。保安検査においては底部の板の厚さ及び底部の溶接部に関する事項 が技術上の基準に適合していることを確認しなければならない。

3.2.2 保安検査の時期

保安検査を受けなければならない時期は、タンクが適合している技術基準に応じて定め られている。新法タンク及び旧法第一段階基準タンクについては基本周期が8年、旧法新 基準タンクについては基本周期が7年と定められている。また、保安のための措置を講じ たタンクについては個別に開放周期を延長する制度が規定されており、措置の内容と技術 基準に応じた検査周期が規定されている。保安検査の時期についてまとめたものを表 3.1 に 示す。

		基本周期			
		(H6年)	措置内容	検査周期	制定
			腐食防止	腐食防止 10 年	
年汁 カンノカ		。在	貯蔵管理	10年	H6年
新法タンク		04	腐食量管理	13年	H15年
			連続板厚測定	8~15年	H23年
			腐食防止	10年	H6年
	第一段階基準 タンク	。在	貯蔵管理	10年	H6年
		04	腐食量管理	13年	H15年
旧伝クマク			連続板厚測定	8~15年	H23年
	む甘 淮 カンク	7年	腐食防止	10年	H6年
	利卒中クマク	(++	貯蔵管理	9年	H6年

表 3.1 保安検査の周期

※特定屋外タンク貯蔵所において、不等沈下率が 1/100 以上であることが確認されたタン クについても保安検査を受けなければならない。

3.2.3 保安検査に伴う補修工事

屋外貯蔵タンクの底部補修工事は、主に底部板の板厚及び溶接部において技術上の基準 に適合しない箇所が確認された場合に実施されるものである。平成12年度以降実施された 保安検査の基数を表3.2に、保安検査に伴う底部補修工事の概要を図3.1に示す。「取替・ 当板補修」は、主に底板裏面からの基準を超える腐食や、底板内面の広範囲にわたる腐食 に対して実施される補修工事である。「肉盛り補修」は、主に底板内面からの基準を超える 腐食に対して実施される補修工事である。「溶接線補修」は、溶接部検査の結果、危険物の 規制に関する規則(以下「規則」という。)第20条の8に適合しない欠陥があった場合等 に実施される補修工事である。特に、溶接線補修は9割以上のタンクで実施されているこ とから、その経年劣化が進んでいることが伺える。

年度	H12	H13	H14	H15	H16	H17	H18	H19	H20	H21	H22
検査	310	304	979	266	260	258	294	293	326	310	254
基数	510	504	212	200	200	200	204	200	520	510	204

表 3.2 年度別保安検査実施基数

図 3.1 保安検査に伴う補修工事の概要

3.3 底部板破断による危険物流出事故を踏まえた課題

これまで整理された危険物流出事故発生プロセスや特定屋外貯蔵タンクの底部板破断に よる危険物流出事故事例から、旧法屋外タンク貯蔵所の保安検査のあり方を検討するため には基礎地盤の堅固さ、溶接部の健全性及び旧法タンクの腐食データと検査のあり方につ いて評価することが必要であることが分かった。そこで本年度は基礎地盤の堅固さが底部 板の強度に及ぼす影響について調査検討する。

3.3.1 基礎地盤の堅固さについて

新法タンクの地盤に係る技術基準についてまとめたものを図 3.2 に示す。地盤はタンク荷 重によって生じる応力に対して安全なものとするほか、標準貫入試験、平板載荷試験、圧 密度試験等によって得られた地盤の工学的性状により堅固さを確認していることがわかる。 図 3.2 新法タンクの地盤に係る技術基準

一方、旧法新基準タンクの地盤については、設置されてから貯蔵液を含んだタンク荷重 により地盤が締め固められていることが期待されるため、技術基準としては液状化の項目 があるのみとなっている。すなわち、旧法新基準タンクの地盤の性状は工学的指標により 確認されていないこととなる。以上のことから、旧法新基準タンクの基礎地盤が受ける荷 重と変位の関係を明らかにすることを試みる。

3.3.2 不等沈下の点検によるタンク沈下量測定

タンクの不等沈下の点検は定期点検により実施することとなっている。不等沈下の測定 は、レベル計等を用いてタンク側板下部の沈下量を全周にわたって計測し、沈下量の最大 と最小の差をタンク内径で除した値を不等沈下率と定義している。不等沈下率が 1/100 を 超えた場合には保安検査を実施し底部の板厚と溶接部の健全性を確認するとともに、基礎 の不陸修正を行わなければならない。

不等沈下の点検によりタンク外周部における沈下量は把握できるものの、タンク内部が 液圧等によりどの程度沈下しているかは計測できない。貯蔵液の荷重によるタンクの沈下 量がタンク外周部とタンク内部で異なる場合(図 3.3 参照)は、沈下による底部板の相対変 位が生じることから応力が作用することとなる。したがって、貯蔵液の荷重によるタンク 底板全面の沈下量を把握することは、底部板の強度を評価する上で必要になると考える。

図 3.3 荷重によるタンク沈下のイメージ

3.3.3 局部沈下が底部板の強度に及ぼす影響について

基礎の局部沈下がタンク底部板に及ぼす影響については、これまでいくつかの検討事例 がある。「沈下現象が屋外貯蔵タンクに及ぼす影響に関する調査検討報告書」(昭和 60 年 3 月 危険物保安技術協会)によれば、基礎の局部沈下を基礎の円柱状の欠損部として取り 扱い、その直径(d)と深さ(δ)の比(d/δ)によって底部板の溶接部に発生する応力を算出して おり、その結果を図 3.4 に示す。これによると、範囲が狭く深さが深い(d/δが小さい)局 部沈下ほど底部板に与える応力が大きなものとなることが示されている。また、局部沈下 の寸法が同じである場合には、底部板の重ねすみ肉溶接部のノド部に発生する応力は突合 せ溶接継ぎ手に発生する応力の 1.4~2.0 倍となることが示されている。保安検査の対象と なる新法タンクの底板相互の溶接は突合せ溶接とすることが技術基準化されているが、旧 法タンクの底板相互の溶接は技術基準がないことから重ねすみ肉溶接で施工されているも のが多い。従って、旧法タンクの保安検査のあり方を検討する上で局部沈下の影響は考慮 する必要があるものの、過去に検討が行われていることから、本年度の調査検討の対象外 とする。

図 3.4 局部沈下箇所にまたがる溶接部に発生する応力

3.3.4 課題の整理

基礎地盤がタンク底部板に及ぼす強度上の影響について考察してきた。これらについて まとめると次のようになる。

- (1) 基礎地盤の堅固さに関する工学的指標を得るために、基礎地盤に係る荷重とそれに 伴う沈下量との関係を明らかにする必要がある。
- (2) 荷重と沈下量の関係は、タンク外周部の沈下量とタンク内部の沈下量を併せて評価 する必要がある。
- (3) 上記(1)(2) において得られた基礎地盤の工学的性状を基に、タンク底部の強度 評価を実施することが可能となる。
- (4) 基礎の局部沈下がタンク底部に及ぼす強度的影響は、既存の検討において得られた 知見に基づいた評価が可能である。

第4章 側板外周部およびタンク内底板の沈下量の計測

4.1 目的と概要

旧法タンクの基礎地盤の堅固さの定量的な評価方法の検討のため、指定された 1 万キロリットル 以上の旧法タンクに対して水張試験時に底板および外周部の沈下計測を行った。さらに沈下計測した 旧法タンクに対し有限要素法を用いて沈下シミュレーションを行った。

4.2 計測した旧法タンクと地盤条件

(1) 計測対象タンク

計測の対象とした屋外貯蔵タンクの概要を図 4.1、基本寸法等を表 4.1 に示す.

	住 所	神奈川県横浜市			
VL VL	対象タンク	浮き屋根式タンク(シングルデッキ)			
	計測期間	平成 23 年 12 月~平成 24 年 1 月			
	内径 (mm)	36,830			
甘木	側高さ(mm)	21,945			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	最高液高(mm)	19,508			
	底部勾配	1/120			
	許可容量 (kl)	20,782			
底部	底板 (mm)	8			
板厚 アニュラ板(mm)		12			

表 4.1 対象とした屋外貯蔵タンクの諸元



図 4.1 対象タンク概略図

なお、本タンクの基礎形式は直接基礎(盛り土基礎)であり、側板直下や盛り土基礎の外周部に RCリングの施工はない。
(2) 地盤条件

地盤調査の位置と種類を図 4.2 に示す.



図 4.2 地盤調査の位置と種類

標準貫入試験と圧密試験より得られた圧密降伏応力を図 4.3 に示す.



