東北地方太平洋沖地震再現波形に対する屋外貯蔵タンクの解析結果について

1. 東北地方太平洋沖地震再現波形に対する屋外貯蔵タンク耐震安全性確認解析

本調査では図 1.1 に示す手順により、以下の3種類の解析を実施した。本章では、東北地方 太平洋沖地震再現波形に対する屋外貯蔵タンクの耐震安全性の確認を行い、東北地方太平洋沖 地震再現波形におけるタンクの応答を再現できることを確認する。

① 質点系モデルによる側板下端部の浮き上がり解析

② 2次元軸対称モデルによる浮き上りの繰返し挙動を考慮した隅角部の疲労損傷度評価解析

③ 3次元シェルモデルによる底板浮き上がり時の側板の座屈強度評価解析

図 1.1 東北地方太平洋沖地震再現波形に対する屋外貯蔵タンク耐震安全性確認解析の流れ

2. 質点系モデルによる浮き上がり変位解析

非線形ばね特性を有する質点系モデルを用いて、東北地方の仙台・塩釜特防区域及び広 野特防区域の再現地震波形が作用した場合について、検討対象の屋外貯蔵タンク13基(仙 台・塩釜地区:10基の旧法タンク、広野地区:3基の新法タンク)の地震応答解析を実施 した。

2.1 解析モデル・条件

<質点系モデルの諸元>

収集したタンクデータ(重量データ、寸法、板厚及び材料の物性値など)に基づき、検討対 象タンク13基の質点系モデルの諸元を計算した。各タンクの入力データ及び計算した諸 元は添付資料1に示すとおりである。なお、側板とアニュラ板の板厚には実板厚値(不明な ものは設計板厚)を使用した。

<入力地震波>

資料 2-2 に作成された再現地震波形 6 本を表 2.1.1 から表 2.1.3 に示す。これらの地震波 形を質点系モデルの地震応答解析に使用した。

仙台·塩釜	再現地震波形 EW		再現地震波形 NS	
特防区域	加速度(cm/s ²) 時間(秒)		加速度(cm/s ²)	時間(秒)
最大値	336.87	88.93	250.85	46.65
最小値	-336.28	89.20	-248.30	92.12

表 2.1.1 仙台・塩釜特防区域 (ケース①) 再現地震波形の詳細

表 2.1.2 仙台・塩釜特防区域(ケース②)再現地震波形の詳細

仙台·塩釜	再現地震波形 EW		再現地震	波形 NS
特防区域	加速度(cm/s²) 時間(秒)		加速度(cm/s²)	時間(秒)
最大値	329.04	88.77	238.41	89.09
最小値	-361.34	89.07	-226.92	47.07

表 2.1.3 広野特防区域再現地震波形の詳細

亡眠時时反量	再現地震波形 EW		再現地震波形 NS	
瓜到村阴区域	加速度(cm/s²)	時間(秒)	加速度(cm/s²)	時間(秒)
最大値	574.43	105.48	456.99	107.55
最小値	-561.89	106.25	-522.55	107.73

2.2 解析方法

2.2.1 非線形ばねの特性

剛基礎上の満液円筒形貯槽を質点系でモデル化し、非線形ばねにより質点に作用する水 平復元力と水平相対変位の関係を図示すれば図 2.2.1 に示すとおりである。

この図において、 $Q_0 \ge \Delta_0$ は弾性変形範囲での浮き上がり開始時の水平復元力・水平相対 変位、 $Q_e \ge \Delta_e$ は弾性限界浮き上がり時の水平復元力・水平相対変位、 $Q_p \ge \Delta_p$ は第1塑性 関節発生(静液圧下でタンクを円周にわたって一様に軸対称状態で持上げ隅角部アニュラ 板が全断面塑性化される(降伏耐力に達した)時点、図2.2.2に示す概念図参照)浮き上が り時の水平復元力・水平相対変位、及び $Q_{pp} \ge \Delta_{pp}$ は第2塑性関節発生(アニュラ板が全断 面塑性化される時点、図2.2.3に示す概念図参照)浮き上がり時の水平復元力・水平相対変 位と定義されている。なお、消防法の終局耐震強度検討では、図2.2.1の太い点線を履歴曲 線、その線上の黒点(Q_p, Δ_p)を浮き上がり開始点としている。

この復元カモデルにおける各水平方向復元力範囲でのタンクの応答挙動のイメージは次 の通りとなっている。

0≤Q<Q0: タンクは浮上らずにバルジング周期に係る剛性で水平方向に振動する。

 $Q_0 \leq Q < Q_e$: タンクは弾性変形範囲で側板の浮き上がりが発生する。

 $Q_e \leq Q < Q_p$: タンクのアニュラ板と側板との接合部の一部が塑性化する。

Q_p≤Q<Q_{pp}: タンクのアニュラ板の全断面が塑性化し第1塑性関節が発生し、剛性が低 下する。

Q=Q_{pp}: タンクのアニュラ板に第2塑性関節が発生する。

図 2.2.1 質点系モデルの水平復元力・水平相対変位関係

第1塑性関節及び第2塑性関節の概念図は図2.2.2及び図2.2.3に示すとおりである。

図 2.2.3 第 2 塑性関節発生浮き上がり状態

今回の検討では質点系モデルの各計算項目(諸元)を最も単純化して考え、解析で使用 する弾塑性復元カモデルは図 2.2.1 に示す赤の一点鎖線とし、その線上の赤点(Q_y 、 Δ_y)を 浮き上がり開始点としている。この復元力特性における初期剛性(第1剛性)K₁は、液体 と側板の連成振動であるバルジング振動の剛性 K_bとする。この初期剛性は Q_y (= Q_p)まで とし、 Q_y 以上における第2剛性 K₂は、0~0.3 ×K₁と想定する。なお、本検討では安全側 の結果を与えるため、K₂=0の復元カモデルを使用する。

2.2.2 解析方法

上述した非線形ばね(弾塑性復元力特性)を有する質点系モデル(図 2.2.4 参照)を用いて 時刻歴地震応答解析を実施し、タンクの弾塑性応答(水平方向の相対変位)から側板下端の浮 き上がり変位を算出した。本解析の弾塑性復元力特性は図 2.2.5 に示すような S 字非ループ 型復元力モデルとした。

図 2.2.4 質点系モデル

図 2.2.5 S 字非ループ型復元力線図(水平復元カー水平相対変位)

本解析での質点系モデル諸元の計算式を以下に示す(すべての単位は N と cm で記載す る)。ただし、質点系モデルの諸元計算シートの中、図面から取った入力データ(タンクの 諸元)について、mm 単位を使用しているが、モデルの諸元が加速度の単位(cm/s²)に合わ せ、cm の単位を使用している。

1) バルジング振動の固有周期 Tb

消防法では、円筒形貯槽--内容液連成バルジング振動の固有周期 T_b は、次式で与えられている。

$$T_{b} = \frac{2}{\lambda} \sqrt{\frac{W}{\pi E g t_{1/3}}} j \qquad (2.2.1)$$
$$\lambda = 0.067 (\frac{H}{D})^{2} - 0.3 (\frac{H}{D}) + 0.46 \qquad (2.2.2)$$

ここで、

- T_b: 円筒形貯槽--内容液連成バルジング振動の固有周期(s)
- W: 内溶液重量(N)
- E: 側板材料のヤング率(N/cm²)
- t_{1/3}: 1/3 液高さにおける側板厚(cm)
- j: 基礎地盤係数(四種地盤の直接基礎形式:1.1、左記以外:1.0)
- g:重力加速度(=980.665 cm/s²)

2) 質点有効重量 W1と等価水平ばね係数 Kb

図 2.2.2 に示す、液体・貯槽連成バルジング振動質点系モデルにおける質点有効重量と等 価水平ばね係数を用いて式(2.2.1)は以下のように書き表せる。

$$T_{b} = 2\pi \sqrt{\frac{W_{1}}{gK_{b}}}$$
 (s) (2.2.3)
$$K_{b} = (\frac{2\pi}{T_{b}})^{2} W_{1} / g$$
 (N/cm) (2.2.4)

$$W_1 = f_{W1} W$$
 (N) (2.2.5)

$$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$$
(2.2.6)

図 2.2.6 における質点重心高さは、次式で表される。

$$H_{1} = f_{H1}H \quad (cm) \quad (2.2.7)$$

$$f_{H1} = 0.0256(\frac{H}{D})^{4} - 0.1387(\frac{H}{D})^{3} + 0.216(\frac{H}{D})^{2} + 0.0207(\frac{H}{D}) + 0.3644 \quad (2.2.8)$$

図 2.2.6 剛基礎に固定された円筒形貯槽の液体・貯槽連成バルジング振動 に対する質点・ばねモデル

3) 隅角部アニュラ板の保有水平耐力 Qy

通常、特定屋外タンクは、アンカーで固定されることなく基礎上に直接設置される。し たがって、内容液に満たされたタンク隅角部は、強い地震動の影響を受けると基礎面から 浮き上がる現象を繰返して、当該隅角部内側のアニュラの板隅肉溶接止端部がき裂・破損に 至るおそれがあると考えられている。このようなき裂・破損にいたる浮き上がり限界(降伏) 耐力状態における浮き上がり抵抗力(円周単位幅当たりの鉛直方向抵抗力)は、浮き上が り変形が円周方向に緩変化であるとして、次式で表されている。この場合、静液圧下でタ ンクを円周にわたって一様に軸対称状態で持上げ隅角部アニュラ板が全塑性モーメントに 達したときの浮き上がり抵抗力を用いている。

$$q_{y} = \frac{2}{3} t_{b} \sqrt{1.5\sigma_{y} p_{0}}$$
(2.2.9)

ここで、

qy: 浮き上がり抵抗力 (N/cm)

oy: アニュラ板材料の降伏応力(N/cm²)

P₀: 静液圧(N/cm²)

tb: アニュラ板厚(cm)

図 2.2.7 に示すように、剛基礎上のタンクが片浮き上がりして、降伏耐力に達したとき、 有効液重量の重心における水平降伏抵抗力(保有水平耐力)は、次式で与えられる。この場合、 有効液重量の重心高さ Hg は式(2.2.7)で計算される H1の値を使用する。また、式中に側板 下端重量(側板の付属品及び固定屋根の重量を含む)による鉛直方向の抵抗力 Voを考慮に いれているが、安全側条件での検討時には Vo=0 としている。

$$Q_{y} = \frac{M_{y}}{H_{g}} = \frac{1}{H_{g}} \int_{0}^{2\pi} \frac{1}{4} (q_{y} + V_{0}) D^{2} (1 + \cos\phi) d\phi = \frac{\pi D^{2} (q_{y} + V_{0})}{2H_{g}} = \frac{\pi D^{2} (q_{y} + V_{0})}{2H_{1}}$$
(2.2.10)

ここで、

Qy:水平降伏抵抗力(保有水平耐力)(N)
V0:側板下端自重による鉛直方向の抵抗力 (N/cm)
My:降伏抵抗モーメント (N.cm)
HG(=H1):有効液重量重心高さ(cm)
φ:角度(rad.)

4) 側板下端の最大浮き上がり変位 δ_{max}の計算方法

弾塑性応答解析結果から、質点系の最大弾塑性水平変位 Δ_{max} に含まれる塑性変位成分 ($\Delta_{max} - \Delta_y$)を抽出し、この塑性変位成分によって、図 2.2.8 に示すようにタンク側板下端が 片浮き上がりを生じたとすれば、最大浮き上がり変位 δ_{max} は近似的に次式で表わされる。

$$\delta_{\max} = \frac{D}{H_g} (\Delta_{\max} - \Delta_y) \qquad (2.2.11)$$

$$\Delta_y = \frac{Q_y}{K_b} \tag{2.2.12}$$

ここで、

Δmax:最大弹塑性水平変位(最大地震応答変位)(cm)

- Δ_y : バルジング振動の剛性で復元力が \mathbf{Q}_y となるときの水平降伏変位(浮き上がり開始 変位) (cm)
- D: タンク直径 (cm)

Hg(=H1): 有効液の重心高さ (cm)

(1) 浮き上がり開始

(2) 最大浮き上がり

図 2.2.8 質点系モデルによる浮き上がり変位の算出

2.3 解析結果

非線形ばね特性を有する質点系モデルを用いて、東北地方の仙台・塩釜特防区域(ケース ①とケース②)*1及び広野特防区域の再現地震波形(3 地表波×2 方向で合計6本)が作用した 場合について、検討対象の屋外貯蔵タンク13基(仙台・塩釜特防区域:旧法タンク10基、 広野特防区域:新法タンク3基)の地震応答解析を実施した。

*1 仙台・塩釜特防区域については、各々タンク設置位置での地盤構成を考慮して、地震加速 度波形(ケース①、又はケース②)を適用した。

なお、減衰比変更及び保有水平耐力の算出には側板重量等(側板、側板の付属品及び固定 屋根の重量を含む)を考慮した以下の条件で解析を実施した。

(1) 地下逸散減衰*1

地下逸散減衰の影響を考慮した、0.15の減衰比を使用した。 地下逸散減衰に関する文献資料を添付資料2に示している。

各地震加速度の応答スペクトル線図(減衰比 0.15)を以下に示す。

図 2.3.1 仙台・塩釜特防区域再現地震波形の地震加速度の応答スペクトル(減衰比 0.15)

図 2.3.2 広野特防区域再現地震波形の地震加速度の応答スペクトル(減衰比 0.15)

(2) 側板の自重による浮き上がり抵抗力の増加分を考慮

従来の質点系モデルの非線形ばね特性算出に使用している保有水平耐力 Q_y の計算に おいては、安全側評価のため、浮き上がり抵抗力として側板や屋根の自重が加味されて いない。本検討ではより実情に近づけるため、側板重量等を考慮に入れた保有水平耐力 Q_y を使用した(式 2.2.10 参照)。また、 Q_y 算出には、実際に使用している材料の降伏応 力値(ミルシート記載)を使用するのがより正確なものと考えられるが、今回は規格の降 伏応力値を使用した安全側の条件としている。

*2:地下逸散減衰とは、構造物及び基礎の影響のない自由地表面での地震動に対して、構造物及び基礎が存在した場合に動的相互作用の影響で振動エネルギーの一部が地盤に逸散する効果の比率を数値化したものである。構造物及び基礎の影響のない自由地表面では、基盤での地震動が表層地盤によって増幅されるが、構造物や基礎が存在すると、それらと地盤との動的相互作用のために、実際に基礎に入力される地震動は、自由地盤面での地震動とは異なったものとなり、一般的に、構造物及び基礎が存在する地表面での地震動の大きさは、構造物及び基礎の影響のない自由地表面での地震動の大きさと比較すると小さくなる。

質点系モデルによる対象タンクの浮き上がり解析結果を表 2.3.1 から表 2.3.2 に示す。

仙台·塩釜特防区域再現地震波形				EW		NS			
タンク	内容物	貯蔵内径	公称容量	震災時貯蔵量	震災時貯蔵率	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数
番号		(m)	(KL)	(KL)	(%)	(cm)	正負合計	(cm)	正負合計
1	RG	27.5	1542	1218	79	0.1	3	0	0
2	ガソリン	13.5	1570	1262	80	0	0	0	0
3	軽油	13.5	1780	1408	79	0.2	5	0	0
4	LSA	14.6	2272	2040	90	6.3	25	0.2	9
5	灯油	17.1	3425	2689	79	2.9	10	0	0
6	ナフサ	23.2	5540	5300	96	0.1	1	0	0
7	重油	26.2	10930	8400	77	0.8	6	0	0
8	軽油	37.8	22450	17100	76	1.3	1	0	0
9	ガソリン	58.1	53620	48200	90	1.6	1	0	0
10	原油	78.5	98060	86800	89	0	0	0	0