図 4.3 標準貫入試験と圧密降伏応力

図 4.4 に 3 つの圧密試験結果を同時に示す。3 つの圧密試験結果より、圧密降伏応力が明確なのは、  $p_c = 105 kN/m^2$  (T-24-3) である。



図 4.4 3 つの圧密試験結果

タンク直下の砂質土層よりブロックサンプリングにより試料採取し三軸圧縮試験で強度特性を調べている。表 4.2 に結果を示す。

サンプリング位置	24-1	24-2	24-3	平均
c (kN/m ² )	27.4	11.8	8.8	16.0
$\phi$ (° )	36.7	35.4	35.4	35.8

表 4.2 砂質土部分の強度特性

粘性土層部分は、T-24-3 の三軸 CU 圧縮試験より得られた強度特性で代表させた。強度特性は次のとおりである。

$$c = 25.48 \text{ kN/m}^2 \phi = 17.33$$
 °

#### 4.3 側板外周部およびタンク内底板の沈下量の計測

水張試験時の側板外周部およびタンク内底板の沈下量計測を行った。

# 4.3.1 計測方法

(1) 側板外周部の沈下量計測

側板外周部の沈下量測定は、規則第20条の 10 第1項第1号側板最下段の水平度の計測と 同様に、屋外タンク側板最下段を写真4.1に 示す治具を用いて水準測量によりタンク外周 32点の沈下量計測を行った(基準とする標高は、 検査時に使用する仮ベンチマーク(B.M)とし た)。

(2) タンク内底板の沈下量計測

タンク内に水張りを行った影響によるタンク 内底板の変形(沈下)量を計測するため、浮き 屋根上に存在するルーフサポート孔を利用し



写真 4.1 側板外周部測量用治具

た。計測数は、抜き取ったルーフサポート位置による影響が無い位置を 10 箇所選定した。図 4.5 にタンク内底板の沈下量計測位置と側板外周部の沈下測量位置を示す。



No.	А, В	C, D	E, F	$G \sim J$	1~16'
中心からの距離(m)	4.5	7.8	11.5	14.0	18.7

図 4.5 底板の沈下量計測位置と側板外周部の沈下測量位置

測定方法は基準標高からタンクの内壁に仮 B.M を設置し、以下の3種類の計測を実施した。

- ① レベル測量による沈下量計測
- ② レーザーレベル計による沈下量計測
- ③ タンクスケールによる沈下量計測

タンク内底板部から浮き屋根上までの計測は、JIS1 級の鋼製巻尺を用いた。設置方法は、浮き 屋根上の孔位置に設定した計測位置の直下にあたる底板部に強力な磁力を有するマグネットホル ダ台を取り付け、その上部に鋼製巻尺を固定する方法とした。写真 4.2 にタンク内底板部に設置し た鋼製巻尺を示す。



写真 4.2 タンク内底板部に設置した鋼製巻尺

① レベル測量による仮 B.M の設置とタンク内底板の標高測定

レベル測量による仮 B.M の設置とタンク内底板の標高測定のイメージを図 4.6 に示す。手順は 次のとおりである。

- a. 基準標高の B.M からタンク天端部にあるプラットホームを利用し、仮 B.M を 2 箇所設置する。この時、タンク側板の外側および内側については鋼製巻き尺による直接計測とした。
- b. タンク内に設けた仮 B.M を使用しレベル測量を実施した。浮き屋根仕様はシングルデッキ であり、デッキの変形影響を受けないポンツーン上に器械を設置した。
- c. タンク内底板に設置した鋼巻尺の読み値から底板部の標高を算出した。



図 4.6 レベル測量による仮 B.M 設置とタンク内底板の標高測定

② レーザーレベルによるタンク内底板の標高測定

レーザーレベルを用いたタンク内底板の標高測定のイメージを図 4.7 に示す。

測定は、①によるレベル測量で設置したタンク内の仮 B.M を利用し、レベル測量器械の代わり にレーザーレベル装置を設置して行った(装置はポンツーン上に設置)。

レーザーレベル装置では、レベル測量時に設定した2点の仮 B.M の標高に差がないこと、自動 水準器によるレーザー水平ライン上の測定結果がレベル測量と相違ないことを確認した。



図 4.7 レーザーレベルを用いたタンク内底板の標高量測定

③ タンクスケールによるタンク内底板の沈下量測定

タンクスケールを用いたタンク内底板の沈下量測定のイメージを図 4.8 に示す。

測定は、タンク内底板に設置した鋼巻尺の読み値により、スケール直読位置の標高を算出した。 ルーフサポート孔より底板へ降下させたタンクスケールの読み値からタンク内底板の標高を測定 した。



図 4.8 タンクスケールを用いたタンク内底板の沈下量測定方法

(3) 沈下量計測のタイミング

対象タンク内への水張り水位と沈下量計測のタイミングを図 4.9 に示す。

試験時の沈下量計測は、水位を増加させる条件(①~⑥)と水位を減少させる条件(⑥~⑪)の計 11 回実施した。注水時と排水時に計測する水位は同レベルを目処とした。①:12/9、②:12/13、③: 12/15、④:12/16、⑤:12/17、⑥:12/19、⑦:12/22、⑧:12/24、⑨:12/26、⑩:12/28、⑪: 1/6 に実施した。



図 4.9 水張り試験水位と沈下量計測のタイミング

## 4.3.2 計測結果

(1) 側板外周部の沈下量

表 4.3 にタンク側板外周部の標高および沈下量、図 4.10 にタンク側板外周部の標高の変化、図 4.11~4.42 に 水位とタンク側板外周部の沈下量の関係を示す。

基準標高:BM8=4.083m 0 11.25 22.5 33.75 45 56.25 67.5 78.75 90 101.25 112.5 123.75 135 146.25 157.5 168.75 180 191.25 202.5 213.75 225 236.25 247.5 258.75 270 281.25 292.5 303.75 315 326.25 337.5 34 種別 測点No 1' 2 2' 3 3' 4 4' 5 5' 6 6' 7 7' 8 8' 9 9' 10 10' 11 11' 12 12' 13 13' 14 14' 15 15' 16 実測ELVE 4.955 4.947 4.944 4.941 4.941 4.941 4.940 4.941 4.942 4.942 4.942 4.946 4.939 4.938 4.935 4.935 4.928 4.929 4.941 4.938 4.939 4.931 4.938 4.935 4.935 4.935 4.935 4.941 4.950 4.941 4.950 4.959 4.959 4.959 4.959 4.951 4.970 4.967 4.969 4. 第1回 前回差 累計沈下量 0 0 0 0 0 0 0 0 0 0 4.951 4.946 4.942 4.938 4.939 4.939 4.939 4.941 4.941 4.941 4.941 4.943 4.945 4.938 4.946 4.953 4.941 4.929 4.941 4.937 4.942 4.936 4.943 4.943 4.943 4.943 4.945 4.946 4.967 4.970 4.970 4.970 4.968 4.965 4. 実測ELVE 第2回 前回差 -3 -2 -1 0 -1 +1 -1 -1 -2 +0 -1 +3 0 0 -1 -1 -3 0 0 -1 +1 +1 +1 -1 -1 +0 +1 -4 -4 -1 -2 累計沈下量 -4 -1 -3 -2 -1 0 -1 +1 -1 -1 -2 +0 -1 +3 0 0 -1 -1 -3 0 0 -1 +1 +1 +1 -1 +0 +1 -1 4.950 4.945 4.941 4.937 4.940 4.939 4.941 4.942 4.941 4.942 4.943 4.936 4.935 4.933 4.933 4.933 4.930 4.926 4.939 4.936 4.940 4.936 4.929 4.934 4.942 4.949 4.959 4.961 4.959 4.961 4.965 4.969 4.967 4.966 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.965 4.969 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4 実測ELVE 第3回 -1 +1 0 0 0 -1 -2 -2 -1 -2 -1 -3 -2 -1 -2 0 -2 -2 前回差 -1 -1 -1 -1 -2 -1 -3 -2 -1 -3 -2 +2 累計沈下量 -1 0 -1 0 -3 -3 -3 -2 -3 -2 -5 -2 -3 -4 -1 -2 -3 -3 -2 -2 -2 -1 +0 -2 -3 -2 -3 -1 -4 実測ELVE 4.948 4.942 4.939 4.935 4.937 4.935 4.937 4.938 4.937 4.939 4.941 4.934 4.932 4.931 4.931 4.927 4.924 4.936 4.934 4.938 4.933 4.938 4.933 4.926 4.932 4.939 4.946 4.955 4.959 4.963 4.967 4.965 4.964 4.962 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4.966 4 第4回 前回差 累計沈下量 -7 -5 -3 -7 実測ELVE 4.945 4.939 4.936 4.932 4.933 4.931 4.935 4.933 4.933 4.933 4.933 4.933 4.933 4.933 4.933 4.933 4.933 4.932 4.923 4.923 4.919 4.916 4.929 4.928 4.921 4.929 4.928 4.931 4.927 4.919 4.924 4.932 4.939 4.950 4.959 4.959 4.959 4.962 4.960 4.959 4. 第5回 -3 -3 -4 -4 -3 -4 -6 -6 -7 -7 -7 -7 -7 -7 -7 -8 -8 -8 -7 -7 -6 -7 -6 -7 -8 -7 -7 -7 -5 -5 -4 -5 前回差 -3 -3 -3 -4 -3 累計沈下量 -10 -9 -8 -8 -7 -10 -8 -8 実測ELVE 4.940 4.936 4.932 4.938 4.928 4.928 4.928 4.928 4.929 4.930 4.930 4.930 4.930 4.931 4.933 4.926 4.925 4.92 4.92 4.92 4.921 4.916 4.928 4.926 4.929 4.926 4.929 4.927 4.919 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.928 4.9 第6回 -5 -3 -4 <u>-4</u> <u>-5</u> <u>-2</u> <u>-5</u> <u>-3</u> <u>-2</u> <u>-2</u> <u>-1</u> <u>0</u> <u>-1</u> <u>-1</u> <u>+2</u> <u>0</u> <u>-1</u> <u>-2</u> <u>-2</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>0</u> <u>-2</u> <u>-2</u> <u>-4</u> <u>-3</u> 前回差 -4 -3 -3 累計沈下量 -15 -11 | -12 | -13 | -11 | -11 | -12 | -11 | -12 | -11 | -13 | -13 | -13 | -12 | -13 | -7 | -13 | -13 | -12 | -14 | -12 | -12 | -12 | -12 | -12 | -11 | -11 | -11 | -13 | -12 | -12 | -12 | -10 | -13 4.940 4.955 4.927 4.929 4.928 4.920 4.928 4.930 4.929 4.928 4.930 4.929 4.920 4.920 4.920 4.921 4.920 4.917 4.914 4.926 4.925 4.929 4.924 4.918 4.921 4.930 4.937 4.946 4.952 4.957 4.958 4.959 4.958 4.959 4.958 4.959 4.958 実測ELVE -1 0 -1 +1 -1 0 -1 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 0 -3 -1 -3 -2 -2 -2 0 +2 -1 +1 +1 0 第7回 前回差 0 -12 | -12 | -14 | -12 | -12 | -11 | -13 | -13 | -15 | -15 | -15 | -15 | -15 | -15 | -15 | -15 | -15 | -13 | -14 | -15 | -13 | -15 | -14 | -13 | -13 | -11 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -11 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -13 | -累計沈下量 -15 実測ELVE 4.945 4.940 4.938 4.935 4.934 4.933 4.935 4.934 4.933 4.935 4.935 4.935 4.935 4.935 4.935 4.938 4.931 4.930 4.928 4.927 4.925 4.920 4.933 4.922 4.933 4.932 4.935 4.930 4.924 4.928 4.938 4.944 4.953 4.956 4.961 4.965 4.964 4.963 4.960 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.965 4.961 4.961 4.965 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4.961 4 第8回 前回差 +5 +5 +6 +8 +5 +5 +5 +6 +6 +7 +7 +7 +8 +7 +8 +6 +7 +7 +8 +6 +7 +7 +6 +6 +6 +7 +8 +7 +8 +7 +4 +4 +7 +5 +5 +4 -7 | -6 | -7 | -7 | -8 | -8 | -8 | -7 | -8 | -3 | -9 | -8 | -6 | -8 | -9 | -7 | -8 | -6 | -6 | -6 -7 -7 -6 累計沈下量 -10 -7 -6 -6 -7 -6 -4 -9 4.949 4.949 4.940 4.936 4.938 4.937 4.938 4.937 4.938 4.938 4.938 4.938 4.940 4.933 4.932 4.930 4.930 4.927 4.924 4.937 4.935 4.938 4.934 4.928 4.933 4.941 4.947 4.956 4.959 4.963 4.968 4.967 4.965 4.964 4. 実測ELVE 第9回 前回差 +4 +3 +2 +1 +4 +4 +3 +3 +3 +2 +2 +2 +2 +2 +3 +2 +4 +4 +3 +3 +3 +4 +4 +5 +3 +3 +3 +3 +3 +2 +3 +3 +2 +3 +3 +2 +4 累計沈下量 -3 -3 -4 -4 -6 -6 -6 -5 -5 -1 -5 -4 -3 -5 -5 -3 -3 -6 -4 -4 -5 -3 -3 -3 -3 -4 -5 -3 -5 -3 -2 4.948 4.942 4.939 4.936 4.937 4.936 4.937 4.936 4.939 4.936 4.939 4.936 4.940 4.943 4.935 4.944 4.931 4.931 4.931 4.929 4.926 4.938 4.935 4.940 4.937 4.930 4.937 4.930 4.935 4.949 4.958 4.959 4.964 4.968 4.967 4.966 4.962 4. 実測ELVE 第10回 前回差 -1 -2 累計沈下量 -7 -5 -5 -5 -5 -4 -4 -2 -6 -2 -3 -4 -4 -4 -4 -4 +1 -3 -3 -3 -3 -3 -3 -2 -1 -1 -1 -1 -1 -1 -4 -4 -4 -3 -3 -3 -1 -7 4.955 4.950 4.946 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.943 4.945 4.940 4.949 4.940 4.943 4.941 4.942 4.946 4.941 4.942 4.946 4.941 4.943 4.945 4.940 4.945 4.940 4.945 4.940 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 4.945 実測ELVE 第11回 前回差 +8 +7 +7 +6 +7 +5 +7 +5 +4 +5 +5 +6 +5 +5 +6 +7 +6 +7 +6 +4 +5 +4 +4 +4 +3 +8 +6 +5 +6 +5 +7 +7 +2 +2 +2 +3 +3 +3 +1 +3 +1 +1 +1 +1 +2 +1 +6 +2 +3 +4 +3 +2 +4 +3 +3 +3 +3 +2 +4 +2 +2 +2 累計沈下量 Δ +3 +3 +4 Λ





図 4.10 タンク側板外周部の標高の変化

				実測値単位:m
48.75	BM9	Y9-13	法旦	測定年月日
16'			校里	
.959	4.275	4.490		2011/4/5
			0.000	水張り前
0	0	0		
.959	4.275	4.490		2011/12/13
+0	0	0	3.251	水位1/6
+0	0	0		
.957	4.275	4.490		2011/12/15
-2	0	0	6.505	水位1/3
-2	0	0		
.955	4.275	4.490		2011/12/16
-2	0	0	9.822	水位1/2
-4	0	0		
.952	4.275	4.490		2011/12/17
-3	0	0	14.709	水位3/4
-7	0	0		
.949	4.275	4.490		2011/12/19
-3	0	0	19.714	満水
-10	0	0		
.950	4.275	4.490		2011/12/22
+1	0	0	14.731	水位3/4
-9	0	0		
.954	4.275	4.490		2011/12/24
+4	0	0	9.801	水位1/2
-5	0	0		
.957	4.275	4.490		2011/12/26
+3	0	0	6.521	水位1/3
-2	0	0		
.955	4.275	4.490		2011/12/28
-2	0	0	3.199	水位1/6
-4	0	0		
.963	4.275	4.490		2012/1/6
+8	0	0	0.000	水抜き後
+4	0	0		



図 4.11 水位-標高の関係(「1」)











図 4.15 水位 – 標高の関係(「3」)





















図 4.21 水位 - 標高の関係(「6」)











注水時

排水時

15.000

4.980

4.970

4.920

4.910

0.000

(1) 4.960
(1) 4.950
(1) 4.940
(1) 4.930













水位-標高の関係(「8」) 図 4.25

10.000

水張水位(m)

5.000



図 4.27 水位 - 標高の関係(「9」)



4-12



図 4.35 水位-標高の関係(「13」)

注水時

排水時

4.980

4.970

4.960













計測標高(m) 4.950 4.940 4.930 4.920 4.9100.000 5.00015.00020.000 10.000 水張水位(m)

> 図 4.37 水位-標高の関係(「14」)



図 4.39 水位-標高の関係(「15」)





図 4.42 水位-標高の関係(「16'」)

水張試験前の空液時(第1回)におけるタンク側板外周部の標高測定の結果に sin カーブ を重ね合わせたものを図 4.43 に示す。当該タンクは概ね一様に傾斜していることが分かる。 なお、標高の最大値と最小値の差(不等沈下量)は 43mm であり、タンク内径に対する不 等沈下量の割合(不等沈下率)は 1/856 である。



## (2) タンク内底板の沈下量

レベル測量による沈下量計測結果を表 4.4 に、各計測点の水位と沈下量の関係を図 4.44 ~4.53 に示す。

	種別 測点No.	A	В	С	D	E	F	G	Н	I	J	液量	測定年月日
	実測ELVE	5083.0	5108.5	5084.5	5075.0	5042.0	5021.5	5019.0	5012.0	5022.0	5024.0		2011/12/9
第1回	前回差	-	-	-	-	-	-	-	-	_	_	0.000	水張り前
	累計沈下量	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	実測ELVE	5080.0	5105.5	5072.5	5070.0	5034.0	5018.5	5015.0	5001.0	5014.0	5012.0		2011/12/13
第2回	前回差	-3.0	-3.0	-12.0	-5.0	-8.0	-3.0	-4.0	-11.0	-8.0	-12.0	3.251	水位1/6
	累計沈下量	-3.0	-3.0	-12.0	-5.0	-8.0	-3.0	-4.0	-11.0	-8.0	-12.0		
	実測ELVE	5079.0	5103.5	5069.5	5068.0	5032.0	5016.5	5013.0	5000.0	5011.0	5010.0		2011/12/15
第3回	前回差	-1.0	-2.0	-3.0	-2.0	-2.0	-2.0	-2.0	-1.0	-3.0	-2.0	6.505	水位1/3
	累計沈下量	-4.0	-5.0	-15.0	-7.0	-10.0	-5.0	-6.0	-12.0	-11.0	-14.0		
	実測ELVE	5066.0	5091.5	5057.5	5056.0	5019.0	5004.5	5000.0	4988.0	5000.0	4998.0		2011/12/16
第4回	前回差	-13.0	-12.0	-12.0	-12.0	-13.0	-12.0	-13.0	-12.0	-11.0	-12.0	9.822	水位1/2
	累計沈下量	-17.0	-17.0	-27.0	-19.0	-23.0	-17.0	-19.0	-24.0	-22.0	-26.0		
	実測ELVE	5063.0	5089.5	5055.5	5053.0	5017.0	5003.5	4998.0	4986.0	4998.0	4997.0		2011/12/17
第5回	前回差	-3.0	-2.0	-2.0	-3.0	-2.0	-1.0	-2.0	-2.0	-2.0	-1.0	14.709	水位3/4
	累計沈下量	-20.0	-19.0	-29.0	-22.0	-25.0	-18.0	-21.0	-26.0	-24.0	-27.0		
	実測ELVE	5051.0	5076.5	5044.5	5041.0	5006.0	4990.5	4987.0	4974.0	4987.0	4985.0		2011/12/19
第6回	前回差	-12.0	-13.0	-11.0	-12.0	-11.0	-13.0	-11.0	-12.0	-11.0	-12.0	19.714	満水
	累計沈下量	-32.0	-32.0	-40.0	-34.0	-36.0	-31.0	-32.0	-38.0	-35.0	-39.0		
	実測ELVE	5058.0	5083.5	5048.5	5048.0	5012.0	4997.5	4994.0	4980.0	4994.0	4987.0		2011/12/22
第7回	前回差	7.0	7.0	4.0	7.0	6.0	7.0	7.0	6.0	7.0	2.0	14.731	水位3/4
	累計沈下量	-25.0	-25.0	-36.0	-27.0	-30.0	-24.0	-25.0	-32.0	-28.0	-37.0		
	実測ELVE	5062.0	5087.5	5053.5	5053.0	5015.0	5000.5	4997.0	4984.0	4997.0	4991.0		2011/12/24
第8回	前回差	4.0	4.0	5.0	5.0	3.0	3.0	3.0	4.0	3.0	4.0	9.801	水位1/2
	累計沈下量	-21.0	-21.0	-31.0	-22.0	-27.0	-21.0	-22.0	-28.0	-25.0	-33.0		-
	実測ELVE	5068.0	5094.5	5060.5	5059.0	5023.0	5007.5	5003.0	4990.0	5002.0	4998.0		2011/12/26
第9回	前回差	6.0	7.0	7.0	6.0	8.0	7.0	6.0	6.0	5.0	7.0	6.521	水位1/3
	累計沈下量	-15.0	-14.0	-24.0	-16.0	-19.0	-14.0	-16.0	-22.0	-20.0	-26.0		
	実測ELVE	5068.0	5095.5	5060.5	5059.0	5023.0	5007.5	5003.0	4991.0	5003.0	4998.0		2011/12/28
第10回	前回差	0.0	1.0	0.0	0.0	0.0	0.0	0.0	1.0	1.0	0.0	3.199	水位1/6
	累計沈下量	-15.0	-13.0	-24.0	-16.0	-19.0	-14.0	-16.0	-21.0	-19.0	-26.0		
	実測ELVE	5083.0	5107.5	5084.5	5074.0	5042.0	5022.5	5018.0	5009.0	5022.0	5023.0		2012/1/6
第11回	前回差	15.0	12.0	24.0	15.0	19.0	15.0	15.0	18.0	19.0	25.0	0.000	水抜き後
	累計沈下量	0.0	-1.0	0.0	-1.0	0.0	1.0	-1.0	-3.0	0.0	-1.0		