表 2.3.1 仙台・塩釜特防区域の対象タンクの浮き上がり変位解析結果

注1:検討したタンクはすべて旧法タンク。

注2:地盤構成を考慮し、No.1からNo.8までのタンクにケース②の地震加速度波形を使用。

注3:地盤構成を考慮し、No.9と No.10 タンクにケース①の地震加速度波形を使用。

注4: 側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)。

表 2.3.2 広野特防区域の対象タンクの浮き上がり変位解析結果

広野特防区域再現地震波形			EW		NS				
タンク	内容物	貯蔵内径	公称容量	震災時貯蔵量	震災時貯蔵率	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数
番号		(m)	(KL)	(KL)	(%)	(cm)	正負合計	(cm)	正負合計
1	軽油	15.5	2000	1477	74	0.5	6	0.2	10
2	燃料	61	50000	35955	72	0	0	0	0
3	燃料	61	50000	41654	83	4.5	4	0	0

注1:検討したタンクはすべて新法タンク。

注2: 側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)

本解析において、最大の浮き上がり変位は仙台・塩釜特防区域旧法タンクNo.4で発生し、 6.3 cm であった。広野特防区域で最も浮上りが生じたのは新法タンクNo.3 であり、浮き上 がり量は4.5 cm であった。また、新法タンクNo.2 とNo.3 が同サイズであるにもかかわら ず浮き上がり量に差が生じている理由としては、震災時貯蔵量が異なることにより、両タ ンクのバルジング振動の固有周期(No.2: Tb=0.2462 (s)、No.3: Tb=0.2694 (s))が違っ ているためである。新法タンクNo.3 の固有周期は広野特防区域の再現地震波形加速度応答 スペクトルのピークの周期(0.3063 秒)と比較的近いため、より大きな応答となったと考えら れる。

関係団体を通じ今回解析対象とした全てのタンクについて、地震の影響による浮き上が

りを確認したが、関係各社とも浮き上がりがなかったとの回答が得られており、タンクの 浮き上がりによって生じることが想定される接地(アース線)の破断や雨水浸入防止材の 巻き込みなどにつながるような浮き上がりを示す痕跡は確認されなかった。本解析で示し た浮き上がり程度ではこのような痕跡はつかないと考えられ、解析結果は現実を説明でき ている。

なお、本解析においては、地下逸散減衰をパラメータとし、2.3(1)により減衰比 0.15 と した場合の東日本大震災での被害実態を説明できる結果が得られた。これについては、地下逸散 減衰効果以外の要因が関与している可能性もある。

浮き上がりやすいタンクの見極め及び傾向調査のため、解析設定条件をより安全側へと 設定した検討の結果は参考のために添付資料3に記載する。 以下に、旧法タンクで最も浮上りが生じた仙台・塩釜特防区域の旧法タンク No.4、新法 タンクで最も浮き上がりが生じた広野特防区域の新法タンク No.3 について、応答変位等の 詳細を示す。

今回の条件における仙台・塩釜特防区域の旧法タンク No.4 の応答変位、浮き上がり変位 の時刻歴及びばね復元力履歴図を図 2.3.3 から図 2.3.5 に示す。図 2.3.3 は EW 方向の地震 波形を作用させたときの、質点モデルの水平 E 方向への応答変位を+(プラス)、W 方向へ の応答変位を-(マイナス)で示している。また、当該タンクにおいて、浮き上がりが始まる と判定する水平方向の変位 (Δ_y) は±0.11 cm と算定され、図中に緑の線で表示している(こ の緑線を越えるときにタンクは浮き上がると判定)。

また、式 2.2.11 により、水平方向の応答変位からタンクの浮き上がり変位を算定した結果を図 2.3.4 に示す。この図においては、タンク W 側の浮き上がり量を+(プラス)、タンク E 側の浮き上がり量を-(マイナス)で示している(注:沈み込み量ではない)。

同様に、広野特防区域の新法タンク No.3 の応答変位、浮き上がり変位の時刻歴及びばね 復元力履歴図を図 2.3.6 から図 2.3.8 に示す。

図 2.3.3 仙台・塩釜特防区域の旧法タンク No.4 の質点系モデルの応答変位の時刻歴 (東北地方仙台・塩釜特防区域の再現地震波形:ケース②EW)

図 2.3.5 仙台・塩釜特防区域の旧法タンク No.4 の質点系モデルのばね復元力履歴図 (東北地方仙台・塩釜特防区域の再現地震波形:ケース②EW)

図 2.3.6 広野特防区域の新法タンク No.3 の質点系モデルの応答変位の時刻歴 (東北地方広野特防区域の再現地震波形 EW)

図 2.3.7 広野特防区域の新法タンク No.3 の質点系モデルの浮き上がり変位の時刻歴 (東北地方広野特防区域の再現地震波形 EW)

図 2.3.8 広野特防区域の新法タンク No.3 の質点系モデルのばね復元力履歴図 (東北地方広野特防区域の再現地震波形 EW)

3. 2次元軸対称モデルによる隅角部の疲労損傷度評価解析

2.3 節に示す質点系モデルによる浮き上がり変位と回数の解析結果より、浮き上がり変位 の大きな仙台・塩釜特防区域の旧法タンク No.4 及び広野特防区域の新法タンク No.3 が選 定され、この2基のタンクの浮き上がり時に隅角部に発生するひずみ量及び疲労損傷に対 する強度を確認するために、有限要素法を用いた静的応力解析を行った。

この2基のタンクの疲労損傷度評価結果を以下に示す。

3.1 解析方法

円筒形タンクの浮き上がり側のみに着目し、図 3.1.1(a)に示す軸対称荷重を受ける軸対称 変形モデルに置き換え、軸対称問題として静的有限要素解析を行う。このとき、図 3.1.1(b) に示す隅角部のみを解析範囲として、軸対称ソリッド要素で要素分割する。モデル化した 側板上端には、軸方向の強制変位をかけ、側板下端の浮き上がり変位を制御する。底板お よびアニュラ板と基礎との接触・離間を考慮するため、軸方向の圧縮のみに働くばね要素 をつける。

図 3.1.1 解析方法のイメージ図

地震時の浮き上がり挙動は、図 3.1.1 に示すように側板上部に強制変位を与えて隅角部を 浮かせることで模擬する。解析は、以下の手順で行う。

- 1) 静液圧(底板に一様分布、側板に高さに応じて変化させる分布)及び側板重量等 を初期荷重条件とする静解析を行う
- 2) 設定した繰返し回数1回目の浮き上がり変位 δ_I になるまで強制変位をかける
- 3) 強制変位を解除し、浮き上がり変位=0となるようにする

4)設定した繰返し回数2回目の浮き上がり変位 & になるまで強制変位をかける 以後、3)と4)を繰返す(繰り返し回数N回目まで)。 3.2 解析モデル

3.2.1 仙台・塩釜特防区域の旧法タンク No.4 の解析モデル

仙台・塩釜特防区域の旧法タンクNo.4(公称容量2272 kL)の隅角部を対象として解析モデルを作成した。タンクの主な寸法と諸元を表3.2.1.1に示す。

表 3.2.1.1 解析対象タンクの主な寸法と諸元

仙台・塩釜特防区域 旧法タ	ンク No.4	
許可容量	2272 KI	
タンク内径	14630 m	m
タンク高さ	14632 m	m
液面高さ	12123 m	m
液比重	0.85	
側板の板厚(mm)と材料		
1段	9	SS41
2段	8	SS41
3段	7	SS41
4段	6	SS41
5段	6	SS41
6段	6	SS41
7段	6	SS41
8段	6	SS41
アニュラ板厚(mm)と材料	9.76	SS41
屋根形式	固定屋根	
隅角部隅肉溶接部脚長 (mm)		
W1=W2=W3=W4	9	

<モデル形状>

隅角部モデル化範囲を図3.2.1.1(a)、隅角部の一部の要素分割を図3.2.1.1(b)に示す。図 3.2.1.1(a)の左端A端部の半径方向変位を拘束し、同図上端B端は強制変位を与える位置とし た。隅角部溶接部近傍のメッシュ分割サイズは約2mmとした。

なお、図に示した寸法はモデル上のA端部とB端部までの長さである。 地盤との接触部には非線形ばねを設置し、圧縮方向に294N/cm³の力が生じるように設定した。

(b) 隅角部の拡大図

図3.2.1.1 隅角部のモデル

<解析条件>

3.1節で示した解析方法に従い、以下の条件で解析を行った。 荷重:B端部(円周上)に側板重量等(=510.9 kN)を負荷する。

液圧:アニュラ板に一様分布の静液圧(=0.101 N/mm²)を作用させた。

側板には高さに応じて液圧(静液圧)を作用させた。

強制変位: 表3.2.1.2に示す各繰返しサイクルの浮き上がり変位を強制的に付与する。 繰返し回数:片側の浮き上がり回数の4回とする。

表3.2.1.2 繰返しサイクルにおける浮き上がり変位

サイクル	浮き上がり変位		
No.	(mm)		
1	8.5		
2	63.2		
3	17.7		
4	10.1		

<材料モデル>

1段から8段の側板と底板の材料はSS41であり、材料の物性値は表3.2.1.3に示すとおりで ある。また、塑性後の応力--ひずみ特性は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用した(図3.2.1.2参照)。硬化則に は移動硬化則を使用した。

表3.2.1.3 材料の物性値

		SS41
降伏強度(N/mm ²)	Sy	245
引張強度(N/mm ²)	Su	400
ポアソン比	ν	0.3
ヤング率 (N/mm ²)	Е	205939.7

図 3.2.1.2 弾塑性解析入力用の応力---ひずみカーブ

3.2.2 広野特防区域の新法タンク No.3 の解析モデル

広野特防区域の新法タンクNo.3 (公称容量50000 kL)の隅角部を対象として解析モデル を作成した。タンクの主な寸法と諸元を表3.2.2.1に示す。

広野特防区域 新	広野特防区域 新法タンク No.3					
許可容量	50000	KL				
タンク内径	61000 mm					
タンク高さ	21000	mm				
液面高さ	14562.3	5 mm				
液比重	0.9	5				
側板の板厚(mm)と材料						
1段	26	SPV50				
2段	23	SPV50				
3段	20	SPV50				
4段	17	SPV50				
5段	14	SPV50				
6 段	10	SPV50				
7段	10	SPV50				
8段	10	SS41				
9段	10	SS41				
アニュラ板厚(mm)と材料	18	SPV50				
底板の板厚(mm)と材料	12	SS41				
屋根形式	屋根形式 シングルデッキ浮屋根					
隅角部隅肉溶接部脚長(mm)						
W1	12					
W2	14					
W3	10					
W4	10					

表 3.2.2.1 解析対象タンクの主な寸法と諸元

<モデル形状>

隅角部モデル化範囲を図3.2.2.1(a)、隅角部の一部の要素分割を図3.2.2.1(b)に示す。図 3.2.2.1(a)の左端A端部の半径方向変位を拘束し、同図上端B端は強制変位を与える位置とした。隅角部溶接部近傍のメッシュ分割サイズは約2mmとした。

なお、図に示した寸法はモデル上のA端部とB端部までの長さである。 地盤との接触部には非線形ばねを設置し、圧縮方向に294N/cm³の力が生じるように設定した。

(b) 隅角部の拡大図

<解析条件>

3.1節で示した解析方法に従い、以下の条件で解析を行った。 荷重:B端部(円周上)に側板重量等(=6.77E+03 kN)を負荷する。

液圧:アニュラ板に一様分布の静液圧(=0.14 N/mm²)を作用させた。

側板には高さに応じて液圧(静液圧)を作用させた。

強制変位: 表3.2.2.2に示す各繰返しサイクルの浮き上がり変位を強制的付与する。 繰返しサイクル:片側の浮き上がり回数の2回とする。

表3.2.2.2 繰返しサイクルにおける浮き上がり変位

サイクル	浮き上がり変位
No.	(mm)
1	45.0
2	25.5

<材料モデル>

1段から7段までの側板の材料はSPV50、8段と9段の側板の材料はSS41、アニュラ板の材料はSPV50、底板の材料はSS41であり、それぞれの材料の物性値は表3.2.2.2に示すとおり である。また、塑性後の応力-ひずみ特性は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用した(図3.2.2.2参照)。硬化則に は移動硬化則を使用した。

表3.2.2.3 材料の物性値

		SPV50	SS41
降伏強度 (N/mm ²)	Sy	490	245
引張強度 (N/mm ²)	Su	610	400
ポアソン比	ν	0.3	0.3
ヤング率 (N/mm ²)	Е	205939.7	205939.7

図3.2.2.2 弾塑性解析入力用の応力—ひずみカーブ

3.3 解析結果

2基の対象タンクの弾塑性ひずみ解析結果を以下に示す。

3.3.1 仙台・塩釜特防区域の旧法タンクNo.4の解析結果

各サイクルの参照点の浮き上がり変位とB端部に強制変位をかけた時の算定された軸方 向の抵抗力(B端部の断面上節点力の合計値、この値をnDで割ると単位長さあたりの浮き 上がり抵抗力となる)の数値を表3.3.1.1に示す。また、その関係を線図で表示すると図 3.3.1.1に示すとおりである。(変位出力参照点の位置:図3.2.1.1(b)参照)

サイクル	浮き上がり	抵抗力	浮き上がり	<u>変位</u> (mm)
No.	位置	(N)	参照点	B端
	開始	0.00E+00	-0.54	-0.74
1	最高	2.17E+06	8.71	8.50
	最低	1.49E+06	0.16	0.00
2	最高	3.24E+06	63.76	63.20
	最低	-3.81E+05	0.34	0.00
3	最高	2.01E+06	18.11	17.70
	最低	-3.81E+05	0.34	0.00
4	最高	1.61E+06	10.47	10.10
	最低	-3.81E+05	0.34	0.00

表3.3.1.1 浮き上がり変位と抵抗力の関係

図3.3.1.1 浮き上がり変位とB端部の算定された抵抗力の関係

隅角部隅肉溶接部近傍の注目点(A点、B点とC点、3つの点の位置を図3.3.1.2に示す) に発生した全ひずみと全ひずみ振幅を表3.3.1.2に示す。A点は隅肉溶接部止端部で、B点は A点から2 mm内側のアニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最 も側板に近い位置)であり、両点の半径方向全ひずみを ϵ_r とする。C点は側板内面の止端部 であり、その軸方向ひずみを ϵ_z とする。また、全ひずみ振幅は $\Delta \epsilon_r$ 等とする。4 サイクルに おける各点の浮き上がり変位とひずみとの関係線図を図3.3.1.3から図3.3.1.5に示す。

サイクル	浮き上がり	ひずみ (%)			ひずみ振幅(%)		
No.	位置	A点	B点	C点	A点	B点	C点
		εr	εr	£ z	Δεr	Δεr	Δεz
	開始	0.04	0.02	0.05			
1	最高	0.20	0.10	0.16	0.16	0.08	0.11
	最低	0.07	0.02	0.06			
2	最高	0.71	0.42	1.08	0.64	0.32	0.66
	最低	0.08	0.10	0.42			
3	最高	0.29	0.24	0.66	0.22	0.14	0.24
	最低	0.08	0.10	0.42			
4	最高	0.22	0.19	0.58	0.15	0.09	0.16
	最低	0.08	0.10	0.42			

表3.3.1.2 各繰返しサイクルにおける隅角部隅肉溶接部のひずみとひずみ振幅

図3.3.1.2 ひずみ評価位置

図3.3.1.3 浮き上がり変位とA点に発生した半径方向ひずみの関係

図3.3.1.4 浮き上がり変位とB点に発生した半径方向ひずみの関係

図3.3.1.5 浮き上がり変位とC点に発生した軸方向ひずみの関係

浮き上がり変位が6.3 cmとなるサイクル2回目の浮き上がり時における隅角部の変形及 び塑性ひずみ分布図を図3.3.1.6から図3.3.1.8に示す。

図3.3.1.8に示す軸方向のひずみ成分の分布図より、浮き上がり挙動によって、隅角部が 曲げられ、隅角部の溶接部の止端部(C点)に最も大きなひずみが発生することを確認でき た。この表面上のひずみは局部的なものであり、全断面での平均値は小さいと推察される。