表 4.4 レベル測量による沈下量計測結果(mm)

※測点J・・・第7回~第10回の計測でタンクスケールを使用



図 4.44 水位-標高の関係 (「A」)











図 4.52 水位-標高の関係 (「I」)

図 4.53 水位-標高の関係 (「J」)

3種類の方法による沈下量の比較を表 4.5、標高の比較を表 4.6 に示す。

	種別 測点No.	Α	В	С	D	E	F	G	н	I	J	液量	測定年月日
	①レベル測量	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		2011/12/9
第1回	②レーザーレベル	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.000	水張り前
	_ ③タンクスケール	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	①レベル測量	-3.0	-3.0	-12.0	-5.0	-8.0	-3.0	-4.0	-11.0	-8.0	-12.0		2011/12/13
第2回	②レーザーレベル	-2.0	-3.0	-12.0	-6.0	-8.0	-2.0	-2.0	-10.0	-8.0	-10.5	3.251	水位1/6
	③タンクスケール	-2.0	-4.0	-10.0	-6.0	-6.0	-2.0	0.0	-10.0	-8.0	-10.5		
	①レベル測量	-4.0	-5.0	-15.0	-7.0	-10.0	-5.0	-6.0	-12.0	-11.0	-14.0		2011/12/15
第3回	②レーザーレベル	-2.0	-4.0	-15.0	-7.0	-9.0	-4.0	-3.0	-11.0	-11.0	-12.0	6.505	水位1/3
	③タンクスケール	-1.0	-4.0	-10.0	-7.0	-6.0	-6.5	-1.0	-11.0	-12.0	-11.0		
	①レベル測量	-17.0	-17.0	-27.0	-19.0	-23.0	-17.0	-19.0	-24.0	-22.0	-26.0		2011/12/16
第4回	②レーザーレベル	-15.0	-17.0	-26.0	-21.0	-22.0	-16.0	-16.0	-23.0	-23.0	-25.0	9.822	水位1/2
	③タンクスケール	-15.0	-15.0	-24.0	-21.0	-20.0	-18.0	-13.0	-23.0	-24.0	-22.0		
	①レベル測量	-20.0	-19.0	-29.0	-22.0	-25.0	-18.0	-21.0	-26.0	-24.0	-27.0		2011/12/17
第5回	②レーザーレベル	-20.0	-21.0	-29.0	-24.0	-26.0	-19.0	-20.0	-27.0	-25.0	-26.0	14.709	水位3/4
	③タンクスケール	-20.0	-19.0	-24.0	-22.0	-23.0	-21.0	-19.0	-26.0	-27.0	-26.0		
	①レベル測量	-32.0	-32.0	-40.0	-34.0	-36.0	-31.0	-32.0	-38.0	-35.0	-39.0		2011/12/19
第6回	②レーザーレベル	-30.0	-32.0	-39.0	-35.0	-37.0	-29.0	-30.0	-36.0	-35.0	-37.0	19.714	満水
	③タンクスケール	-30.0	-31.0	-36.0	-31.0	-34.0	-29.0	-27.0	-36.0	-36.0	-36.0		
	①レベル測量	-25.0	-25.0	-36.0	-27.0	-30.0	-24.0	-25.0	-32.0	-28.0	-37.0		2011/12/22
第7回	②レーザーレベル	-27.0	-28.0	-36.0	-32.0	-34.0	-26.0	-26.0	-34.0	-31.0	-35.0	14.731	水位3/4
	③タンクスケール	-29.0	-26.0	-33.0	-31.0	-32.0	-26.0	-26.0	-34.0	-31.0	-32.0		
	①レベル測量	-21.0	-21.0	-31.0	-22.0	-27.0	-21.0	-22.0	-28.0	-25.0	-33.0		2011/12/24
第8回	②レーザーレベル	-21.0	-22.0	-31.0	-25.0	-28.0	-20.0	-22.0	-28.0	-26.0	-31.0	9.801	水位1/2
	③タンクスケール	-21.0	-20.0	-27.0	-25.0	-28.0	-19.0	-19.0	-28.0	-29.0	-28.0		
	①レベル測量	-15.0	-14.0	-24.0	-16.0	-19.0	-14.0	-16.0	-22.0	-20.0	-26.0		2011/12/26
第9回	②レーザーレベル	-13.0	-17.0	-25.0	-18.0	-20.0	-15.0	-15.0	-22.0	-23.0	-24.0	6.521	水位1/3
	③タンクスケール	-12.0	-16.0	-21.0	-15.0	-19.0	-17.0	-16.0	-21.0	-25.0	-21.0		
	①レベル測量	-15.0	-13.0	-24.0	-16.0	-19.0	-14.0	-16.0	-21.0	-19.0	-26.0		2011/12/28
第10回	②レーザーレベル	-13.0	-13.0	-22.0	-17.0	-20.0	-12.0	-15.0	-20.0	-19.0	-24.0	3.199	水位1/6
	③タンクスケール	-15.0	-12.0	-19.0	-17.0	-18.0	-13.0	-15.0	-18.0	-18.0	-21.0		
	①レベル測量	0.0	-1.0	0.0	-1.0	0.0	1.0	-1.0	-3.0	0.0	-1.0		2012/1/6
第11回	②レーザーレベル	3.0	-1.0	1.0	-2.0	-1.0	2.0	-1.0	-1.0	2.0	1.0	0.000	水抜き後
	③タンクスケール	2.0	0.0	4.0	0.0	0.0	-1.0	-1.0	0.0	1.0	2.0		

表 4.5 3 種類の方法による沈下量の比較(mm)