図3.3.1.6 変形図(サイクル2回目、最大浮き上がり変位:6.3 cm)

図3.3.1.7 隅角部の半径方向ひずみ成分の分布図 (サイクル2回目、最大浮き上がり変位:6.3 cm)

図3.3.1.8 隅角部の軸方向ひずみ成分の分布図 (サイクル2回目、最大浮き上がり変位:6.3 cm)

3.3.2 広野特防区域の新法タンクNo.3の解析結果

各サイクルの参照点の浮き上がり変位とB端部に強制変位をかけた時の算定された軸方 向の抵抗力(B端部の断面上節点力の合計値、この値をnDで割ると単位長さあたりの浮き 上がり抵抗力となる)の数値を表3.3.2.1に示す。また、その関係を線図で表示すると図 3.3.2.1に示すとおりである。(変位出力参照点の位置:図3.2.2.1(b)参照)

サイクル	浮き上がり	抵抗力 浮き上がり変位		変位 (mm)
No.	位置	(N)	参照点	B端
	開始	0.0E+00	-1.8	-2.2
1	最高	3.5E+07	45.5	45.0
	最低	0.0E+00	-1.8	-2.2
2	最高	3.2E+07	25.9	25.5
	最低	0.0E+00	-1.8	-2.2

表3.3.2.1 浮き上がり変位と抵抗力の関係

図3.3.2.1 浮き上がり変位とB端部の算定された抵抗力の関係

隅角部隅肉溶接部近傍の注目点(A点、B点とC点、3つの点の位置を図3.3.2.2に示す) に発生した全ひずみと全ひずみ振幅を表3.3.2.2に示す。A点は隅肉溶接部止端部で、B点は A点から2 mm内側のアニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最 も側板に近い位置)であり、両点の半径方向全ひずみを ϵ_r とする。C点は側板内面の止端部 であり、その軸方向ひずみを ϵ_z とする。また、全ひずみ振幅は $\Delta \epsilon_r$ 等とする。2 サイクルに おける各点の浮き上がり変位とひずみとの関係線図を図3.3.2.3から図3.3.2.5に示す。

サイクル	浮き上がり	全ひずみ (%)			全ひずみ振幅(%)		
No.	位置	A点	B点	C点	A点	B点	C点
		٤r	٤r	εz	Δεr	Δεr	Δεz
	開始	0.15	0.11	0.09			
1	最高	0.68	0.35	0.23	0.53	0.24	0.14
	最低	0.38	0.12	0.09			
2	最高	0.60	0.28	0.18	0.22	0.16	0.09
	最低	0.37	0.12	0.09			

表3.3.2.2 各繰返しサイクルにおける隅角部隅肉溶接部のひずみとひずみ振幅

図3.3.2.2 ひずみ評価位置

図3.3.2.3 浮き上がり変位とA点に発生した半径方向ひずみの関係

図3.3.2.4 浮き上がり変位とB点に発生した半径方向ひずみの関係

図3.3.2.5 浮き上がり変位とC点に発生した軸方向ひずみの関係

浮き上がり変位が4.5 cmとなるサイクル1回目の浮き上がり時における隅角部の変形及 び塑性ひずみ分布図を図3.3.2.6から図3.3.2.7に示す。

図3.3.2.7に示す半径方向のひずみ成分の分布図より、浮き上がり挙動によって、隅角部が曲げられ、隅角部の溶接部の止端部(A点)に最も大きなひずみが発生することを確認できた。この表面上のひずみは局部的なものであり、全断面での平均値は小さいと推察される。

変形倍率:1

図3.3.2.6 浮き上がり時の隅角部の変形図 (サイクル1回目、最大浮き上がり変位:4.5 cm)

図3.3.2.7 隅角部の半径方向ひずみ成分分布図 (サイクル1回目、最大浮き上がり変位:4.5 cm)

3.4 低サイクル疲労評価

地震時の浮き上がりに対する隅角部挙動は、低サイクル疲労である。飯田*は、溶接構造 用鋼、高張力鋼、一般構造用鋼などの10種の鋼をひずみ制御疲労試験を実施し、き裂発生 寿命 Nc をひずみ振幅 Δc に対して整理し、次式で最適疲労曲線を表した。

 $\frac{\Delta\varepsilon}{2} = 0.415 N_c^{-0.606} + 0.00412 N_c^{-0.115}$ (3.4.1)

上式を図示すると図 3.4.1 になる。

図 3.4.1 飯田の最適疲労曲線

マイナー則では、次式の疲労損傷度 D=1.0 のときを疲労寿命としており、式(3.4.2)によ

り隅角部の疲労損傷度の評価を実施した。

$$D = \frac{n(\Delta \varepsilon_1)}{N_c(\Delta \varepsilon_1)} + \frac{n(\Delta \varepsilon_2)}{N_c(\Delta \varepsilon_2)} + \frac{n(\Delta \varepsilon_3)}{N_c(\Delta \varepsilon_3)} + \dots < 1.0$$
(3.4.2)

ただし、 **D** : 疲労損傷度

 $\Delta \epsilon_i$: ひずみ振幅 $n(\Delta \epsilon_i)$: ひずみ振幅 $\Delta \epsilon_i$ の繰返し回数 $N_c(\Delta \epsilon_i)$: ひずみ振幅 $\Delta \epsilon_i$ の疲労寿命

※ 文献: 日本材料学会編、疲労設計便覧、養賢堂、pp.135-136、1995年。

3.4.1 仙台・塩釜特防区域の旧法タンク No.4 の疲労度損傷評価

仙台・塩釜特防区域の旧法タンク No.4 の浮き上がりの回数は最大の浮上り変位が算出された側の4回を使用し、この条件で疲労損傷度 Dを算定した。

表3.3.1.2に示した隅角部溶接止端部のAとB点に発生した板表面上の全ひずみ振幅に対 する、飯田の最適疲労曲線式(3.4.1)で求めた疲労寿命 Nc を表 3.4.1.1 に示す。同表より、 最大浮き上がり変位 6.3 cm となる再現地震波形に対し、当該タンクは隅角部の疲労損傷は 極めて低い結果(疲労損傷度D<<1.0)となった。

表 3.4.1.1 仙台・塩釜特防区域の旧法タンク No.4 の隅角部の疲労損傷度評価結果

サイクル	浮き上がり変位		A点			B点	
No.	δi	ひずみ振幅	許容繰返し回数	疲労損傷度	ひずみ振幅	許容繰返し回数	疲労損傷度
	(mm)	Δεr(%)	Nc	D	Δεr(%)	Nc	D
1	24.4	0.16	500000	0.000002	0.11	500000	0.000002
2	33.8	0.64	8365	0.000120	0.66	7722	0.000130
3	38.8	0.22	403500	0.000002	0.24	259100	0.000004
4	63.2	0.15	500000	0.000002	0.16	500000	0.000002
			승計	0.000126		승計	0.000137

表 3.4.1.1 に示す許容繰り返し回数を用いて、以下のようにA点とB点の疲労.損傷度D (合計)を計算した。

A点:

$$D = \sum_{i=1}^{4} \frac{1}{Nci} = \frac{1}{500000} + \frac{1}{8365} + \frac{1}{403500} + \frac{1}{500000} = 0.000126$$

B 点:

$$D = \sum_{i=1}^{4} \frac{1}{Nci} = \frac{1}{500000} + \frac{1}{7722} + \frac{1}{259100} + \frac{1}{500000} = 0.000137$$

3.4.2 広野特防区域の新法タンク No.3 の疲労度損傷評価

広野特防区域の新法タンク No.3 の浮き上がりの回数は最大の浮上り変位が算出された側の2回を使用し、この条件で疲労損傷度 Dを算定した。

表 3.3.2.2 に示したAとB点に発生した板表面上の全ひずみ振幅に対する、飯田の最適疲労曲線式(3.4.1)で求めた疲労寿命 *Nc* を表 3.4.2.1 に示す。同表より、最大浮き上がり変位 4.5 cm となる再現地震波形に対し、当該タンクは隅角部の疲労損傷度は極めて低い結果(疲労損傷度D<<1.0)となった。

表 3.4.2.1 広野特防区域の新法タンク No.3 の隅角部の疲労損傷度評価結果

サイクル	浮き上がり変位		A点			B点	
No.	δi	ひずみ振幅	許容繰返し回数	疲労損傷度	ひずみ振幅	許容繰返し回数	疲労損傷度
	(mm)	Δεr(%)	Nc	D	∆εr(%)	Nc	D
1	45	0.53	13989	0.000071	0.24	259100	0.000004
2	25.5	0.22	403500	0.000002	0.16	500000	0.000002
			合計	0.000074		合計	0.000006

表 3.4.2.1 に示す許容繰り返し回数を用いて、以下のようにA点とB点の疲労.損傷度D (合計)を計算した。

A点:

$$D = \sum_{i=1}^{2} \frac{1}{Nci} = \frac{1}{13989} + \frac{1}{403500} = 0.000074$$

B 点:
$$D = \sum_{i=1}^{2} \frac{1}{Nci} = \frac{1}{259100} + \frac{1}{500000} = 0.000006$$

4. 3次元シェルモデルによる側板の座屈強度評価解析

質点系非線形ばねモデルの浮き上がり解析結果によって、以下の浮き上がりが発生した2 基のタンクを選定し、3次元シェル要素モデルによる弾性大変形解析を実施し、最大浮き 上がり変位になるときの沈み込み側の側板下端に発生した最大軸方向圧縮応力を求めた(通 常は側板の最下端付近が最大となる)。側板の限界座屈応力との比較により側板の地震時の 座屈強度評価を行った。

- (1) 仙台・塩釜特防区域の旧法タンク No.4(2272 KL)(算定された最大浮き上がり変位: 6.3 cm)
- (2) 広野特防区域の新法タンク No.3 (50000 KL)(算定された最大浮き上がり変位: 4.5 cm)

4.1 動液圧の算定

3次元シェル要素モデルによる浮き上がり挙動を再現するため、荷重とする側板と底板 に作用する動液圧の算定が必要となる。動液圧の入力地震動は、地震動レベル1の設計水 平震度 Kh1を基準として、消防法により規定された以下の算出式で求めた動液圧を静的に作 用させた。算出した動液圧は、1/2モデルの対称境界面を最大/最小として、側板と底板の 周方向に余弦分布させてモデルに入力した。

水平方向地震動による側板部作用する液圧は、次式で表される。

$$P_h = P_{h0} + P_{h1} \tag{4.1.1}$$

 P_h は、底部からの高さZにおける側板部に作用する動液圧(MPa)である。 P_{h0} 及び P_{h1} は次式のとおり。

$$P_{h0} = \frac{9.80665\,\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{0i} \left(\frac{Z}{H}\right)^{i} \right\} K_{h1} / \nu_{3}$$
(4.1.2)

$$P_{h1} = \frac{9.80665\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{1i} \left(\frac{Z}{H}\right)^{i} \right\} (1 - \frac{1}{v_{3}}) K_{h1} \qquad (4.1.3)$$

ここで、ρは、貯蔵液の比重、Hは最高液面高さ (m)、ν₃は特定屋外貯蔵タンクの固有 周期を考慮した応答倍率 (·)、CoiとCiiは、特定屋外貯蔵タンクの最高液面高さと直径との 比により、求めた係数である(添付資料4参照)

算定された2基の対象タンクの動液圧を添付資料4に示す。

4.2 解析ステップ

3次元シェル要素モデルによる浮き上がり解析ステップを、次のように2段階に分けて 実施した。

ステップ1: 通常時荷重(静液圧)

ステップ2: 地震時荷重(静液圧+動液圧) 静液圧負荷状態から、動液圧を段階的に 付与した。 質点系モデルに算定された最大浮き上がり変位となったときに側板に発 生する応力を確認した。

4.3 解析モデル

タンクの浮き上がり側及び沈み込み側に着目するため、2 基のタンクの3 次元シェルモデ ルを作成した。タンク形状は 1/2 部分であるが、その切断面には対称条件を設定した。底板 は形状として全面作成しているが、タンク半径の 70%の位置からの底板の一部を剛体要素 でモデル化し、中心の参照点と連動させている。

タンク側板上端のトップアングルのみモデル上には含まれている。上端拘束条件はフリーとした。底板およびアニュラ板と基礎との接触・離間を考慮するため、軸方向の圧縮のみに 294N/cm³の力が生じるようなばね要素を設定した。

4.3.1 仙台・塩釜特防区域の旧法タンクNo.4の解析モデル

仙台・塩釜特防区域の旧法タンク No.4 の解析モデルを図 4.3.1.1 に示す。このタンクの 主な寸法と諸元は 3.2 節の表 3.2.1.1 に示しているとおりである。

図4.3.1.1 仙台・塩釜特防区域の旧法タンクNo.4の解析モデル

側板重量等(合計:511 kN)は側板に均等に分布させて調整(側板の質量密度を増加)した。 アニュラ板と底板の自重もモデル上考慮した。

全部の材料の物性値は3.2.2節の表3.2.2.1に示すとおりである。

4.3.2 広野特防区域の新法タンクNo.3の解析モデル

広野特防区域の新法タンク No.3 の解析モデルを図 4.3.2.1 に示す。このタンクの主な寸法と諸元は 3.2 節の表 3.2.2.1 に示すとおりである。

図4.3.2.1 広野特防区域の新法タンクNo.3の3次元シェルモデル

側板重量等(合計: 6.77E+03 kN)は側板に均等に分布させて調整(側板の質量密度を増加) した。アニュラ板と底板の自重もモデル上考慮した。

全部の材料の物性値は3.2.2節の表3.2.2.2に示すとおりである。

4.4 解析結果

2基のタンクの解析結果を以下に示す。

4.4.1 仙台・塩釜特防区域の旧法タンクNo.4の解析結果

以下に仙台・塩釜特防区域の旧法タンクNo.4の最大浮き上がり変位6.3 cmまでの解析結 果を示す。

設計震度Kh1をパラメータとして、動液圧を0から55.3%まで増加させた時の側板最下端の浮き上がり変位(軸方向)浮き上がり範囲(半径方向)及び浮き上がり角度(円周方向)を表4.4.1.1に示す。側板下端部の円周方向角度に対応する軸方向変位を図4.4.1.1に示す。 最大浮き上がり変位が6.3 cmのとき、逆側の最大沈み込み変位は僅か0.2 cmとなった。

側板最下端に発生した軸方向応力(沈み込み側)を表4.4.1.2に示す。沈み込み側の軸方向膜 応力と側板の高さの関係を図4.4.1.2に示す。沈み込み側の円周方向膜応力と側板の高さの 関係を図4.4.2.3に示す。

最大浮き上がり変位6.3 cmに達した時のタンクモデルの変形図を図4.4.1.4、浮き上がり 変位、浮き上がり範囲及び浮き上がり角度を示す平面上の分布図を図4.4.1.5、相当応力の 分布図を図4.4.1.6に示す。

			, , , , , , , , , , , , , , , , , , ,
動液圧	浮き上がり変位	浮き上がり範囲	浮き上がり角度
(%)	δ (mm)	a (mm)	θ (度)
0	-0.5	-	-
10	-0.2	-	-
20	0.1	130.7	69.2
30	4.7	348.1	149.2
40	19.0	546.9	182.6
50	45.4	742.7	202.7
55.3	63.2	844.6	210.1

表4.4.1.1 側板最下端の浮き上がり変位及び浮き上がり範囲

(注)動液圧率(100%)のとき

最大動液圧: Ph=0.02 N/mm²

最大動液圧と最大静液圧の比:Ph/Po=0.2

図4.4.1.1 側板下端部の円周方向の角度に対応する軸方向変位

動液圧	浮き上がり変位	側板最下端 軸方[句応 力 (N∕mm2)
(%)	(mm)	沈み	込み側
		膜応力	内表面応力
0	-0.5	-1.3	60.4
10	-0.2	-3.0	56.4
20	0.1	-4.7	52.4
30	4.7	-6.1	49.5
40	19.0	-6.9	48.2
50	45.4	-7.4	47.0
55.3	63.2	-7.8	45.7
55.3	03.2	- /.8	45./

表4.4.1.2 側板最下端に発生した軸方向応力

(注)動液圧率(100%)のとき

最大動液圧: Ph=0.02 N/mm²

最大動液圧と最大静液圧の比:Ph/Po=0.2

図4.4.1.2 側板に発生した軸方向の膜応力と側板高さの関係

図4.4.1.3 側板に発生した円周方向の膜応力と側板高さの関係

図4.4.1.4 変形図(最大浮き上がり変位: 6.3 cm)

浮き上がり側の側板は動液圧の影響でタンク内側へ凹むように変形している。本 モデル作成において、沈み込み側下部の圧縮に着目した評価を行うためタンクモデ ルの形状を単純化してウインドガーダー等を含めていないことから、浮き上がり側 の側板上部に大きな変形が生じている。本検討では沈み込み側下部の圧縮に注目し て座屈評価をし、浮き上がり側の側板及びアニュラ板に発生した応力の評価は除外 する。

図4.4.1.5 浮き上がり変位の分布図(最大浮き上がり変位:6.3 cm)

図4.4.1.6 相当応力の分布図(最大浮き上がり変位:6.3 cm)

4.4.2 広野特防区域の新法タンクNo.3の解析結果

以下に広野特防区域の新法タンクNo.3の最大浮き上がり変位4.6 cmまでの解析結果を示す。

設計震度Kh1をパラメータとして、動液圧を0から119%まで増加させた時の側板最下端の 浮き上がり変位(軸方向)、浮き上がり範囲(半径方向)及び浮き上がり角度(円周方向) を表4.4.2.1に示す。側板下端部の円周方向角度に対応する軸方向変位を図4.4.2.1に示す。 最大浮き上がり変位が4.6 cmのとき、逆側の最大沈み込み変位は僅か0.3 cmとなった。

側板最下端に発生した軸方向応力(沈み込み側)を表4.4.2.2に示す。沈み込み側の軸方 向膜応力と側板の高さの関係を図4.4.2.2に示す。沈み込み側の円周方向膜応力と側板の高 さの関係を図4.4.2.3に示す。

最大浮き上がり変位4.6 cmに達した時のタンクモデルの変形図を図4.4.2.4、浮き上がり 変位、浮き上がり範囲及び浮き上がり角度を示す平面上の分布図を図4.4.2.5、相当応力の 分布図を図4.4.2.6に示す。

動液圧	浮き上がり変位	浮き上がり範囲	浮き上がり角度
(%)	δ (mm)	a (mm)	
0.0	-1.3	_	_
10.0	-1.2	-	_
20.0	-1.0	-	_
30.0	-0.9	-	-
40.0	-0.7	-	-
50.0	-0.5	-	_
60.0	-0.3	-	_
70.0	-0.2	-	_
80.0	0.0	318.6	15.1
90.0	0.5	397.0	62.2
100.0	4.8	610.8	83.8
110.0	18.0	913.0	99.2
112.3	22.9	982.5	101.9
115.6	32.6	1081.0	105.6
119.0	46.0	1220.7	108.7

表4.4.2.1 側板最下端の浮き上がり変位及び浮き上がり範囲

(注)動液圧率(100%)のとき

最大動液圧: Ph=0.055 N/mm²

最大動液圧と最大静液圧の比: Ph/Po=0.4

図4.4.2.1 側板下端部の円周方向の角度に対応する軸方向変位

動液圧	浮き上がり変位	側板最下端 軸	方向応力(N/mm2)
(%)	(mm)	沈∂	5込み側
		膜応力	内表面応力
0.0	-1.3	-2.2	113.0
10.0	-1.2	-2.6	120.2
20.0	-1.0	-3.1	127.6
30.0	-0.9	-3.5	134.9
40.0	-0.7	-3.9	142.2
50.0	-0.5	-4.3	149.6
60.0	-0.3	-4.7	157.0
70.0	-0.2	-5.1	164.5
80.0	0.0	-5.5	171.9
90.0	0.5	-5.9	179.4
100.0	4.8	-6.3	186.9
110.0	18.0	-6.7	194.4
112.3	22.9	-6.8	196.1
115.6	32.6	-7.0	198.7
119.0	46.0	-7.1	201.2

表4.4.2.2 側板最下端に発生した軸方向応力

(注)動液圧率(100%)のとき

最大動液圧: Ph=0.055 N/mm²

最大動液圧と最大静液圧の比:Ph/Po=0.4

図4.4.2.2 側板に発生した軸方向の膜応力(圧縮応力)と側板高さの関係

図4.4.2.3 側板に発生した円周方向の膜応力(フープ応力)と側板高さの関係

図4.4.2.4 変形図(最大浮き上がり変位:4.6 cm)

浮き上がり側の側板は動液圧の影響でタンク内側へ凹むように変形している。本 モデル作成において、沈み込み側下部の圧縮に着目した評価を行うためタンクモデ ルの形状を単純化してウインドガーダー等を含めていないことから、浮き上がり側 の側板上部に大きな変形が生じている。本検討では沈み込み側下部の圧縮に注目し て座屈評価をし、浮き上がり側の側板及びアニュラ板に発生した応力の評価は除外 する。

浮き上がり範囲(半径方向)

図4.4.2.5 浮き上がり変位の分布図(最大浮き上がり変位:4.6 cm)

4.5 座屈強度評価

座屈強度評価においては、以下のような手順で軸圧縮限界座屈応力を評価するが、必要 に応じて内圧を考慮した評価を行う。

一様軸圧縮を受ける内圧のない円筒殻の弾性軸圧縮限界座屈応力は、次式で表される。

$$\sigma_{cr} = 0.4E \frac{t_s}{D} \tag{4.5.1}$$

ここで、

ocr:一様軸圧縮を受ける円筒殻の弾性軸圧縮限界座屈応力(N/mm²)

E: 側板のヤング率 (N/mm²)

ts:側板最下端の板厚 (mm)

運転時満液状態にある平底円筒形石油貯槽においては、地震時動液圧負荷側(図4.4.1.6、 図4.4.2.6の沈み込み側)の最下段側板の円周方向膜応力が、降伏応力の0.3倍を上回っ ている場合、ダイヤモンド型座屈の評価に加え、象の脚型座屈の評価が要求されている。

ここでは容器構造設計指針において、円周方向膜応力/降伏応力比が0.3以上の場合の限 界座屈応力値に着目し、内圧下における側板の象の脚型座屈限界応力を以下に示す。

$$\frac{\sigma_{\phi}}{\sigma_{y}} \ge 0.3$$
 かつ、 $\frac{D}{t_{s}} \ge 1.614(\frac{E}{\sigma_{y}})$ の場合

$$\sigma_{cr} = 0.96E \frac{t_s}{D} (1 - \frac{\sigma_{\phi}}{\sigma_{y}}) \qquad (4.5.2)$$

4.5.1 仙台・塩釜特防区域の旧法タンク No.4 の座屈強度評価

当該タンクの材料のヤング率 E=205940 N/mm²、側板厚 t_s=9 mm、内径 D=14630 mm を代入すると、軸圧縮限界座屈応力 o_{cr} =50.7 N/mm² となる。

当該タンクの側板に発生した最大円周方向膜応力(93.7 N/mm²)は、降伏応力(245 N/mm²) との比(0.38)が0.3以上であることが確認されたので、象の脚型座屈の評価は必要となる。 式(4.5.2)で計算された象の脚型座屈限界応力は75.0 N/mm²となる。

以上により、計算された仙台・塩釜特防地区旧法タンクNo.4の限界座屈応力は、50.7 N/mm²(ダイヤモンド型座屈)、75.0 N/mm²(象の脚型座屈)となり、解析結果から得られた 軸圧縮応力の最大値の7.8N/mm²よりも大きな値となっている。そのため、当該区域の再現 地震波形に対して、仙台・塩釜特防区域の旧法タンクNo.4の最大浮き上がり変位が6.3 cm 発生した場合、側板の座屈により損傷は生じないという解析結果が得られた。 4.5.2 広野特防区域の新法タンク No.3 の座屈強度評価

当該タンクの材料のヤング率 E=205940 N/mm²、側板厚 ts=26 mm、直径 D=61000 mm を代入すると、軸圧縮限界座屈応力 o_{cr} =35.1 N/mm² となる。

当該タンクの側板に発生した最大円周方向膜応力(235 N/mm²)は、降伏応力(490 N/mm²) との比(0.48)が0.3以上であることが確認されたので、象の脚座屈の評価は必要となる。式 (4.5.2)で計算された象の脚座屈限界応力は43.9 N/mm²となる。

以上により、計算された広野特防地区新法タンクNo.3の限界座屈応力は、35.1 N/mm²(ダイヤモンド型座屈)、43.9 N/mm²(象の脚型座屈)となり、解析結果から得られた軸圧縮応力の最大値の7.1N/mm²よりも大きな値となっている。そのため、当該区域の再現地震波形に対して、広野特防区域の新法タンクNo.3の最大浮き上がり変位が4.5 cm発生した場合、側板の座屈により損傷は生じないという解析結果が得られた。

5. まとめ

本解析において、東北地方太平洋沖地震再現地震波形に対する屋外貯蔵タンクの耐震安 全性を確認した。最大の浮き上がり変位は仙台・塩釜特防区域の旧法タンク No.4 で発生し、 6.3 cm であった。これ以外のタンクの浮き上がり変位は非常に小さい。

関係団体を通じ今回解析対象とした全てのタンクについて、地震の影響による浮き上が りを確認したが、関係各社とも浮き上がりがなかったとの回答が得られており、タンクの 浮き上がりによって生じることが想定される接地(アース線)の破断や雨水浸入防止材の 巻き込みなどにつながるような浮き上がりを示す痕跡は確認されなかった。本解析で示し た浮き上がり程度ではこのような痕跡はつかないと考えられるため、解析結果は現実を説 明できている。

なお、本解析においては、地下逸散減衰をパラメータとし、2.3(1)により減衰

比 0.15 とした場合の東日本大震災での被害実態を説明できる結果が得られた。ただし、 これについては、地下逸散減衰効果以外の要因が関与している可能性もある。

解析では、質点系モデルにて浮き上がり変位が大きい結果が生じたタンク(仙台・塩釜 特防区域の旧法タンク No.4(2272 KL)及び広野特防区域の新法タンク No.3(50000 KL))を 特定し、その最大浮き上がり時のタンク隅角部の疲労強度及び沈み込み側のタンク側板の 座屈強度について有限要素法解析によって評価した。この2 基のタンクのそれぞれの最大 浮き上がり変位が生じるときの隅角部の疲労強度において、疲労損傷度Dは1.0以下という 結果が、また、側板の座屈強度の解析結果において、軸圧縮応力が限界座屈応力以内とい う結果が得られ、この解析結果は、東北地方太平洋沖地震における実態と矛盾しないこと を確認できた。

添付資料 1

質点系モデルの入力諸元の計算結果

仙台・塩釜特防区域旧法タンク 10 基及び広野特防区域新法タンク 3 基の質点系モデルの 諸元計算シートを以下に示す。

付表 1-1 仙台・塩釜特防区域旧法タンクの質点系モデルの入力諸元計算シート

<u> 質点系モデルによる側板下端の浮上り変</u>	<u>(赤字:入力値)</u>		
[諸元]			_
公称容量	VOL (kl)	1542	(kl)
貯槽内径	D	12190	(mm)
側板高さ	Hmax	15120	(mm)
最下段側板厚	t _s	9	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	7	(mm)
アニュラ板厚	t _b	9	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.166	(N/mm2)
最高液高さ(震災時79%)	Н	10143.6	(mm)
液密度	γ	7.30E-07	(kg/mm3)
直径/液高さ比	D/H	1.20	(-)
液高さ/直径比	H/D	0.83	(-)
消防法/有効液重量率 f_{w0} $f_{W0} = -0.1408(\frac{H}{R})^4 + 0.8427(\frac{H}{R})^3 - 1.916(\frac{H}{R})^2 + 2$	$.0933(\frac{H}{R}) - 0.1172$		
B B B	D	7.16E-01	(-)
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 1$	$2.3017(\frac{H}{D}) - 0.1634$		
	D	6.60E-01	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	$0.0807(\frac{H}{D}) + 0.4096$	4.16E-01	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.$	$0207(\frac{H}{D}) + 0.3644$	4.64E-01	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		7.26E-02	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	2.91E+02	(KN)
側板付属品重量	Ws1	5.93E+01	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	4.21E+01	(KN)
固定屋根付属品重量	Wcr1	1.31E+01	(KN)
固定屋根付骨重量	Wcr2	2.86E+01	(KN)
本体重量 合計	Wsr	4.35E+05	(N)

[計算式と質点系モデルの入力数値]		紫字:入力値	
		<u>(単位:N, cm)</u>	
貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}(W/(g \pi E * t_{1/3}))*j$		0.1103	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2568	(-)
液重量 W=gγπD ² H/4	W	8.47E+06	(N)
合計重量(W+Wsr)	W+Wsr	8.91E+06	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		6.38E+06	(N)
$W_1 = f_{w1} * (W + Wsr)$		5.88E+06	(N)
消防法/有効液重量率	f _{w0}	0.72	(-)
	f _{w1}	0.66	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		422.06	(cm)
$H_1 = f_{h1} * H$		470.20	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.46	(-)
側板自重による鉛直抵抗力	V0	113.46	(N/cm)
ばね係数	Кь	1.95E+07	(N/cm)
浮上り抵抗力	qy	310.00	(N/cm)
浮上り抵抗力+鉛直抵抗力(qy+Vo)	$q_y + V_0$	423.45	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.10E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.11	(cm)
減衰係数	С	1.02E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	2.59	(-)

<u> 質点系モデルによる側板下端の浮上り変</u>	赤字:入力値		
[諸元]			
公称容量	VOL (kl)	1570	(kl)
貯槽内径	D	13540	(mm)
側板高さ	Hmax	12035	(mm)
最下段側板厚	t _s	8	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	6	(mm)
アニュラ板厚	t _b	8	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ(震災時80%)	Н	8720	(mm)
液密度	γ	7.20E-07	(kg/mm3)
直径/液高さ比	D/H	1.55	(-)
液高さ/直径比	H/D	0.64	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2$	$.0933(\frac{H}{D}) - 0.1172$	0.64	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.2807(\frac{H}{D}$	$2.3017(\frac{H}{D}) - 0.1634$	0.61	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0000000000000000000000000000000000$	$0.0807(\frac{H}{D}) + 0.4096$	0.41	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0207(\frac{H}{D}) + 0.3644$	0.43	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.06	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	2.31E+02	(KN)
側板付属品重量	Ws1	2.87E+01	(KN)
固定屋根重量	Wcr0	3.66E+01	(KN)
固定屋根付属品重量	Wcr1	9.40E+00	(KN)
固定屋根付骨重量	Wcr2	2.56E+01	(KN)
タンク本体重量 合計	Wsr	3.31E+05	(N)

[計算式と質点系モデルの入力数値]		紫字:入力値	
		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g \pi E*t_{1/3}))*j$		0.1055	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2946	(-)
液重量 W=gγπD ² H/4	w	8.87E+06	(N)
合計重量(W+Wsr)	W+Wsr	9.20E+06	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		5.86E+06	(N)
$W_1 = f_{w1} * (W + Wsr)$		5.58E+06	(N)
消防法/有効液重量率	f _{w0}	0.64	(-)
	f _{w1}	0.61	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		356.62	(cm)
H ₁ = f _{h1} *H		379.04	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.41	(-)
	f _{h1}	0.43	(-)
側板自重による鉛直抵抗力	Vo	77.79	(N/cm)
ばね係数	Кь	2.02E+07	(N/cm)
浮き上がり抵抗力	qy	253.70	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+V0)	qy+V0	331.49	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.52E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.12	(cm)
減衰係数	С	1.02E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	3.57	(-)