※測点J・・・第7回~第10回の計測でタンクスケールを使用

	種別 測点No.	А	В	С	D	E	F	G	Н	I	J	液量	測定年月日
	①レベル測量	5083.0	5108.5	5084.5	5075.0	5042.0	5021.5	5019.0	5012.0	5022.0	5024.0		2011/12/9
第1回	②レーザーレベル	5081.0	5109.5	5083.5	5076.0	5042.0	5020.5	5017.0	5011.0	5022.0	5022.0	0.000	水張り前
	③タンクスケール	5079.0	5108.0	5080.0	5073.0	5038.0	5021.0	5013.0	5009.0	5022.0	5019.0		
	①レベル測量	5080.0	5105.5	5072.5	5070.0	5034.0	5018.5	5015.0	5001.0	5014.0	5012.0		2011/12/13
第2回	②レーザーレベル	5079.0	5106.5	5071.5	5070.0	5034.0	5018.5	5015.0	5001.0	5014.0	5011.5	3.251	水位1/6
	③タンクスケール	5077.0	5104.0	5070.0	5067.0	5032.0	5019.0	5013.0	4999.0	5014.0	5008.5		水温:14.9℃
	①レベル測量	5079.0	5103.5	5069.5	5068.0	5032.0	5016.5	5013.0	5000.0	5011.0	5010.0		2011/12/15
第3回	②レーザーレベル	5079.0	5105.5	5068.5	5069.0	5033.0	5016.5	5014.0	5000.0	5011.0	5010.0	6.505	水位1/3
	③タンクスケール	5078.0	5104.0	5070.0	5066.0	5032.0	5014.5	5012.0	4998.0	5010.0	5008.0		水温:14.1℃
	①レベル測量	5066.0	5091.5	5057.5	5056.0	5019.0	5004.5	5000.0	4988.0	5000.0	4998.0		2011/12/16
第4回	②レーザーレベル	5066.0	5092.5	5057.5	5055.0	5020.0	5004.5	5001.0	4988.0	4999.0	4997.0	9.822	水位1/2
	③タンクスケール	5064.0	5093.0	5056.0	5052.0	5018.0	5003.0	5000.0	4986.0	4998.0	4997.0		水温:14.7℃
	①レベル測量	5063.0	5089.5	5055.5	5053.0	5017.0	5003.5	4998.0	4986.0	4998.0	4997.0		2011/12/17
第5回	②レーザーレベル	5061.0	5088.5	5054.5	5052.0	5016.0	5001.5	4997.0	4984.0	4997.0	4996.0	14.709	水位3/4
	③タンクスケール	5059.0	5089.0	5056.0	5051.0	5015.0	5000.0	4994.0	4983.0	4995.0	4993.0		水温:14.6℃
	①レベル測量	5051.0	5076.5	5044.5	5041.0	5006.0	4990.5	4987.0	4974.0	4987.0	4985.0		2011/12/19
第6回	②レーザーレベル	5051.0	5077.5	5044.5	5041.0	5005.0	4991.5	4987.0	4975.0	4987.0	4985.0	19.714	満水
	③タンクスケール	5049.0	5077.0	5044.0	5042.0	5004.0	4992.0	4986.0	4973.0	4986.0	4983.0		水温:15.7℃
	①レベル測量	5058.0	5083.5	5048.5	5048.0	5012.0	4997.5	4994.0	4980.0	4994.0	4987.0		2011/12/22
第7回	②レーザーレベル	5054.0	5081.5	5047.5	5044.0	5008.0	4994.5	4991.0	4977.0	4991.0	4987.0	14.731	水位3/4
	③タンクスケール	5050.0	5082.0	5047.0	5042.0	5006.0	4995.0	4987.0	4975.0	4991.0	4987.0		水温:13.6℃
	①レベル測量	5062.0	5087.5	5053.5	5053.0	5015.0	5000.5	4997.0	4984.0	4997.0	4991.0		2011/12/24
第8回	②レーザーレベル	5060.0	5087.5	5052.5	5051.0	5014.0	5000.5	4995.0	4983.0	4996.0	4991.0	9.801	水位1/2
	③タンクスケール	5058.0	5088.0	5053.0	5048.0	5010.0	5002.0	4994.0	4981.0	4993.0	4991.0		水温:12.9℃
	①レベル測量	5068.0	5094.5	5060.5	5059.0	5023.0	5007.5	5003.0	4990.0	5002.0	4998.0		2011/12/26
第9回	②レーザーレベル	5068.0	5092.5	5058.5	5058.0	5022.0	5005.5	5002.0	4989.0	4999.0	4998.0	6.521	水位1/3
	③タンクスケール	5067.0	5092.0	5059.0	5058.0	5019.0	5004.0	4997.0	4988.0	4997.0	4998.0		水温:12.2℃
	①レベル測量	5068.0	5095.5	5060.5	5059.0	5023.0	5007.5	5003.0	4991.0	5003.0	4998.0		2011/12/28
第10回	②レーザーレベル	5068.0	5096.5	5061.5	5059.0	5022.0	5008.5	5002.0	4991.0	5003.0	4998.0	3.199	水位1/6
	③タンクスケール	5064.0	5096.0	5061.0	5056.0	5020.0	5008.0	4998.0	4991.0	5004.0	4998.0		水温:11.5℃
	①レベル測量	5083.0	5107.5	5084.5	5074.0	5042.0	5022.5	5018.0	5009.0	5022.0	5023.0		2012/1/6
第11回	②レーザーレベル	5084.0	5108.5	5084.5	5074.0	5041.0	5022.5	5016.0	5010.0	5024.0	5023.0	0.000	水抜き後
	③タンクスケール	5081.0	5108.0	5084.0	5073.0	5038.0	5020.0	5012.0	5009.0	5023.0	5021.0		

表 4.6 3 種類の方法による標高の比較(mm)

※測点J・・・第7回~第10回の計測でタンクスケールを使用

4.3.3 沈下量に関する検討

以下の検討においては底板の沈下量は「(4)測定方法による差」以外ではレベル測量に よるものを用いた。

(1) 平均沈下量の比較

底板の沈下量,側板外周部の沈下量の平均値を比較し表 4.7 に、水位と底板の沈下量,側 板外周部の沈下量の平均値の関係を図 4.54 に示す。

	水位		底板	外周					
	水張り前	0 m	0	0					
ン	1/6 満水	3.251m	-6.9	-0.7					
止	1/3 満水	6.505m	-8.9	-2.0					
水	1/2 満水	9.822m	-21.1	-4.6					
нД	3/4 満水時	14.709m	-23.1	-9.9					
	満水時	19.714m	-34.9	-12.0					
	3/4 満水時	14.731m	-28.9	-13.0					
排	1/2 満水時	9.801m	-25.1	-6.9					
水	1/3 満水時	6.521m	-18.6	-3.9					
時	1/6 満水時	3.199m	-18.3	-3.2					
	排水後	0 m	0	2.5					

表 4.7 平均沈下量等の比較(mm)



図 4.54 水位と底板の沈下量、側板外周部の沈下量の平均値の関係

底板の沈下量は側板外周部の沈下量より大きく、1/2 満水時で-21.1mm で側板外周部の沈 下量の平均値の 4.6 倍、満水時で-34.9mm で側板外周部の沈下量の平均値の 2.9 倍となっ ている。

(2) 沈下量の分布

屋外貯蔵タンクは円筒形の軸対称であるため、タンク中心からの距離に応じた底板沈下 量の分布を図 4.55 に示す。同図に線形近似式をあわせ示す。底板の沈下量の分布はタンク 中心からの距離にかかわらず概ね同等である。



図 4.55 底板の沈下量の分布

(3) 地盤反力係数

地盤反力係数は、計測された地盤沈下量の平均値と側板外周部の沈下量の平均値と底板 に加わる水圧より下式で算定する。

$$k_V = \frac{p}{\delta}$$

*p*: 底板に加わる水圧=水の単位重量(9.8 kN/m³)×水位

δ:平均沈下変形量=(地盤沈下量の平均値+側板外周部の沈下量の平均値)/2

地盤反力係数は同じ剛性を有する地盤に対しても載荷幅に大きく依存するため、屋外タンク貯蔵所基礎の規制基準やJISB8501(鋼製石油貯槽の構造)に示されたK₃₀と比較するためには載荷幅の影響を補正する必要がある。ここでは,道路橋示方書・同解説IV下部構造編に従い、下式により載荷幅の影響を補正した。

$$K_{30} = \frac{k_V}{\left(\frac{B_V}{0.3}\right)^{-0.75}}$$
$$B_V : タンク内径 (m)$$

計算結果を表 4.8 に示す。

公 4.0 · 冶血区/开床级									
	1/2 満水時	3/4 満水時	満水時						
$k_V (kN/m^3)$	15,163	13,574	11,649						
$K_{30}  (kN/m^3)$	$5.59\! imes\!10^5$	$5.01\! imes\!10^5$	$4.30 imes10^5$						

表 4.8 地盤反力係数

比較のために屋外タンク貯蔵所基礎の規制基準等に示されている地盤反力係数の値を表 4.9に示す。屋外タンク貯蔵所基礎の規制基準砂マウンドのK₃₀と比較し、4~5倍であった。

表 4.9 新法タンクにおける鉛直地盤反力係数の基準値及び JIS における設定値

		地盤反力係数 K ₃₀
屋外タンク貯蔵所基礎の	砕石リング	1.96×10⁵kN/m³以上
規制基準	砂マウンド	0.98×10 ⁵ kN/m ³ 以上
JIS B 8501(鋼製石油)	貯槽の構造)設定値	1.47×10 ⁵ kN/m ³ 以上

(4) 測定方法による差

今回基準標高からタンクの内壁に仮 B.M を設置し、以下の3種類の計測法を実施した。

- ① レベル測量による沈下量計測
- ② レーザーレベル計による沈下量計測
- ③ タンクスケールによる沈下量計測

水位とこれらの計測方法による底板の沈下量の平均値の関係を図 4.56 に示す。タンクス ケールによる沈下量計測でも結果に大きな差はないことが分かる。



図 4.56 水位と底板の沈下量の平均値の関係

# 第5章 有限要素法を用いた沈下シミュレーション

### 5.1 屋外貯蔵タンクの基礎地盤沈下に係る FEM 解析の方法

(1) 使用する解析コード

使用する解析コードは、弾塑性が表現でき、さらに離間が表現できるプログラムが望ま しい。解析 STEP を細かく刻み、前 STEP の結果により地盤剛性等を変化させその STEP の解析を実施する。

今回の検討では、汎用プログラム ABAQUS を利用し、解析 STEP を細かく刻み、前 STEP の結果により地盤剛性の変化をサブルーチン化した。

(2) 構造モデル

構造モデルのイメージを図 5.1 に示す。解析範囲は屋外貯蔵タンクの径をdとすると、平 面方向には6d、深さ方向には3dをとる。地盤の境界条件は、底面および外周面はピンロー ラーとし、底板と地盤の境界は接触要素で表現する。



図 5.1 構造モデルのイメージ

(3) FEM 解析の PHASE と地盤剛性変化の設定

FEM 解析は図 5.2 に示す 3 つの PHASE で実施する。PHASE1 では地盤剛性の初期状態 を求め、PHASE2 では地盤応力の初期状態を求める。PHASE1 および PHASE2 で求めた 初期状態の元、PHASE3 の水張試験のシミュレートを行う。



図 5.2 FEM 解析の 3 つの PHASE

いずれの PHASE でも、地盤の破壊曲面は Mohr-Coulomb で規定する。Mohr-Coulomb のパラメータである土の粘着力c、土の内部摩擦角 $\phi$ は、当該地盤からサンプルされた試料 に対する三軸試験から得られるものを用いるのが望ましい。当該地盤の三軸試験結果がな い場合には、N 値等から推定する。また地盤のポアソン比 $\nu$ は $\phi$ から求めるものとし、 $\phi = 0$ の 場合もしくは破壊規準に達した時は $\nu = 0.495$ とする。