<u> 質点系モデルによる側板下端の浮上り変位計算用諸元</u>

(赤字	z·λ	. † 14	(値)

<u>. 貝瓜ボモノルによる側似下畑の仔エッ友</u>	<u> </u>		(小子,八刀但)
[諸元]			
公称容量	VOL (kl)	1780	(kl)
貯槽内径	D	13540	(mm)
側板高さ	Hmax	13700	(mm)
最下段側板厚	t _s	7.68	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	7.92	(mm)
アニュラ板厚	t _b	8.86	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ(震災時79%)	Н	9765.98	(mm)
液密度	r	8.55E-07	(kg/mm3)
直径/液高さ比	D/H	1.39	
液高さ/直径比	H/D	0.72	
消防法/有効液重量率 f_{w0}	20022(H) 0.1172		
$f_{W0} = -0.1408(\frac{D}{D}) + 0.8427(\frac{D}{D}) - 1.910(\frac{D}{D}) + 0.0427(\frac{D}{D}) + 0.000(\frac{D}{D}) + 0.000($	$\frac{2.0935(-)-0.1172}{D}$	0.67	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 1$	$2.3017(\frac{H}{D}) - 0.1634$	0.63	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0$	$807(\frac{H}{D}) + 0.4096$	0.41	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0206(\frac{H}{D})^2 + 0.0206(\frac{H}{D})^$	$207(\frac{H}{D}) + 0.3644$	0.45	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.08	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	3.56E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
固定屋根重量	Wcr0	5.16E+01	(KN)
固定屋根付属品重量	Wcr1	8.01E+00	(KN)
固定屋根付骨重量	Wcr2	3.24E+01	(KN)
本体重量 合計	Wsr	4.48E+05	(N)

[計算式と質点系モデルの入力数値]		紫字:入力値	
		<u>(単位:N, cm)</u>	
貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}(W/(g\pi E*t_{1/3}))*j$		0.1121	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2785	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	W	1.18E+07	(N)
合計重量(W+Wsr)	W+Wsr	1.22E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1.00	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		8.25E+06	(N)
$W_1 = f_{w1} * (W + Wsr)$		7.76E+06	(N)
消防法/有効液重量率	f _{w0}	0.67	(-)
	f _{w1}	0.63	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		402.25	(cm)
$H_1 = f_{h1} * H$		436.13	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.41	(-)
	f _{h1}	0.45	(-)
側板自重による鉛直抵抗力	Vo	105.41	
ばね係数	Кь	2.49E+07	(N/cm)
浮上り抵抗力	qy	324.02	(N/cm)
浮上り抵抗力+鉛直抵抗力(qy+Vo)	$q_y + V_0$	429.43	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.84E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.11	(cm)
減衰係数	C	1.33E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	3.10	(-)

65

```
(SI単位)
```

<u> 賃点系モデルによる側板下端の浮き上た</u>	がり変位計算用諸元		(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	2272	(kl)
貯槽内径	D	14630	(mm)
側板高さ	Hmax	14632	(mm)
最下段側板厚	t _s	9	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	7	(mm)
アニュラ板厚	t _b	9.76	(mm)
鋼材のヤング率	E	205939.7	(<u>N/mm2</u>)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σγ	245	(<u>N/mm2</u>)
最高液高さ(震災時90%)	H	12123	(mm)
液密度	γ	8.50E-07	(kg/mm3)
直径/液高さ比	D/H	1.21	(-)
液高さ/直径比	H/D	0.83	(-)
消防法/有効液重量率 f_{w0} $f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2$	$2.0933(\frac{H}{D}) - 0.1172$	7 15E-01	(-)
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2$	$+2.3017(\frac{H}{D}) - 0.1634$	6.60E-01	(-)
消防法/有効液の重心高さ係数 f _{ho}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	$0.0807(\frac{H}{D}) + 0.4096$	4.16E-01	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0.0207(\frac{H}{D}) + 0.3644$	4.63E-01	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		1.01E-01	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	3.48E+02	(KN)
側板付属品重量	Ws1	4.76E+01	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	6.08E+01	(KN)
固定屋根付属品重量	Wcr1	1.30E+01	(KN)
固定屋根付骨重量	Wcr2	4.12E+01	(KN)
本体重量 合計	Wsr	5.11E+05	(N)

[計算式と質点系モデルの入力数値]		紫字:入力値	
		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0.1542	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2574	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	1.70E+07	(N)
合計重量(W+Wsr)	W+Wsr	1.75E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		1.25E+07	(N)
$W_1 = f_{w1} * (W + Wsr)$		1.15E+07	(N)
消防法/有効液重量率	f _{w0}	0.71	(-)
	f _{w1}	0.66	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		504.27	(cm)
$H_1 = f_{h1} * H$		561.32	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.46	(-)
側板自重による鉛直抵抗力	V0	111.16	(N/cm)
ばね係数	Кь	1.95E+07	(N/cm)
浮き上がり抵抗力	qy	396.52	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V0	507.68	(N/cm)
保有水平耐力(降伏耐力)	Qy	3.04E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.16	(cm)
減衰係数	C	1.44E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	2.61	(-)

(SI単位)

<u>.質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			(赤字:入力値)
[諸元]			-
<u>公称容量</u>	VOL (kl)	3425	(kl)
貯槽内径	D	17070	(mm)
側板高さ	Hmax	16525	(mm)
最下段側板厚	t _s	12	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	8	(mm)
アニュラ板厚	t _b	9.19	(mm)
鋼材のヤング率 (SM41)	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
アニュラ板の降伏応力	σу	245	(N/mm2)
最高液高さ(震災時79%)	Н	11778.9	(mm)
液密度	Y	7.95E-07	(kg/mm3)
直径/液高さ比	D/H	1.45	(-)
液高さ/直径比	H/D	0.69	(-)
月防法/有効液里重率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.$	$0933(\frac{H}{D}) - 0.1172$	6.60E-01	(-)
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2$	$2.3017(\frac{H}{D}) - 0.1634$	6.24E-01	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	$807(\frac{H}{D}) + 0.4096$	4.11E-01	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$(207(\frac{H}{D}) + 0.3644)$	4.42E-01	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		9.19E-02	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	5.05E+02	(KN)
側板付属品重量	Ws1	5.50E+01	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	8.33E+01	(KN)
固定屋根付属品重量	Wcr1	1.39E+01	(KN)
固定屋根付骨重量	Wcr2	7.85E+01	(KN)
本体重量 合計	Wsr	7.36E+05	(N)

[計算式と質点系モデルの入力数値]		紫字:入力値 (単位:N_cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}(W/(\pi * 1000 * E * t_{1/3}))j$		0.1454	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2849	(-)
液マス W = $\gamma \pi D^2 H / 4$	w	2.10E+07	(N)
合計マス(W+Wsr)	W+Wsr	2.18E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		1.44E+07	(N)
$W_1 = f_{w1} * (W + Wsr)$		1.36E+07	(N)
消防法/有効液重量率	f _{w0}	0.66	(-)
	f _{w1}	0.62	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		483.76	(cm)
$H_1 = f_{h1} * H$		520.35	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.41	(-)
	f _{h1}	0.44	(-)
側板自重による鉛直抵抗力	V0	137.24	(N/cm)
ばね係数	Кь	2.59E+07	(N/cm)
浮き上がり抵抗力	qy	355.98	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	$q_y + V_0$	493.23	(N/cm)
保有水平耐力(降伏耐力)	Qy	4.34E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.17	(cm)
減衰係数	С	1.79E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	3.28	(-)

_質点系モデルによる側板下端の浮上り変位計算用諸元			赤字:入力值
[諸元]			
<u>公称容量</u>	VOL (kl)	5540	(kl)
貯槽内径	D	23248	(mm)
側板高さ	Hmax	14595	(mm)
最下段側板厚	ts	13.3	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	10	(mm)
アニュラ板厚	t _b	12.3	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	
降伏応力	σγ	245	(N/mm2)
最高液高さ(震災時96%)	Н	12672	(mm)
液密度	r	7.40E-07	(kg/mm3)
直径/液高さ比	D/H	1.83	(-)
液高さ/直径比	H/D	0.55	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2$	$2.0933(\frac{H}{D}) - 0.1172$	5.79E-01	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2$	$2.3017(\frac{H}{D}) - 0.1634$	5.57E-01	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0$	$807(\frac{H}{D}) + 0.4096$	4.05E-01	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0$	$207(\frac{H}{D}) + 0.3644$	4.20E-01	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.09	(N/mm2)

_タンク本体重量(赤字:入力値)

側板重量	Ws0	7.15E+02	(KN)
側板付属品重量	Ws1	9.09E+01	(KN)
浮き屋根重量	Wr0	3.20E+02	(KN)
浮き屋根付属品重量	Wr1	9.77E+01	(KN)
タンク本体重量 合計	Wsr	1.22E+06	(N)

[計算式と質点系モデルの入力数値] 紫字:入力值 (単位:N, cm) 貯槽の固有周期 $T_{b} = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$ 0.1592 (sec) $\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$ (–) 0.3164 液重量 W = g $\gamma \pi D^2 H / 4$ (N) W 3.90E+07 合計重量(W+Wsr) W+Wsr 4.03E+07 (N) 減衰比 ζ 0.15 (-) 基礎地盤と貯槽本体の連成振動補正係数 i = (-) 1 有効液重量 $W_0 = f_{w0} * (W + Wsr)$ 23293458.21 (N) $W_1 = f_{w1} * (W + Wsr)$ 2.24E+07 (N) 消防法/有効液重量率 (-) 0.58 f_{w0} (-) 0.56 f_{w1} 有効液の重心高さ 513.77 (cm) $H_0 = f_{h0} * H$ $H_1 = f_{h1} * H$ 531.79 (cm) (–) 消防法/有効液の重心高さ係数 0.41 f_{h0} 0.42 (-) f_{h1} 側板自重による鉛直抵抗力 V0 110.29 ばね係数 K_b 3.56E+07 (N/cm) 浮き上がり抵抗力 476.70 (N/cm) qу 浮き上がり抵抗力+鉛直抵抗力(qy+Vo) $q_y + V_0$ 586.98 (N/cm) 保有水平耐力(降伏耐力) (N) Qy 9.37E+06 降伏<u>変位</u> (=Qy∕K₀) Δy 0.26 (cm) 減衰係数 С 2.71E+05 (N/(cm/s))貯蔵内径と有効液の重心高さの比 D/H1 4.37 (-)

(SI単位)

質点系モデルによる側板下端の浮上り変位計算用諸元			赤字:入力値
[諸元]			
公称容量	VOL (kl)	10930	(kl)
貯槽内径	D	26151	(mm)
側板高さ	Hmax	21855	(mm)
最下段側板厚	t _s	22.3	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	16.7	(mm)
アニュラ板厚	t _b	15.5	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	
降伏応力	σy	245	(N/mm2)
最高液高さ(震災時77%)	Н	15675.66	(mm)
液密度	γ	8.40E-07	(kg/mm3)
直径/液高さ比	D/H	1.67	(-)
液高さ/直径比	H/D	0.60	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.61	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.59	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.41	(_)
消防法/有効液の重心高さ係数 f _{h1}		0.41	
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.43	(-)
底板に作用する最大静液圧			
$P_0=g \gamma H$		0.13	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	1.80E+03	(KN)
側板付属品重量	Ws1	9.70E+01	(KN)
固定屋根重量	Wcr0	1.92E+02	(KN)
固定屋根付属品重量	Wcr1	2.10E+01	(KN)
固定屋根付骨重量	Wcr2	1.31E+02	(KN)
タンク本体重量 合計	Wsr	2.24E+06	(N)

紫字:入力值 [計算式と質点系モデルの入力数値] (単位<u>:N, cm)</u> 貯槽の固有周期 $T_{b} = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g \pi E*t_{1/3}))*j$ 0.1709 (sec) $\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$ (–) 0.3042 液重量 W = g $\gamma \pi D^2 H / 4$ (N) W 6.94E+07 W+Wsr 合計重量(W+Wsr) 7.16E+07 (N) 減衰比 ζ 0.15 (-) 基礎地盤と貯槽本体の連成振動補正係数 (-) i = 1 有効液重量 $W_0 = f_{w0} * (W + Wsr)$ 4.39E+07 (N) $W_1 = f_{w1} * (W + Wsr)$ (N) 4.20E+07 消防法/有効液重量率 0.61 (–) f_{w0} (–) 0.59 f_{w1} 有効液の重心高さ (cm) $H_0 = f_{h0} * H$ 638.51 $H_1 = f_{h1} * H$ 670.69 (cm) (–) 消防法/有効液の重心高さ係数 0.41 f_{h0} (-) 0.43 f_{h1} 側板自重による鉛直抵抗力 (N/cm) V0 273.21 ばね係数 Кb 5.79E+07 (N/cm) 浮き上がり抵抗力 711.84 (N/cm) qу 浮き上がり抵抗力+鉛直抵抗力(qv+Vo) qy+V0 985.05 (N/cm) 保有水平耐力(降伏耐力) 1.58E+07 (N) Qy 降伏変位 (=Qy/Kb) Δy 0.27 (cm) С 4.72E+05 (N/(cm/s)) 減衰係数 貯蔵内径と有効液の重心高さの比 D/H_1 (-) 3.90

73
_質点系モデルによる側板下端の浮上り変位計算用諸元			赤字:入力値
[諸元]			
公称容量	VOL (kl)	22450	(kl)
貯槽内径	D	37776	(mm)
側板高さ	Hmax	21855	(mm)
最下段側板厚	ts	15.2	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	12	(mm)
アニュラ板厚	t _b	12.2	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	
降伏応力	σy	490	(N/mm2)
最高液高さ(震災時76%)	Н	15274.48	(mm)
液密度	r	8.70E-07	(kg∕mm3)
直径/液高さ比	D/H	2.47	(-)
液高さ/直径比	H/D	0.40	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 +$	$2.0933(\frac{H}{D}) - 0.1172$	0.47	(_)
 消防法/有効液重量率 f _{w1}	0.47		
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 +$	$2.3017(\frac{H}{D}) - 0.1634$	0.45	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(_)
		0.40	
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0.0207(\frac{H}{D}) + 0.3644$	0.40	(-)
底板に作用する最大静液圧			
P ₀ =g γ H		0.13	(N/mm2)

_タンク本体重量(赤字:入力値)______

側板重量	Ws0	2.09E+03	(KN)
側板付属品重量	Ws1	1.72E+02	(KN)
固定屋根重量	Wcr0	4.01E+02	(KN)
固定屋根付属品重量	Wcr1	1.98E+01	(KN)
固定屋根付骨重量	Wcr2	2.31E+02	(KN)
タンク本体重量 合計	Wsr	2.91E+06	(N)

[計算式と質点系モデルの入力数値]

[計算式と質点系モデルの入力数値]		紫字:入力値	
時 槽 の 固 有 周 期			
$T_{\rm b} = 2 / \lambda \operatorname{sart}((W + W \operatorname{sr}) / (g \pi \operatorname{E} * t_{1/2})) * i$		0.2530	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0 3497	(-)
液 番 $W = \sigma \gamma \pi D^2 H / 4$	w	1 46F+08	(N)
☆ 至 至 10 g7 x 2 11 / 1 合計重量(W+Wsr)	W+Wsr	1.49E+08	(N)
	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		6.97E+07	(N)
$W_1 = f_{w1} * (W + Wsr)$		6.77E+07	(N)
消防法/有効液重量率	f _{w0}	0.47	(-)
	f _{w1}	0.45	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		613.24	(cm)
$H_1 = f_{h1} * H$		610.37	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.40	(-)
側板自重による鉛直抵抗力	V0	245.45	
ばね係数	Кь	4.26E+07	(N/cm)
浮き上がり抵抗力	qу	796.00	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V0	1041.45	(N/cm)
保有水平耐力(降伏耐力)	Qy	3.82E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.90	(cm)
減衰係数	С	5.14E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	ID/H1	619	(-)