・破壊規準: Mohr-Coulomb c: 土の粘着力 
$$\phi$$
: 土の内部摩擦角  
破壊規準に載った場合は一次剛性の $\alpha_{py}$ 倍に剛性低下  
c、 $\phi$ は三軸試験結果より  
三軸試験結果がない場合、 $\phi = \sqrt{15N} + 15$ とした。  
・ポアソン比 $\nu$   $\nu = \frac{1 - \sin\phi}{2 - \sin\phi}$   $\phi$ : 土の内部摩擦角

ただし
$$\phi = 0$$
の場合、破壊規準に達した時  $\nu = 0.495$ 

PHASE1、2 では図 5.3 のフローで地盤剛性の初期状態を設定する。PHASE1、2 での剛 性変化は、地盤要素の塑性ひずみ成分の変化によるものと考えた。



地盤剛性の初期状態の評価

図 5.3 地盤剛性の初期状態の評価フロー

地盤の剛性はそれまで受けてきた荷重履歴を反映している。このため、基準剛性とそれ に対応する拘束圧を元に、荷重履歴による拘束圧の変化に起因する剛性変化を評価して地 盤剛性の初期状態を設定する。剛性変化の程度は、(履歴最大最小主応力/基準拘束圧)の 0.5 乗に比例するとした。またせん断応力により剛性も変化するが、処女せん断応力状態時 の塑性ひずみ成分変化による剛性変化は DUNCAN-CHANG 式で評価することした。 PHASE1、2の除荷時には剛性変化はしないものとした。

・地盤の一次剛性  $E_{i+1}$  基準剛性 $E_0$ 

(i+1)step 時の剛性 $E_{i+1}$ を、(i)step までの最小主応力 $\sigma_{3,1\sim i}$ より下式で修正する。

 $E_{i+1} = E_0 \times (\sigma_{3,L}/p_e)^{0.5}$  ここで、 $p_e$ :基準拘束圧

$$\sigma_{3,L} = \max\left(\sigma_{3,1 \sim i-1}\right)$$

·降伏規準内剛性

 $(\sigma_1 - \sigma_3)_j \le \max \left[ (\sigma_1 - \sigma_3)_{0 \sim j-1} \right]$  地盤一次剛性  $E_{i+1}$ 

基準剛性とそれに対応する拘束圧は、当該地盤のサンプル試料に対する三軸試験から得 られるものを使用するのが望ましい。当該地盤の三軸試験結果がない場合には、弾性波探 査あるいは N 値とKの関係より推定した剛性Eoを基準剛性とし、N 値とKの関係より推定し た基準剛性に対応する拘束圧 $p_e = 180 k N/m^2$ とすることとした。基準剛性に対応する拘束 圧は設定根拠はないので、今後の検討により適切な拘束圧を定めることが必要と思われる。

弾性波探査から地盤の基準剛性は下式で求める.

せん断弾性係数  $G_0 = \rho V_s^2$ 

*ρ*:質量密度

V: : 地盤のせん断弾性波速度

基準拘束圧は求めた深度相当とする

標準貫入試験のN値より地盤の基準剛性推定する場合は図 5.4 で求める.



図 5.4 標準貫入試験の N 値とV。

PHASE1 では、圧密降伏応力相当の荷重履歴を反映させ、自重+圧密降伏応力まで地表 面に自重方向へ多 STEP で載荷することとした。地盤が受けてきた荷重履歴は、圧密降伏 応力で代表されることが多い。圧密降伏応力もサンプル採取した地盤の深度に対応した自 重の影響も受けているが、簡単のため、自重に加え圧密降伏応力相当の荷重を地表面に載 荷することにより、それまで受けてきた荷重履歴を評価することとした。自重+圧密降伏 応力まで地表面に自重方向へ多 STEP で載荷することにより、STEP 毎の剛性変化が評価 できる。FEM 解析では、小さな剛性に大きな荷重を加えた際うまく計算できない場合があ るため、剛性の最低値を設定するとか、荷重 STEP 数を多くして荷重増分を小さくすると

いった配慮が必要である。

PHASE2 では、水張り試験実施前の状態を設定する。圧密降伏応力を取り除き、自重のみの水張試験実施前の地盤の応力状態を求める。

PHASE3 では、水張り水位を増減し、水張試験をシミュレートする。この際には弾性成 分の剛性の拘束圧依存性およびひずみ依存性を考慮することとした。PHASE1、2 で得られ た剛性を初期剛性とし、(*i*+1)STEP の剛性変化の拘束圧依存性は、((*i*)STEP の最小主応 カ/自重時の最小主応力)の0.5 乗に比例するとした。剛性変化のひずみ依存性は、除荷、 再載荷の開始時からの最大主ひずみの増分に依存することとした。剛性変化のひずみ依存 性の程度は、当該地盤のサンプル試料に対する三軸試験から得られるものを使用するのが 望ましい。当該地盤の三軸試験結果がない場合には、既往の研究資料(木幡行宏、村田修 せ ん断剛性比のひずみレベル依存性に関する定式化 土木学会第55回年次学術講演会)を参 考に定めることとした。

・地盤の一次剛性  $E_{i+1}$  初期地盤剛性 $E_0$  PHASE2 終了時(水張り試験直前)の剛性 (i+1)step 時の各要素の剛性 $E_{i+1}$ を(i)step の最小主応力 $\sigma_{3,i}$ より下式で修正する。

 $E_{i+1} = E_0 \times (\sigma_{3,i} / \sigma_{3,0})^{0.5}$   $table t \in U_{i+1} \ge E_0$ 

ここで σ_{3.0}は PHASE2 終了時(水張り試験直前)の最小主応力

・降伏規準内剛性 (j+1)step

接線剛性  $E_{t,j+1}$  :  $E_{t,j+1} = E_j \times K$ 

 $\mathbb{LCC}K = \exp(-\Delta\varepsilon \times \alpha_K) \quad \mathbb{L}K \ge K_{\min}$ 

 $\Delta \varepsilon$ :除荷時 除荷開始点の $\varepsilon_{1U}$ と(*j*)step の $\varepsilon_1$ との差の絶対値 再載荷時 再載荷開始点の $\varepsilon_{1R}$ と(*j*)step の $\varepsilon_1$ との差の絶対値 ここで $\varepsilon_1$ は最大主ひずみ

α_K、K_{min}: 剛性のひずみ依存性の程度を評価するパラメータ

土要素のひずみ依存性は、割線せん断剛性*G*とせん断ひずみγの関係として下式にまとめられている。

$$\frac{G}{G_0} = \frac{1}{1 + \alpha \cdot \gamma^{\beta}}$$
ここで、 $\alpha$ 、 $\beta$ は表 5.1 に示す。

	- / / /	T [_]
地盤材料	α	β
沖積粘性土	135.997	0.804
洪積粘性土	270.033	0.824
沖積砂質土	603.053	0.854
洪積砂質土	603.902	0.942

表 5.1 ひずみ依存性のα、β

これを割線剛性Eと軸ひずみEaの関係に直すと

$$\frac{E}{E_0} = \frac{1}{1 + \alpha \cdot [(1 + \nu)\varepsilon_a]^{\beta}}$$
  
 $\nu : ポアソン比$ 

これより応力ひずみ関係は

$$\sigma = E \cdot \varepsilon_a$$
$$= \frac{\varepsilon_a}{1 + \alpha \cdot [(1 + \nu)\varepsilon_a]^{\beta}} E_0$$

接線剛性は  $\frac{d\sigma}{d\varepsilon_a}$ なので、ひずみ依存性の影響度をKであらわすと  $\frac{d\sigma}{d\varepsilon_a} = KE_0$  $K = d\left(\frac{\varepsilon_a}{1 + \alpha \cdot [(1 + \nu)\varepsilon_a]^{\beta}}\right)/d\varepsilon_a$ 

となる。ここでは簡単のため  $K = \exp(-\Delta \varepsilon \times \alpha_K)$ 

とし、ひずみ適用範囲によりακを定めることとした。

木幡行宏,村田修 せん断剛性比のひずみレベル依存性に関する定式化 土木学会第55回年次学術講演会

## 5.2 平板載荷試験の FEM 解析

(1) FEM 解析の対象とした平板載荷試験

FEM 解析の対象とした平板載荷試験は、千葉県印西市草深字原 2027 で実施されたもの であり、地表面から 1.6m 掘削しその底面で実施した。その地盤条件をまとめて図 5.5 に示 す。



図 5.5 平板載荷試験の地盤条件



地盤工学会基準に準拠した方法による平板載荷試験結果を図 5.6 に示す.

(2) 構造モデル

構造モデルのイメージを図 5.7 に示す. 解析範囲は円板の径d = 0.3mであり、平面方向に は6d(= 1.8m)、深さ方向には3d(= 0.9m)とした。地盤の境界条件は、底面および外周面は ピンローラーとし、円板と地盤の境界は接触要素で表現した。地盤は $\rho_t = 1.133 g/cm^3$ の一 様地盤とした.



(3) FEM 解析の PHASE

FEM 解析は3つの PHASE で実施する。

PHASE1:初期剛性設定解析 地盤剛性の初期状態を設定する

図 5.8 の自重+圧密降伏応力 ( $pc = 103kN/m^2$ )状態まで多段階で載荷する。拘束圧  $p_e = 246kN/m^2$ で実施したブロックサンプリング試料による繰り返し三軸試験で得られた 剛性 $E_0 = 25.3 MN/m^2$ を基準剛性とした。



PHASE2:地盤侵食状態 平板載荷試験前の地盤応力の初期状態を設定する

圧密降伏応力を取り除き、図 5.9 の平板載荷実施前の状態を設定する。



図 5.9 平板載荷実施前の状態

PHASE3:平板載荷試験

図 5.10 のpを増減し、平板載荷試験をシミュレートする.