質点系モデルによる側板下端の浮上り変位計算用諸元 赤字:入力值 [諸元] <u> 公称容量</u> VOL (kl) 53620 (kI)貯槽内径 D 58113 (mm)側板高さ Hmax 22195 (mm) 最下段側板厚 24.5 ts (mm) 1/3の最高液高さにおける側板厚 17.4 (mm)t_{1/3} アニュラ板厚 11.97 (mm) tb 鋼材のヤング率 205939.7 (N/mm2)Е <u>鋼材のポアソン比</u> ν 0.3 (-) 490 (N/mm2) 降伏応力 σy 最高液高さ(震災時90%) 18128.7 Н (mm) 7.60E-07 液密度 γ (kg/mm3) 直径/液高さ比 D/H (-) 3.21 (-) 液高さ/直径比 H/D 0.31 消防法/有効液重量率 f_{w0} $f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$ 3.74E-01 (-) 消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$ 3.61E-01 (-) 消防法/有効液の重心高さ係数 fho $f_{H0} = 0.0384 (\frac{H}{D})^4 - 0.1493 (\frac{H}{D})^3 + 0.204 (\frac{H}{D})^2 - 0.0807 (\frac{H}{D}) + 0.4096$ (-) 4.00E-01 消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ 3.88E-01 (-) 底板に作用する最大静液圧 1.35E-01 (N/mm2) $P_0 = g \gamma H$

タンク本体重量(赤字:入力値)

側板重量	Ws0	4.60E+03	(KN)
側板付属品重量	Ws1	1.25E+03	(KN)
浮き屋根重量	Wr0	1.39E+03	(KN)
浮き屋根付属品重量	Wr1	4.31E+02	(KN)
タンク本体重量 合計	Wsr	7.67E+06	(N)

77

(SI単位)

[計算式と質点系モデルの入力数値]		紫字:入力値 (単位:N.cm)	
貯槽の固有周期		(-, , , , , , , , , , , , , , , , , , ,	
$T_{b} = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.3088	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3729	(-)
液重量 W=gγπD ² H/4	w	3.58E+08	(N)
合計重量(W+Wsr)	W+Wsr	3.66E+08	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		1.37E+08	(N)
$W_1 = f_{w1} * (W + Wsr)$		1.32E+08	(N)
消防法/有効液重量率	f _{w0}	0.37	(-)
	f _{w1}	0.36	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		725.35	(cm)
$H_1 = f_{h1} * H$		703.23	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力∨₀	V0	320.54	(N/cm)
ばね係数	Кь	5.57E+07	(N/cm)
浮上り抵抗力	qy	795.24	(N/cm)
浮上り抵抗力+鉛直抵抗力(qy+Vo)	q _y +V ₀	1115.78	(N/cm)
保有水平耐力(降伏耐力)	Qy	8.42E+07	(N)
降伏変位 (=Qy/Kb)	Δу	1.51	(cm)
減衰係数	C	8.22E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	8.26	(-)

「社営士」「安正式エニーのユー教徒」

<u>1質点系モデルによる側板下端の浮上り変位計算用諸元</u>			赤字:入力値
[諸元]			
公称容量	VOL (kl)	98060	(kl)
貯槽内径	D	78471	(mm)
側板高さ	Hmax	22545	(mm)
最下段側板厚	t _s	34.9	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	26.5	(mm)
アニュラ板厚	t _b	21.6	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ(震災時89%)	Н	18087.47	(mm)
液密度	r	8.80E-07	(kg/mm3)
直径/液高さ比	D/H	4.34	(-)
液高さ/直径比	H/D	0.23	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2$	$+2.0933(\frac{H}{D})-0.1172$	0.27	
消防法/有効液重量率 f _{w1}		0.27	
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.26	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0$	$0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0.0207(\frac{H}{D}) + 0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.16	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	8.60E+03	(KN)
側板付属品重量	Ws1	1.46E+03	(KN)
浮き屋根重量	Wr0	2.71E+03	(KN)
浮き屋根付属品重量	Wr1	5.05E+02	(KN)
タンク本体重量 合計	Wsr	1.33E+07	(N)

[計算式と質点系モデルの入力数値]

紫字:入力値 (単位:N.cm)

		(甲凹.N, CM)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.3428	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3944	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	7.55E+08	(N)
合計重量(W+Wsr)	W+Wsr	7.68E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		2.10E+08	(N)
$W_1 = f_{w1} * (W + Wsr)$		1.98E+08	(N)
消防法/有効液重量率	f _{w0}	0.27	(-)
	f _{w1}	0.26	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		723.71	(cm)
$H_1 = f_{h1} * H$		685.55	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力	Vo	408.35	(N/cm)
ばね係数	Кь	6.78E+07	(N/cm)
浮き上がり抵抗力	qy	1542.40	(N∕cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V0	1950.74	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.75E+08	(N)
降伏変位 (=Qy/Kb)	Δy	4.06	(cm)
減衰係数	С	1.11E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	11.45	(-)

付表 1-2 広野特防区域新法タンクの質点系モデルの入力諸元の計算シート

<u> 質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	2000	(kl)
貯槽内径	D	15500	(mm)
側板高さ	Hmax	13170	(mm)
最下段側板厚	t _s	9	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	7	(mm)
アニュラ板厚	t _b	9	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	u	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ(震災時74%)	Н	7940.2	(mm)
液密度	γ	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	1.95	(-)
液高さ/直径比	H/D	0.51	(-)
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^3$ 消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^3$	$(\frac{H}{D}) - 0.1172$ $(\frac{H}{D}) - 0.1634$	0.56	(-)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$ 消防法/有効液の重心高さ係数 f_{h1}		0.34	(-)
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2$ 底板に作用する最大静液圧	$(\frac{H}{D}) + 0.3644$	0.41	(-)
Р ₀ -gүн		0.07	(N/mmZ)

タンク本体重量(赤字:入力値)

側板重量	Ws0	5.09E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量		1.77E+02	(KN)
タンク本体重量 合計	Wsr	6.86E+05	(N)

[計算式と質点系モデルの入力数値]		紫字:入力値 (単位:N, cm)	
貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.1121	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3239	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	1.40E+07	(kg)
合計重量(W+Wsr)	W+Wsr	1.46E+07	(kg)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		8.14E+06	(kg)
$W_1 = f_{w1} * (W + Wsr)$		7.87E+06	(kg)
消防法/有効液重量率	f _{w0}	0.56	(-)
	f _{w1}	0.54	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		321.08	(mm)
$H_1 = f_{h1} * H$		329.36	(mm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.41	(-)
側板自重による鉛直抵抗力	Vo	140.82	(N/cm)
ばね係数	Кь	2.52E+07	(N/cm)
浮上り抵抗力	qy	312.84	(N/cm)
浮き上がり抵抗力	qy+V0	453.66	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+V0)	Qy	5.20E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.21	(cm)
減衰係数	С	1.35E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	4.71	(-)

_質点系モデルによる側板下端の浮き上がり変位計算用諸元			(赤字:入力値)
[諸元]			-
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	61000	(mm)
側板高さ	Hmax	21000	(mm)
最下段側板厚	t _s	26	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23	(mm)
アニュラ板厚	t _b	18	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ(震災時72%)	Н	12632.4	(mm)
液密度	r	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	4.83	(-)
液高さ/直径比	H/D	0.21	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.09$	$033(\frac{H}{D}) - 0.1172$	0.24	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3$	$017(\frac{H}{D}) - 0.1634$	0.22	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.026(\frac{H}{D})^2 + $	0.38	(-)	
底板に作用する最大静液圧			
$P_0 = g \gamma H$		1.18E-01	(N/mm2)

_タンク本体重量(赤字:入力値)_____

側板重量	Ws0	6.77E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	4.32E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr1	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.11E+07	(N)

[計算式と質点系モデルの入力数値]		紫字∶入力値 (単位∶N, cm)	
貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.2462	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.4007	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	3.44E+08	(N)
合計重量(W+Wsr)	W+Wsr	3.55E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		8.57E+07	(N)
$W_1 = f_{w1} * (W + Wsr)$		7.94E+07	(N)
消防法/有効液重量率	f _{w0}	0.24	(-)
	f _{w1}	0.22	(–)
有効液の重心高さ			
$H_0 = f_{h0} * H$		505.78	(cm)
$H_1 = f_{h1} * H$		475.95	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力	Vo	578.45	(N/cm)
ばね係数	K _b	5.28E+07	(N/cm)
浮き上がり抵抗力	qy	1116.07	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+V0)	$q_y + V_0$	1694.52	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.08E+08	(N)
降伏変位 (=Qy/Kb)	Δy	3.94	(cm)
減衰係数	С	6.20E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H_1	12.82	(-)

_質点系モデルによる側板下端の浮き上が		(赤字:入力値)	
[諸元]			
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	61000	(mm)
側板高さ	Hmax	21000	(mm)
最下段側板厚	t _s	26	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23	(mm)
アニュラ板厚	t _b	18	(mm)
鋼材のヤング率	E	205939.7	(N/mm2)
鋼材のポアソン比	u	0.3	(-)
降伏応力	σy	490.00	(N/mm2)
最高液高さ(震災時83%)	Н	14562.35	(mm)
液密度	γ	9.50E-07	(kg∕mm3)
直径/液高さ比	D/H	4.19	(-)
液高さ/直径比	H/D	0.24	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = 0.1408(H_{y4}^{4} + 0.8427(H_{y3}^{3} + 1.016(H_{y2}^{2} + 0.0000000000000000000000000000000000$	$20032(^{H}) = 0.1172$		
$\int_{W_0}^{W_0} = -0.1400(\frac{D}{D}) + 0.0427(\frac{D}{D}) - 1.910(\frac{D}{D}) + 0.0427(\frac{D}{D}) + 0.0427(\frac{D}{$	$\frac{2.0935(-)-0.1172}{D}$	0.28	(-)
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.0000000000000000000000000000000000$	$3017(\frac{H}{D}) - 0.1634$	0.27	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0000000000000000000000000000000000$	$0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0207(\frac{H}{D}) + 0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.14	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	6.77E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	4.32E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.11E+07	(N)

[計算式と質点系モデルの入力数値]		紫字:入力値	
		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.2694	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3922	(–)
液重量 W = g $\gamma \pi D^2$ H / 4	w	3.96E+08	(N)
合計重量(W+Wsr)	W+Wsr	4.07E+08	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		1.16E+08	(N)
$W_1 = f_{w1} * (W + Wsr)$		1.09E+08	(N)
消防法/有効液重量率	f _{w0}	0.28	(-)
	f _{w1}	0.27	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		582.57	(cm)
$H_1 = f_{h1} * H$		553.15	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力	Vo	353.27	(N/cm)
ばね係数	Кь	6.07E+07	(N/cm)
浮き上がり抵抗力	qу	1198.29	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V₀	1551.56	(N∕cm)
保有水平耐力(降伏耐力)	Qy	1.27E+08	(N)
<u>降伏変位(=Qy/Kb)</u>	Δу	2.09	(cm)
減衰係数	С	7.81E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	11.0	(-)

添付資料 2

地下逸散減衰を考慮したタンクの等価減衰比の設定についての理論的検討

1. 目的

東北地方太平洋沖地震の発生後に、屋外貯蔵タンクでは、タンクの側板の浮き上がりに ついての痕跡は、確認できていない。本検討においては、質点系モデルの浮き上がり解析 を実施するに当り、本検討での解析の結果がこのような実現象に近い結果を再現できるよ うに、タンクに適用する地下逸散減衰を考慮した等価減衰比を適切に設定することを目的 とする。

2. 基本方針

質点系モデルの地震応答解析の結果から、仙台・塩釜特防区域、及び広野特防区域においては、EW 方向の地震波形によるタンクの浮き上がりが大きいという結果となった。よって、本検討では、仙台・塩釜特防区域及び広野特防区域におけるタンクを対象として地下逸散減衰を考慮した等価減衰比を推定し、全てのタンクの等価減衰比のうち最小値を選択し、その値を一律に全タンクの等価減衰比と設定するものとする。下記の参考文献を用いた検討手順は以下の通り。

- 1) 地震動が小さな場合の地下逸散を考慮した等価減衰比の推定 文献(1)の梅林らの方法により、各タンクの諸元および設置地盤のせん断波速度(Vs) から推定する地下逸散減衰を考慮した等価減衰比を算定する。
- 2) 地震動が大きな場合の地盤の Vs 値の低減率の推定

文献(2)、及び(3)より、地下逸散減衰は、地盤の Vs に反比例するとされてい る。その理論に則り、地震動が大きな場合の等価減衰比を算定するため、地震動 が大きな場合の Vs 値の推定を行う。文献(4)においては、地表面の震度が最大 0.3 のときの Vs 値の低減率が与えられている。これらの値と、地盤応答解析から 推定される Vs 値の低減率の推定値を採用する。

3) 地震動が大きな場合の等価減衰比の推定 仙台・塩釜特防区域、および広野特防区域における全検討対象タンクの大地震時 の等価減衰比の推定を行い、今後、全タンクの質点系モデルでの応答解析に適用 する一律の等価減衰比を設定する。

参考文献

- (1) 梅林、他4名;平底円筒形貯槽の地下逸散減衰、圧力技術、第21巻、第1号、1983
 年
- (2) 日本建築学会;容器構造設計指針・同解説、2010
- (3) 山本;平底円筒形貯槽の耐震設計上の諸問題、日本機械学会誌、第87巻、第792号、
 昭和59年11月
- (4) Eurocode 8: Design provisions for earth quake resistance of structures, Part 5.
 Foundations, retaining structures and geotechnical aspects, DD ENV 1998-5: 1996.

2. 検討結果

文献(1)の梅林らの方法により、各タンクの諸元および設置地盤のせん断波速度(Vs)から推定する地下逸散減衰を考慮した等価減衰比を算定した結果を表1及び表2に示す。

また、文献(2)及び(3)から、構造物と地盤の系を連続するせん断棒と仮定した 1 次元波動理論によれば、地下逸散減衰に対応する減衰比hは次式により表わされる。

- $h = \frac{2 \rho_0 V_0}{\pi \rho_1 V_1}$
- 記号 ρ₀, ρ₁:構造および地盤の密度 (kg/m³)

V₀, V₁:構造および地盤のせん断波速度(m/s)

(1) 具体的数据体系、不能的数据系统

上記の式の $\rho_0 V_0 / \rho_1 V_1$ は貯槽と地盤の波動インピーダンス比で、この値が大きいもの ほど、地下逸散減衰は大きくなる。このインピーダンス比は地盤の剛性の(Vs)には反比 例している。そこで、地震動が大きな場合の地盤の Vs の低減率を推定し、この関係を利用 して地震動が大きな場合の地下逸散減衰に対応する減衰比を推定する。

文献(4)によると、地表面震度が0.3のとき、20m以浅の地盤における Vsの標準的な低減率は0.6 と示されている(Vs が 300m/s 以下の場合に限る)。地表面震度が0.3 より大きければ、より大きな低減率が期待できるが、ここでは安全側の値として0.6 を採用することとし、上記条件に合致する仙台・塩釜特防区域ケース①の地盤の Vs、及び広野特防区域の地盤の Vs の低減率に適用する。また、仙台・塩釜特防区域ケース②の地盤の Vs の低減率については、東北地方太平洋沖地震の模擬地震波で地盤応答解析を実施し、その結果として得られた0.57 を大ひずみ時の Vs の低減率とする。

以上から、大ひずみ時の Vs の低減を考慮した地下逸散減衰を考慮した等価減衰比を表 1及び表2の最も右の欄に示す。以上の結果から、最も小さい等価減衰比は0.15となり、 今後の全タンクの質点系モデルの応答解析に適用する地下逸散減衰を考慮した一律の等価 減衰比を0.15と設定する。

表1	1 仙台・塩釜特防区域の再現地震波形EWIこよる屋外貯蔵タンクの浮き上がり解析結果および地下逸散減衰を考慮した等価減衰比													
タンク	内容物	貯蔵内径	公称容量	震災時貯 蔵量	震災時 貯蔵率	最大浮き上 がり変位	浮き上がり 回数	周期Tb	液高	貯蔵内径	地盤のVs	文献(1)の 等価減衰	地盤のVs	Vsの低減率 を考慮した
番号		(m)	(KL)	(KL)	(%)	(cm)	正負合計	(s)	(m)	/	(m/s)	比	の低減率	等価減衰比
1	RG	27.5	1542	1218	79	0.1	3	0.110	10.1	2.71	140	0.180		0.316
2	ガソリン	13.54	1570	1262	80	0	0	0.106	8.7	1.55	140	0.118		0.207
3	軽油	13.54	1780	1408	79	0.2	5	0.112	9.8	1.39	140	0.105		0.184
4	LSA	14.63	2272	2040	90	6.3	25	0.154	12.1	1.21	140	0.086	0.57	0.150
5	灯油	17.07	3425	2689	79	2.9	10	0.145	11.8	1.45	140	0.110	0.57	0.194
6	ナフサ	23.248	5540	5300	96	0.1	1	0.159	12.7	1.83	140	0.149		0.261
7	重油	26.151	10930	8400	77	0.8	6	0.171	15.7	1.67	140	0.134		0.235
8	軽油	37.776	22450	17100	76	1.3	1	0.253	15.3	2.47	140	0.179		0.314
9	ガソリン	58.113	53620	48200	90	1.6	1	0.309	18.1	3.21	150	0.161	0.60	0.268
10	原油	78.471	98060	86800	89	0	0	0.343	18.1	4.34	150	0.117	0.60	0.195

タンク 1~8 はケース②を適用、タンク 9~10 はケース①を適用

表2	表2 広野特防区域の再現地震波形EWによる屋外貯蔵タンクの浮き上がり解析結果および地下逸散減衰を考慮した等価減衰比													
タンク	内容物	貯蔵内径	公称容量	震災時貯 蔵量	震災時 貯蔵率	最大浮き上 がり変位	浮き上がり 回数	周期Tb	液高	貯蔵内径	地盤のVs	等価減衰比	地盤のVs	Vsの低減率を 考慮した等価
番号		(m)	(KL)	(KL)	(%)	(cm)	正負合計	(s)	(m)	/液高	(m/s)		の低減平	減衰比
1	軽油	15.5	2000	1477	74	0.5	6	0.115	7.9	1.95	180	0.127		0.211
2	燃料	61	50000	35955	72	0	0	0.268	12.6	4.83	180	0.090	0.60	0.150
3	燃料	61	50000	41654	83	4.5	4	0.294	14.6	4.19	180	0.108		0.180

以上

添付資料 3

減衰比 0.1 及び Qy 算出に側板重量を考慮しない条件での 質点系モデルによる浮き上がり解析結果

2.3.1 節での検討(減衰比を 0.15、Qy 補正)では、ほとんどのタンクは浮き上がり変位 が小さい結果となり、現実を再現できていると考えられる。ここでは、浮き上がりやすい タンクの調査を目的とし、解析条件をより安全側(減衰比を 0.1、Qy 算出には側板重量等を 含めない)に調整して地震応答解析を実施した結果を参考のため以下に示す。

各タンクの浮き上がり変位と回数の算定結果を以下の付表 3-1 から付表 3-2 に示す。表中 の浮き上がり回数は、小さい浮き上がり~最大浮き上がりを全て数え上げたものである (例:仙台・塩釜特防区域の再現地震波形 EW に対して、旧法タンク No.9 の最大浮き上が り変位は 45.5cm である) このように、多くのタンクで顕著な浮き上がりが生じるという解 析結果となり、実現象を再現していないものと考えられる。

タンク	内容物	貯蔵内径	公称容量	震災時貯蔵量	震災時貯蔵率	最大浮き上がり変位	浮き上がり回数
番号		(m)	(KL)	(KL)	(%)	(cm)	正負合計
1	RG	27.5	1542	1218	79	7	20
2	ガソリン	13.54	1570	1262	80	0.17	6
3	軽油	13.54	1780	1408	79	6.3	17
4	LSA	14.63	2272	2040	90	9.4	102
5	灯油	17.07	3425	2689	79	12	45
6	ナフサ	23.248	5540	5300	96	11.6	17
7	重油	26.151	10930	8400	77	16.5	50
8	軽油	37.776	22450	17100	76	21.6	25
9	ガソリン	58.113	53620	48200	90	45.5	47
10	原油	78.471	98060	86800	89	0	0

付表 3-1 仙台・塩釜特防区域再現地震波形 EW による浮き上がり解析結果

注1:検討したタンクはすべて旧法タンク。

注2:地盤構成を考慮し、No.1から No.8 までのタンクにケース②の地震加速度波形を使用。

注3:地盤構成を考慮し、No.9とNo.10タンクにケース①の地震加速度波形を使用。

注4:側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)。

タンク	内容物	貯蔵内径	公称容量	震災時貯蔵量	震災時貯蔵率	最大浮き上がり変位	浮き上がり回数
番号		(m)	(KL)	(KL)	(%)	(cm)	正負合計
1	RG	27.5	1542	1218	79	0.1	2
2	ガソリン	13.54	1570	1262	80	0	0
3	軽油	13.54	1780	1408	79	0	0
4	LSA	14.63	2272	2040	90	5	65
5	灯油	17.07	3425	2689	79	5.6	64
6	ナフサ	23.248	5540	5300	96	0.1	3
7	重油	26.151	10930	8400	77	5.2	30
8	軽油	37.776	22450	17100	76	1.2	7
9	ガソリン	58.113	53620	48200	90	8.5	28
10	原油	78.471	98060	86800	89	0	0

付表 3-2 仙台・塩釜特防区域再現地震波形 NS による浮き上がり解析結果

注1:検討したタンクはすべて旧法タンク。 注2:地盤構成を考慮し、No.1から No.8までのタンクにケース②の地震加速度波形を使用。

注3:地盤構成を考慮し、No.9とNo.10タンクにケース①の地震加速度波形を使用。

注4:側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)。

付表 3-3 広野特防区域再現地震波形 EW による浮き上がり解析結果

タンク	内容物	貯蔵内径	公称容量	震災時貯蔵量	震災時貯蔵率	最大浮き上がり変位	浮き上がり回数
番号		(m)	(KL)	(KL)	(%)	(cm)	正負合計
1	軽油	15.5	2000	1477	74	9.4	88
2	燃料	61	50000	35955	72	0	0
3	燃料	61	50000	41654	83	18.3	25

注1:検討したタンクはすべて新法タンク。

注2:側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)。

付表 3−4 ᠒	ム野特防区域再現地震波形 NS による浮き上が	り解析結果
----------	-------------------------	-------

タンク	内容物	貯蔵内径	公称容量	震災時貯蔵量	震災時貯蔵率	最大浮き上がり変位	浮き上がり回数
番号		(m)	(KL)	(KL)	(%)	(cm)	正負合計
1	軽油	15.5	2000	1477	74	9.9	72
2	燃料	61	50000	35955	72	0	0
3	燃料	61	50000	41654	83	4.5	7

注1:検討したタンクはすべて新法タンク。 注2:側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)

旧法タンク

仙台・塩釜特防区域の旧法タンク No.8 (ケース②の地震波形作用)及び No.9 (ケース①の 地震波形作用)に大きな浮き上がり変位が発生することがわかった。この2基のタンクのバ ルジング振動の固有周期は 0.253 秒と 0.309 秒と算定され、両地震の加速度応答スペクト ルのピークの周期(0.4-0.5 秒)と非常に近いことによる結果と考えられる。なお、旧法タン ク No.10 の固有周期は 0.34 であり、地震加速度スペクトルのピークに近いが、アニュラ板 が厚く(21.6mm)、浮き上がりが抑えられていると考えられる(No.10 のアニュラ板を 12mm とした試計算では、浮き上がり変位は 63.5cm であることが確認された)。

新法タンク

広野特防区域の再現地震波形の最大加速度は、仙台・塩釜特防区域の再現地震波より約 1.6 倍が大きいにもかかわらず、同容量(50000 KL)の旧法タンクと比べ、新法タンク(50000 KL)の浮き上がり変位が小さく計算された。これは、新法タンクのアニュラ板(18mm)が 厚くてかつ良い材質(降伏強度:490 N/mm²以上)のものを使用されているため、耐震性が より強いと示されている。

広野特防区域の新法タンク No.2 と No.3 が同サイズのタンクであるが、応答量の違う結果となった。その原因は震災時貯蔵量が違うことによって、両タンクのバルジング振動の固有周期(No.2: T_b=0.2462 (s)、 No.3: T_b=0.2694 (s))が違っているためである。新法タンク No.3 の固有周期が広野特防区域の再現地震波形加速度応答スペクトルのピークの周期(0.3063 秒)と比較的近いため、より大きな応答となった。

減衰比とQyの定数の違いが及ぼすタンク浮き上がり変位に関する調査結果

資料2-4-2において、南海トラフA地区EW方向の想定地震波形を用い、代表タンクモデルの旧法タンクNo.5(100,000KL級)について、減衰比とQyの定数の違いがタンク浮き上がり変位にどれだけ影響するのか調査した。

<定数の設定条件>

○減衰比は、0.1 と 0.15 の 2 種類を設定

○Qy 値は、1 倍(側板重量等を含めないもの)と 1.4 倍(側板重量等を含むもの)の 2 種類 を設定

上記設定条件による調査結果を次表にまとめる。

表 代表タンクモデルの旧法タンク No.5(100,000KL)の浮き上がり変位解析結果

ケース	減衰比	Qyの増加	D/H1	降伏変位	最大応答変位	最大浮上り変位	低減率
番号		倍率		∆y(cm)	∆max (cm)	δ max (cm)	(%)
1	0.1	1		2.27	18.9	198.1	-
2	0.15	1	11.91	2.27	11.72	112.5	43.2
3	0.1	1.4		3.04	10.15	84.7	57.2
4	0.15	1.4		3.04	6.36	39.5	80.1

注) 代表タンクモデルの旧法タンク No.5 (100,000KL)では側板重量等を加味すると Qy の値は約 1.4 倍 となる。

本調査より、当該タンクにおいて Qy 値の補正(側板重量等を含むものと含めないもの)と、 減衰比の変更(0.1 と 0.15)では、タンクの最大浮き上がり変位に対する影響は同程度であ ると確認した:

ケース1とケース2の比較では、減衰比0.1から0.15にすることで最大浮き上がり量は43%小さくなるのに対し、ケース1とケース3の比較ではQy値を補正(1.4倍)することにより、57%の減少となった。

添付資料 4

動液圧の計算シート

(1) 仙台・広野特防区域の旧法タンクNo.4の動液圧の計算結果は以下に示す。

D	14630 mm
Н	12123 mm
Kh1	0.4169
ν3	1.39
ρ	8.50E-07 kg/mm2

H/D	0.82864
分割	100
⊿н	121.23 mm
g	9.8 m/sec2
Z	3.07E+11 mm3

C00	C01	C02	C03	C04	C05
0.558969	-0.13214	1.04432	-4.24286	5.670024	-2.88859
C10	C12	C12	C13	C14	C15
0.368103	0.027991	2.164487	-6.08181	6.824774	-3.29167

付図4-1 側板の高さにおける動液圧の分布(仙台・塩釜特防区域の旧法タンクNo.4)

			P = 2D*Ph(z)*π/4より			
Z	Ph0(Z)	Ph1(Z)	Ph(Z)	Р	M	Q
(mm)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm)	(N.mm)	(N)
0.00	0.01693	0.00435	0.02128	488.99	2.5836E+10	4.9669E+06
121.23	0.01689	0.00435	0.02125	488.27	2.5238E+10	4.9077E+06
242.46	0.01686	0.00436	0.02123	487.79	2.4646E+10	4.8485E+06
363.69	0.01684	0.00438	0.02121	487.52	2.4062E+10	4.7894E+06
484.92	0.01681	0.00440	0.02121	487.44	2.3485E+10	4.7303E+06
606.15	0.01679	0.00442	0.02121	487.52	2.2915E+10	4.6712E+06
727.38	0.01678	0.00445	0.02122	487.74	2.2352E+10	4.6121E+06
848.61	0.01676	0.00447	0.02124	488.08	2.1797E+10	4.5530E+06
969.84	0.01675	0.00450	0.02126	488.52	2.1249E+10	4.4938E+06
1091.07	0.01674	0.00454	0.02128	489.05	2.0707E+10	4.4345E+06
1212.30	0.01673	0.00457	0.02131	489.64	2.0173E+10	4.3752E+06
1333.53	0.01673	0.00461	0.02133	490.29	1.9647F+10	4.3158F+06
1454.76	0.01672	0.00465	0.02136	490.97	1.9127F+10	4.2563F+06
1575.99	0.01671	0.00469	0.02139	491.67	1.8615F+10	4.1967F+06
1697.22	0.01670	0.00473	0.02143	492.38	1.8109F+10	4.1371F+06
1818.45	0.01669	0.00477	0.02146	493.09	1.7612F+10	4.0774F+06
1939.68	0.01668	0.00481	0.02149	493 78	17121E+10	40175E+06
2060.91	0.01666	0.00485	0.02152	494 45	1 6637E+10	3.9576E+06
218214	0.01665	0.00489	0.02154	495.08	1.6161E+10	3 8977E+06
2303 37	0.01663	0.00494	0.02157	495.67	1 5692E+10	3 8376E+06
2424.60	0.01661	0.00498	0.02159	496.21	1.5231F+10	3.7775F+06
2545.83	0.01659	0.00502	0.02161	496.69	1 4777F+10	37173E+06
2667.06	0.01657	0.00506	0.02163	497.11	1.4330F+10	3.6571E+06
2788.29	0.01654	0.00510	0.02165	497.46	1.3890F+10	3.5968F+06
2909.52	0.01652	0.00514	0.02166	497.73	1.3457E+10	3.5364E+06
3030.75	0.01648	0.00518	0.02167	497.93	1.3032E+10	3.4761E+06
3151.98	0.01645	0.00522	0.02167	498.04	1.2615E+10	3.4157E+06
3273.21	0.01641	0.00526	0.02167	498.06	1.2204E+10	3.3553E+06
3394.44	0.01637	0.00530	0.02167	497.99	1.1801E+10	3.2950E+06
3515.67	0.01633	0.00533	0.02166	497.84	1.1405E+10	3.2346E+06
3636.90	0.01628	0.00537	0.02165	497.58	1.1017E+10	3.1743E+06
3758.13	0.01624	0.00540	0.02164	497.23	1.0636E+10	3.1140E+06
3879.36	0.01618	0.00543	0.02162	496.78	1.0262E+10	3.0537E+06
4000.59	0.01613	0.00546	0.02159	496.24	9.8953E+09	2.9935E+06
4121.82	0.01607	0.00549	0.02157	495.59	9.5360E+09	2.9334E+06
4243.05	0.01601	0.00552	0.02153	494.85	9.1840E+09	2.8734E+06
4364.28	0.01595	0.00555	0.02150	494.00	8.8393E+09	2.8134E+06
4485.51	0.01588	0.00557	0.02146	493.05	8.5019E+09	2.7536E+06
4606.74	0.01581	0.00560	0.02141	492.00	8.1717E+09	2.6939E+06
4727.97	0.01574	0.00562	0.02136	490.86	7.8487E+09	2.6343E+06
4849.20	0.01567	0.00564	0.02131	489.61	7.5330E+09	2.5749E+06
4970.43	0.01559	0.00566	0.02125	488.26	7.2244E+09	2.5156E+06
5091.66	0.01551	0.00568	0.02118	486.81	6.9230E+09	2.4565E+06
5212.89	0.01543	0.00569	0.02112	485.26	6.6288E+09	2.3976E+06
5334.12	0.01534	0.00570	0.02104	483.61	6.3417E+09	2.3389E+06
5455.35	0.01525	0.00572	0.02097	481.86	6.0617E+09	2.2803E+06
5576.58	0.01516	0.00573	0.02089	480.01	5.7888E+09	2.2220E+06
5697.81	0.01507	0.00573	0.02080	478.06	5.5229E+09	2.1640E+06
5819.04	0.01497	0.00574	0.02071	476.00	5.2641E+09	2.1061E+06
5940.27	0.01487	0.00575	0.02062	473.85	5.0122E+09	2.0486E+06
6061.50	0.01477	0.00575	0.02052	471.59	4.7674E+09	1.9912E+06
6182.73	0.01467	0.00575	0.02042	469.23	4.5294E+09	1.9342E+06
6303.96	0.01456	0.00575	0.02031	466.76	4.2984E+09	1.8775E+06
6425.19	0.01445	0.00574	0.02020	464.18	4.0742E+09	1.8211E+06
6546.42	0.01434	0.00574	0.02008	461.49	3.8568E+09	1.7649E+06
6667.65	0.01423	0.00573	0.01996	458.69	3.6463E+09	1.7092E+06
6788.88	0.01411	0.00572	0.01983	455.77	3.4424E+09	1.6537E+06