【荷重条件】

 $p = 0kN/m^2 \rightarrow 50kN/m^2 \rightarrow 100kN/m^2 \rightarrow 50kN/m^2 \rightarrow 0kN/m^2$  $\rightarrow 50kN/m^2 \rightarrow 100kN/m^2 \rightarrow 150kN/m^2 \rightarrow 200kN/m^2$ 



図 5.10 平板載荷試験

- (4) 各 PHASE における地盤剛性変化に関するパラメータ
- a) PHASE1~3 での地盤剛性変化に関するパラメータ
- 地盤の破壊規準等はブロックサンプリング試料の特性を元に以下のように設定した。
- ・地盤の密度  $\rho_t = 1.133 \, g/cm^3$
- ・破壞規準: Mohr-Coulomb
  - **c**: 土の粘着力(=0.013 *N/mm*²) φ: 土の内部摩擦角(=0°)
    - 降伏規準に載った場合、一次剛性の 1/50 に剛性低下
- ・ポアソン比 $\nu$  :  $\phi = 0$ なので $\nu = 0.495$
- b) PHASE1、2 での地盤剛性変化に関するパラメータ PHASE1、2 でのパラメータは三軸試験結果を元に以下のように設定した。
  - ・地盤の一次剛性  $E_{i+1}$  基準剛性 $E_0$   $E_0 = 25.3 MN/m^2$ (*i* + 1)step 時の剛性 $E_{i+1}$ を、(*i*)step までの最小主応力 $\sigma_{3,1\sim i}$ より下式で修正する。  $E_{i+1} = E_0 \times (\sigma_{3,L}/p_e)^{0.5}$  ここで、 $p_e$ :基準拘束圧(= 246  $kN/m^2$ )

$$\sigma_{3,L} = \max\left(\sigma_{3,1 \sim i-1}\right)$$

·降伏規準内剛性

$$(\sigma_1 - \sigma_3)_j \ge \max \left[ (\sigma_1 - \sigma_3)_{0 \sim j-1} \right]$$
  
接線剛性 
$$E_t = \left( 1 - \frac{R_f (1 - \sin\phi)(\sigma_1 - \sigma_3)}{2 \cdot c \cdot \cos\phi + 2 \cdot \sigma_3 \cdot \sin\phi} \right)^2 E_j$$

$$R_f: 破壊比(ここではR_f = 0.859とする)$$
  
 $(\sigma_1 - \sigma_3)_j \le \max \left[ (\sigma_1 - \sigma_3)_{0 \sim j-1} 
ight]$  地盤一次剛性  $E_{i+1}$ 

ブロックサンプリング試料による繰返し三軸試験結果に片振幅軸ひずみ $\epsilon_a$ と等価ヤング 率 $E_{eq}$ が示されているが、この結果は弾性成分のみの結果なので、塑性ひずみ成分を仮定し て、三軸圧縮試験結果を推定した。応力 $\sigma_{i+1}$ と応力 $\sigma_i$ の間の塑性ひずみ成分の増分量 $\Delta \epsilon_{yi}$ は、 $\Delta \epsilon_{yi} = \frac{\sigma_i}{E_{i+1}} - 1$ 、 $\sigma = 32.3 \, kN/m^2$  (=  $E_{eq}$ ×片振幅軸ひずみの最大値)以降は初期剛性 の 1/50 とした。この $\sigma - \epsilon$ 関係と上記地盤要素特性の設定で求めた $\sigma - \epsilon$ 関係を比較し、図 5.11 に示す。



図 5.11 応力ひずみ関係の比較

c) PHASE3 での地盤剛性変化に関するパラメータ PHASE3 でのパラメータは三軸試験結果を元に以下のように設定した。

 $E_{i+1} = E_0 \times \left(\sigma_{3,i}/\sigma_{3,0}\right)^{0.5} \quad \text{tt} U_{i+1} \ge E_0$ 

ここで**σ**3.0は平板載荷試験実施直前の最小主応力

・降伏規準内剛性 (*j* + 1)step

$$(\sigma_1 - \sigma_3)_j \ge \max\left[(\sigma_1 - \sigma_3)_{0 \sim j-1}\right]$$

接線剛性 
$$E_{t,j+1} = \left(1 - \frac{R_f(1 - \sin\phi)(\sigma_1 - \sigma_3)}{2 \cdot c \cdot \cos\phi + 2 \cdot \sigma_3 \cdot \sin\phi}\right)^2 E_j$$

$$R_f: 破壊比(ここではR_f = 0.859とする)$$

$$(\sigma_1 - \sigma_3)_j \le \max\left[ (\sigma_1 - \sigma_3)_{0 \sim j-1} \right] \qquad \qquad \text{blue} - \mathcal{K} \mathbb{M} \stackrel{\text{the}}{=} E_{i+1}$$

接線剛性  $E_{t,j+1}$  :  $E_{t,j+1} = E_j \times K$ ここで $K = \exp(-\Delta \varepsilon \times 700)$  ただし $K \ge 0.1$   $\Delta \varepsilon$ : 除荷時 除荷開始点の $\varepsilon_{1U} \ge (j)$ step の $\varepsilon_1 \ge$ の差の絶対値 再載荷時 再載荷開始点の $\varepsilon_{1R} \ge (j)$ step の $\varepsilon_1 \ge$ の差の絶対値 ここで $\varepsilon_1$ は最大主ひずみ

ブロックサンプリング試料による繰返し三軸試験結果に片振幅軸ひずみ $\epsilon$ と等価ヤング率  $E_{eq}$ が示されており、 $\sigma = E_{eq} \cdot \epsilon \tau \sigma \epsilon$ 算定し $\sigma - \epsilon$ の関係を求めた。これが弾性成分のひずみ 依存性を表していると考え、その接線成分 $E_t$ と初期剛性 $E_0$ の比のひずみ依存性と上記Kを比較し図 5.12 に示す。



図 5.12 ひずみ依存性の評価

(5) 解析結果

a) 底板荷重pと沈下量の関係





図 5.13 解析メッシュと沈下量を注目した節点



底板荷重pとN1の沈下量の関係を平板載荷試験結果とともに図5.14に示す。
b)設計で用いられる剛性での荷重沈下評価との比較

地盤剛性をE = 2,800N ( $kN/m^2$ )(ここでN = 6とする)として評価した荷重沈下関係、三 軸試験より得られた剛性 (E=25.3  $MN/m^2$ )として評価した荷重沈下関係、 $K_{30}$ の荷重沈下関 係を平板載荷試験結果および FEM 解析結果と比較し図 5.15 に示す。

なお、荷重沈下関係は下式で評価した。

$$S_e = rac{I_s(1-v^2)Bq}{1000E}$$
  
 $S_e: 沈下量 (mm)$   
 $I_s: 形状係数 (= 0.785)$   
 $v: ポアソン比 (= 0.5)$   
 $B: 円板径 (= 0.3 m)$   
 $q: 荷重 (kN/m^2)$ 



図 5.15 荷重沈下関係の比較

### 5.3 水張試験の FEM 解析(地盤の沈下シミュレーション)

(1) FEM 解析モデル

FEM 解析の構造モデルのイメージを図 5.16 に示す。FEM 解析の構造モデルは、軸対称 で、外周側面および底面の境界条件はピンローラーとし、底板と地盤の境界は接触条件と する。

地盤強度特性c、 $\phi$ は、砂質土層、粘性土層は三軸試験結果より、砂質泥岩は既往資料より設定した。水張試験直前の地盤の初期剛性は、N値よりの推定式で初期剛性の基準値 $E_0$ を設定し、その基準値は拘束圧180kN/m²に対応していると考え、当該位置の拘束圧の履歴を加味し算定した。砂質土はN値が示されていないため、内部摩擦角 $\phi$ より、 $\phi = \sqrt{15N} + 15$ より逆算して求めた。水張試験時には、地盤剛性の拘束圧依存性およびひずみ増分依存性を考慮し、挙動を算定した。



砂質泥岩

図 5.16 FEM 解析構造モデルのイメージ

初期剛性の基準値  $E_0 = 2(1 + \nu)G_0$  ( $\nu$ :ポアソン比) せん断弾性係数  $G_0 = \rho V_s^2$  ( $\rho$ :質量密度  $V_s$ :地盤のせん断弾性波速度) 沖積砂質土 (As)  $V_s = 80.6N^{0.311}$  沖積粘性土 (Ac)  $V_s = 102N^{0.292}$ 洪積砂質土 (Ds)  $V_s = 97.2N^{0.323}$  洪積粘性土 (Dc)  $V_s = 114N^{0.292}$  (2) FEM 解析の PHASE

FEM 解析は図 5.17 に示す 3 つの PHASE で実施する。

PHASE1:初期剛性設定解析 <地盤剛性の初期状態を設定する>

自重+圧密降伏応力 $p_c(105 kN/m^2)$ 状態まで多段階で載荷する。N 値と地盤特性より推定 した剛性E₀を基準剛性とする.基準剛性に対応する拘束圧 $p_e = 180 kN/m^2$ とする。圧密降 伏応力 $p_c = 105 kN/m^2$ は地表面全面に自重方向へ載荷する。

PHASE2:地盤侵食状態 <水張り試験前の地盤応力の初期状態を設定する>

圧密降伏応力を取り除き、水張り試験実施前の地盤応力状態を設定する。

PHASE3:水張り試験

水張り水位を増減し、水張試験をシミュレートする。

【水張水位】



図 5.17 FEM 解析の PHASE

(3) 地盤剛性変化に関するパラメータ

地盤剛性変化に関するパラメータを表 5.2 に示す.

	砂質土	砂質土	砂質土	粘性土	砂質泥岩
土質種類	沖積砂質土	沖積砂質土	沖積砂質土	沖積粘性土	洪積粘性土
位置(m)	$0.55{\sim}0$	0~-1.32	-1.32~-1.50	-1.50~-6.90	-6.90~
$\gamma_t (kN/m^3)$	14.0	14.0	16.9	17.4	15.5
$\rho_t(kg/m^3)$	1,429	1,429	1,724	1,776	1,582
N 値	28.8	28.8	28.8	0.9	50
$V_s(m/s)$	229	229	229	99	357
$G_0(kN/m^2)$	75,153	$75,\!153$	90,672	17,370	201,890
$c(kN/m^2)$	16.0	16.0	16.0	25.48	1146.6
$\phi(^\circ)$	35.8	35.8	35.8	17.33	43.5
ν	0.29	0.29	0.29	0.41	0.24
$E_0(kN/m^2)$	194,288	194,288	234,533	49,070	499,717
$\alpha_{py}$	1/30	1/30	1/30	1/100	1/100
R _t	0.817	0.817	0.817	0.9	0.9
$p_e(kN/m^2)$	180	180	180	180	180
$\alpha_{K}$	800	800	800	400	1,200
K _{min}	0.05	0.05	0.05	0.15	0.2

表 5.2 地盤特性評価のパラメータ

地盤の諸特性は、ボーリング調査、標準貫入試験、ブロックサンプリング試料に対する 三軸試験、シンウォールサンプリング試料に対する圧密試験および三軸試験の結果を元に 設定した。

砂質泥岩は既往の資料を参考にした。

砂質土のN値は、内部摩擦角 $\phi$ より、 $\phi = \sqrt{15N} + 15$ を逆算して求めた。

VsはN値より下式で求めた。

沖積砂質土 (As)  $V_s = 80.6N^{0.311}$  沖積粘性土 (Ac)  $V_s = 102N^{0.292}$ 洪積粘性土 (Dc)  $V_s = 114N^{0.292}$  せん断弾性係数G₀は下式で求めた。

 $G_0 = \rho V_s^2$  ( $\rho$ : 質量密度  $V_s$ : 地盤のせん断弾性波速度)

基準剛性E₀は下式で求めた。

 $E_0 = 2(1+\nu)G_0$ 

基準拘束圧は $p_e = 180 kN/m^2$ とした。

図 5.18~図 5.20 に示すように、 $\alpha_K$ 、 $K_{\min}$ は、沖積砂質土では 0.003 以上のひずみレベル で、沖積粘性土では 0.001 から 0.003 のひずみレベルで、洪積粘性土では 0.001 までのひ ずみレベルで、既往研究資料より算定されるKとマッチするように設定した。





- (4) 解析結果
- a) 底板荷重pと沈下量の関係

解析メッシュの拡大図と沈下量を注目した節点位置を図 5.21 に示す。



図 5.21 解析メッシュの拡大図と沈下量を注目した節点位置

水張水位と地表面の沈下量の関係を図 5.22 に示す。



b) 底板沈下量の分布

底板沈下量の径方向の分布を、図 5.23(注水時)、図 5.24(排水時)に示す。



図 5.24 底板沈下量の分布(排水時)

c) 水張時沈下量との比較

FEM 解析結果と計測された底板沈下量、外周沈下量の平均値を比較し図 5.25 に示す。



底板沈下量の径方向の分布を、FEM 解析結果と実測値を比較し図 5.26 (注水時)、図 5.27 (排水時) に示す。





## 第6章 まとめ

#### 6.1 水張試験時の底部鉛直方向変位計測のまとめ

タンク内部の沈下量を測定する方法として、今回仮ベンチマークをタンク内に設置しレ ベル測量と鋼巻尺を利用した測定方法を用いた。レベル測量の結果を用いて、レーザーレ ベル計やタンクスケールを併用することで、タンク底板の沈下量を算出し、水張試験時の 底板の挙動を分析した。

変位計測結果から、水張試験における低水位段階において底板の変位量が大きく、空液 時においてはタンクの底板と地盤基礎面が密着していない部分(空隙)が存在することが 予想される。この挙動は底板への応力負担が増大し、疲労破壊の原因ともなる。今回実施 した沈下計測は、水張水位の低い段階での測定を増やすなどの工夫を行ったが、水張水位 と地盤の沈下量との関係に対して空隙量が及ぼす影響について有効に評価することが可能 なデータを得るまでには至らなかった。なお、タンク底板と地盤基礎面との空隙量を非破 壊的に測定する技術としては、γ線や中性子線を使ったものが現在確認されている。

#### 6.2 FEM 解析のまとめ

#### 6.2.1 平板載荷試験の FEM 解析

旧法の屋外タンク貯蔵所は、設置以来貯蔵液の受入払出しを繰り返している。つまり、 荷重の除荷と再載荷を繰り返しているが、除荷と再載荷における荷重と地盤の沈下量と の関係は非線形的挙動となることが考えられる。今回実施した FEM 解析では、地盤各層 の剛性について拘束圧依存性とひずみ依存性の両者を考慮することで、荷重と沈下量と の関係の非線形性を表現することを可能とし、平板載荷試験の FEM 解析については、定 量的にも良好な一致を得た。

この結果は、上述した地盤各層の剛性に関する取扱い方法に加え、初期剛性値の設定 が適正であったためと考えられる。平板載荷試験のシミュレーションに用いた初期剛性 値は、繰り返し三軸試験から得られた等価ヤング率から求められたものである。

#### 6.2.2 実タンクにおける沈下シミュレーション

実タンクにおける沈下シミュレーションについて、タンク外周部の沈下量に関しては 定量的にも良好な一致をみている。沈下シミュレーションの対象となったタンクの地盤 は、①粘性土が卓越した地盤であること、②比較的浅い部分に硬い泥岩層が存在したこ と及び③粘性土に関する圧密試験結果が存在したことが特徴として挙げられる。旧法タ ンク全体を沈下シミュレーションの対象とする場合、ボーリング調査における N 値のみ から地盤性状を推定しなくてはならないケースや、堆積層が厚い場合における地下水位 の影響が大きくなるケース等、今回の対象と比べて解析条件が悪いケースが多く存在す ることが考えられる。したがって、上述したような条件の悪いケースについても沈下計 測結果とシミュレーションの比較を実施していく必要があると考える。

タンク内部の沈下量については、載荷時と除荷時における水位と沈下量の関係につい て非線形性を再現することができたところである。一方、定量的にみれば、実測の結果 が外周部の沈下量に対して平均して約2.9倍であるのに対して、沈下シミュレーションで はそこまでの差異が出ていない。先述したとおり、空液時にはタンク底板と基礎表面と の間に空隙が存在することが予想されるが、沈下シミュレーションの初期状態において はタンク底板と地盤基礎面とは密着した状態となっていることから、実タンクにおける 空液時の空隙の状況が、計測とシミュレーションの定量的な差に影響を与えているもの と考えられる。こうした空隙の及ぼす影響の定量的な評価については今後検証が必要と 考えられる。特に外周部に比べタンク内部の沈下量が大きいということは、底板に対し て引張応力が発生する可能性があることから、これらの評価に関しては注意を要する。

#### 6.3 旧法タンクの基礎地盤の堅固さを確認するための課題

今回実施した有限要素法のシミュレーション手法を種々の異なる性状の地盤に対して適 用する必要がある。実際に計測した荷重-沈下量の関係とシミュレーション結果の定量的 な検証の実施が望まれる。

一般的に容量が1万キロリットル以上の屋外貯蔵タンクは、その内径が概ね30mを超え るものが多いことから、地盤の深さ方向の構成がタンクの沈下に与える影響が大きくなっ てくると考えられる。従って、タンクの沈下シミュレーションを精度よく実施するために は、まずタンク設置位置の原地盤の構成及びその物性を正確に把握し、沈下シミュレーシ ョンのパラメータとして設定する必要があると考えられる。

標準貫入試験で得られた N 値から経験式を用いて推定する方法だけから正確な地盤剛性 を得ることは難しいと考えられる。定量的に精度の高い沈下シミュレーションを実施する ことを考えた場合、弾性波探査によって得られる地盤のせん断弾性波速度Vsや孔内載荷試験 から得られる地盤剛性、さらに不撹乱試料を用いた三軸試験から得られる土の剛性および 粘着力 c 及び土の内部摩擦角 φ 等のデータが有効となることから、こうした試験の実施を考 慮することが必要である。弾性波探査や孔内載荷試験などの原位置試験と三軸試験のデー タを解析して沈下シミュレーションに必要な地盤モデルを構築する場合、地盤剛性は拘束 圧や生じたひずみの大きさによって変化するという非線形性があることを考慮する必要が ある。

今後、これらのことを考慮して、タンク周辺地盤の地盤情報や調査から沈下シミュレー ション解析に必要なパラメータとしての物性を取得する方法について、明確な考え方を示 す検討も必要と思われる。

# 6.4 タンク底板と地盤基礎面の空隙がタンク底板の強度に与える影響について

タンク底板と地盤基礎面の空隙については、液圧の増減によって底板の鉛直方向変位量 が大きく増減する要因となることから、タンク底板の溶接部に発生する応力に対する影響 (低サイクル疲労破壊を含む)についても検討する必要がある。空隙の評価において重要 なポイントとしては次の点が挙げられる。

(1)空隙の形態(基礎表面の沈下、タンク底板の浮き上がり)の整理

(2) 空隙量が測定した沈下量と液圧の関係から逆算した地盤剛性に与える影響の把握

(3) 空隙量がタンク底板の疲労強度に与える影響の把握