付表4-1 動液圧の計算結果(仙台・塩釜特防区域の旧法タンクNo.4)

6910.11	0.01399	0.00571	0.01970	452.73	3.2453E+09	1.5987E+06
7031.34	0.01387	0.00569	0.01956	449.56	3.0548E+09	1.5440E+06
7152.57	0.01374	0.00568	0.01942	446.26	2.8709E+09	1.4897E+06
7273.80	0.01361	0.00566	0.01927	442.82	2.6936E+09	1.4358E+06
7395.03	0.01348	0.00564	0.01911	439.24	2.5227E+09	1.3823E+06
7516.26	0.01334	0.00561	0.01895	435.51	2.3584E+09	1.3293E+06
7637.49	0.01320	0.00558	0.01878	431.61	2.2004E+09	1.2767E+06
7758.72	0.01305	0.00555	0.01860	427.55	2.0488E+09	1.2247E+06
7879.95	0.01291	0.00552	0.01842	423.32	1.9035E+09	1.1731E+06
8001.18	0.01275	0.00548	0.01823	418.89	1.7643E+09	1.1220E+06
8122.41	0.01259	0.00544	0.01803	414.27	1.6314E+09	1.0715E+06
8243.64	0.01243	0.00539	0.01782	409.43	1.5045E+09	1.0216E+06
8364.87	0.01226	0.00534	0.01760	404.37	1.3836E+09	9.7227E+05
8486.10	0.01208	0.00529	0.01737	399.07	1.2687E+09	9.2357E+05
8607.33	0.01189	0.00523	0.01712	393.52	1.1597E+09	8.7553E+05
8728.56	0.01170	0.00517	0.01687	387.70	1.0564E+09	8.2818E+05
8849.79	0.01150	0.00510	0.01661	381.60	9.5882E+08	7.8155E+05
8971.02	0.01130	0.00503	0.01633	375.18	8.6686E+08	7.3567E+05
9092.25	0.01108	0.00495	0.01603	368.45	7.8040E+08	6.9060E+05
9213.48	0.01086	0.00487	0.01572	361.37	6.9936E+08	6.4636E+05
9334.71	0.01062	0.00478	0.01540	353.92	6.2363E+08	6.0300E+05
9455.94	0.01038	0.00468	0.01506	346.08	5.5310E+08	5.6057E+05
9577.17	0.01012	0.00458	0.01470	337.83	4.8766E+08	5.1912E+05
9698.40	0.00985	0.00447	0.01432	329.14	4.2718E+08	4.7869E+05
9819.63	0.00957	0.00436	0.01392	319.98	3.7153E+08	4.3934E+05
9940.86	0.00927	0.00423	0.01350	310.32	3.2058E+08	4.0114E+05
10062.09	0.00896	0.00410	0.01306	300.14	2.7420E+08	3.6413E+05
10183.32	0.00863	0.00396	0.01259	289.40	2.3222E+08	3.2840E+05
10304.55	0.00829	0.00381	0.01210	278.08	1.9449E+08	2.9400E+05
10425.78	0.00793	0.00365	0.01158	266.12	1.6085E+08	2.6101E+05
10547.01	0.00755	0.00349	0.01103	253.51	1.3112E+08	2.2952E+05
10668.24	0.00714	0.00331	0.01045	240.20	1.0511E+08	1.9959E+05
10789.47	0.00672	0.00312	0.00984	226.15	8.2624E+07	1.7132E+05
10910.70	0.00628	0.00292	0.00920	211.33	6.3462E+07	1.4480E+05
11031.93	0.00581	0.00270	0.00851	195.68	4.7403E+07	1.2013E+05
11153.16	0.00532	0.00248	0.00780	179.16	3.4217E+07	9.7412E+04
11274.39	0.00480	0.00224	0.00704	161.74	2.3660E+07	7.6748E+04
11395.62	0.00425	0.00199	0.00624	143.36	1.5477E+07	5.8254E+04
11516.85	0.00368	0.00172	0.00539	123.96	9.3971E+06	4.2051E+04
11638.08	0.00307	0.00144	0.00450	103.51	5.1351E+06	2.8262E+04
11759.31	0.00243	0.00114	0.00357	81.94	2.3903E+06	1.7021E+04
11880.54	0.00175	0.00082	0.00258	59.20	8.4543E+05	8.4655E+03
12001.77	0.00104	0.00049	0.00153	35.24	1.6615E+05	2.7410E+03
12123.00	0.00029	0.00014	0.00043	9.98	0.0000E+00	0.0000E+00

(2)広野特防区域の新法タンクNo.3の動液圧の計算結果は以下に示す。

D	61000 mm
Н	14562.35 mm
Kh1	0.493
ν3	1.643
ρ	9.50E-07 kg/mm2

H/D	0.238727
分割	100
⊿н	145.6235 mm
g	9.8 m/sec2
Z	2.23E+13 mm3

C00	C01	C02	C03	C04	C05
0.824775	-0.13239	0.693809	-4.24775	5.721618	-2.85775
C10	C12	C12	C13	C14	C15
0.804867	0.270873	-1.3522	0.347311	0.028917	-0.10053

付図4-2 側板の高さにおける動液圧の分布(広野特防区域の新法タンクNo.3)

			P = 2D*Ph(z)*π/4 より			
Z	Ph0(Z)	Ph1(Z)	Ph(Z)	Р	М	Q
(mm)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm)	(N.mm)	(N)
0.00	0.03355	0.02105	0.05461	5232.28	3.1038E+11	5.4464E+07
145.62	0.03350	0.02112	0.05462	5233.83	3.0251E+11	5.3702E+07
291.25	0.03345	0.02118	0.05464	5235.14	2.9474E+11	5.2940E+07
436.87	0.03341	0.02123	0.05465	5236.15	2.8709E+11	5.2177E+07
582.49	0.03337	0.02128	0.05465	5236.75	2.7955E+11	5.1415E+07
728.12	0.03333	0.02132	0.05465	5236.89	2.7212E+11	5.0652E+07
873.74	0.03330	0.02135	0.05465	5236.48	2.6479F+11	4.9889F+07
1019.36	0.03326	0.02138	0.05464	5235.47	2.5759E+11	4.9127E+07
1164.99	0.03322	0.02140	0.05462	5233.78	2.5049E+11	4.8365E+07
1310.61	0.03319	0.02141	0.05460	5231.36	2.4350E+11	4.7603E+07
1456.24	0.03315	0.02142	0.05456	5228.16	2.3662E+11	4.6841E+07
1601.86	0.03310	0.02142	0.05452	5224.13	2.2986E+11	4.6080E+07
1747.48	0.03306	0.02141	0.05447	5219.22	2.2320E+11	4.5320E+07
1893.11	0.03301	0.02140	0.05441	5213.39	2.1666E+11	4.4560E+07
2038.73	0.03296	0.02138	0.05434	5206.60	2.1022E+11	4.3801E+07
2184.35	0.03291	0.02135	0.05426	5198.83	2.0390E+11	4.3044E+07
2329.98	0.03285	0.02132	0.05417	5190.03	1.9769F+11	42287F+07
2475.60	0.03278	0.02128	0.05406	5180.18	1.9158F+11	4.1532F+07
2621.22	0.03271	0.02124	0.05395	5169.26	1.8559E+11	4.0779E+07
2766.85	0.03264	0.02119	0.05382	5157.25	1.7971F+11	4.0027F+07
2912.47	0.03256	0.02113	0.05369	5144.13	1.7393F+11	3.9277F+07
3058.09	0.03247	0.02107	0.05354	5129.87	1.6827F+11	3.8529F+07
3203.72	0.03238	0.02100	0.05338	5114.48	1.6271F+11	3.7783F+07
3349.34	0.03228	0.02092	0.05320	5097.94	1.5726F+11	3,7039F+07
3494.96	0.03218	0.02084	0.05302	5080.24	1.5192F+11	3.6298F+07
3640.59	0.03207	0.02076	0.05282	5061.37	1.4669F+11	3.5560F+07
3786.21	0.03195	0.02066	0.05261	5041.34	1.4157E+11	3.4824E+07
3931.83	0.03182	0.02057	0.05239	5020.14	1.3655E+11	3.4091E+07
4077.46	0.03169	0.02046	0.05216	4997.77	1.3164E+11	3.3362E+07
4223.08	0.03156	0.02036	0.05191	4974.23	1.2683E+11	3.2636E+07
4368.71	0.03141	0.02024	0.05166	4949.53	1.2213E+11	3.1913E+07
4514.33	0.03126	0.02012	0.05139	4923.66	1.1754E+11	3.1194E+07
4659.95	0.03111	0.02000	0.05110	4896.65	1.1305E+11	3.0479E+07
4805.58	0.03094	0.01987	0.05081	4868.49	1.0866E+11	2.9768E+07
4951.20	0.03077	0.01973	0.05050	4839.19	1.0438E+11	2.9062E+07
5096.82	0.03060	0.01959	0.05019	4808.76	1.0020E+11	2.8359E+07
5242.45	0.03042	0.01944	0.04986	4777.22	9.6117E+10	2.7661E+07
5388.07	0.03023	0.01929	0.04952	4744.56	9.2140E+10	2.6968E+07
5533.69	0.03003	0.01913	0.04916	4710.81	8.8263E+10	2.6279E+07
5679.32	0.02983	0.01897	0.04880	4675.97	8.4485E+10	2.5596E+07
5824.94	0.02962	0.01880	0.04843	4640.06	8.0807E+10	2.4918E+07
5970.56	0.02941	0.01863	0.04804	4603.08	7.7228E+10	2.4245E+07
6116.19	0.02919	0.01845	0.04764	4565.05	7.3746E+10	2.3577E+07
6261.81	0.02897	0.01827	0.04723	4525.98	7.0361E+10	2.2915E+07
6407.43	0.02873	0.01808	0.04682	4485.88	6.7072E+10	2.2259E+07
6553.06	0.02850	0.01789	0.04639	4444.75	6.3877E+10	2.1609E+07
6698.68	0.02825	0.01769	0.04595	4402.62	6.0778E+10	2.0964E+07
6844.30	0.02801	0.01749	0.04550	4359.48	5.7771E+10	2.0326E+07
6989.93	0.02775	0.01728	0.04504	4315.35	5.4857E+10	1.9695E+07
7135.55	0.02749	0.01707	0.04457	4270.23	5.2035E+10	1.9070E+07
7281.17	0.02723	0.01685	0.04408	4224.12	4.9303E+10	1.8451E+07
7426.80	0.02696	0.01663	0.04359	4177.04	4.6660E+10	1.7839E+07
7572.42	0.02669	0.01641	0.04309	4128.98	4.4106E+10	1.7235E+07
7718.05	0.02640	0.01618	0.04258	4079.95	4.1640E+10	1.6637E+07
7863.67	0.02612	0.01594	0.04206	4029.94	3.9260E+10	1.6047E+07
8009.29	0.02583	0.01570	0.04153	3978.95	3.6966E+10	1.5463E+07
8154.92	0.02553	0.01545	0.04098	3926.99	3.4756E+10	1.4888E+07

付表4-2 動液圧の計算結果(広野特防区域の新法タンクNo.3)

8300.54	0.02523	0.01520	0.04043	3874.03	3.2630E+10	1.4320E+07
8446.16	0.02492	0.01495	0.03987	3820.08	3.0585E+10	1.3759E+07
8591.79	0.02460	0.01469	0.03929	3765.11	2.8622E+10	1.3207E+07
8737.41	0.02428	0.01443	0.03871	3709.13	2.6738E+10	1.2663E+07
8883.03	0.02396	0.01416	0.03811	3652.10	2.4933E+10	1.2127E+07
9028.66	0.02362	0.01389	0.03751	3594.01	2.3205E+10	1.1599E+07
9174.28	0.02328	0.01361	0.03689	3534.85	2.1554E+10	1.1080E+07
9319.90	0.02294	0.01333	0.03626	3474.58	1.9978E+10	1.0570E+07
9465.53	0.02258	0.01304	0.03562	3413.17	1.8475E+10	1.0068E+07
9611.15	0.02222	0.01275	0.03497	3350.59	1.7045E+10	9.5760E+06
9756.77	0.02185	0.01245	0.03430	3286.81	1.5685E+10	9.0927E+06
9902.40	0.02147	0.01215	0.03362	3221.79	1.4396E+10	8.6188E+06
10048.02	0.02108	0.01185	0.03293	3155.48	1.3174E+10	8.1545E+06
10193.65	0.02069	0.01154	0.03223	3087.84	1.2020E+10	7.6999E+06
10339.27	0.02028	0.01122	0.03151	3018.82	1.0931E+10	7.2552E+06
10484.89	0.01987	0.01090	0.03077	2948.35	9.9063E+09	6.8207E+06
10630.52	0.01944	0.01058	0.03002	2876.39	8.9439E+09	6.3966E+06
10776.14	0.01900	0.01025	0.02925	2802.87	8.0425E+09	5.9831E+06
10921.76	0.01855	0.00992	0.02847	2727.71	7.2005E+09	5.5804E+06
11067.39	0.01808	0.00958	0.02767	2650.85	6.4164E+09	5.1888E+06
11213.01	0.01760	0.00924	0.02684	2572.20	5.6885E+09	4.8085E+06
11358.63	0.01711	0.00889	0.02600	2491.69	5.0151E+09	4.4398E+06
11504.26	0.01660	0.00854	0.02514	2409.23	4.3945E+09	4.0830E+06
11649.88	0.01608	0.00818	0.02426	2324.72	3.8251E+09	3.7383E+06
11795.50	0.01553	0.00782	0.02336	2238.05	3.3049E+09	3.4060E+06
11941.13	0.01497	0.00746	0.02243	2149.14	2.8321E+09	3.0866E+06
12086.75	0.01439	0.00709	0.02148	2057.86	2.4049E+09	2.7803E+06
12232.37	0.01379	0.00671	0.02050	1964.11	2.0214E+09	2.4874E+06
12378.00	0.01316	0.00633	0.01949	1867.75	1.6795E+09	2.2084E+06
12523.62	0.01252	0.00594	0.01846	1768.66	1.3772E+09	1.9437E+06
12669.24	0.01184	0.00555	0.01739	1666.71	1.1123E+09	1.6935E+06
12814.87	0.01114	0.00515	0.01630	1561.75	8.8282E+08	1.4585E+06
12960.49	0.01042	0.00475	0.01517	1453.63	6.8643E+08	1.2389E+06
13106.12	0.00966	0.00435	0.01401	1342.21	5.2083E+08	1.0353E+06
13251.74	0.00887	0.00393	0.01281	1227.33	3.8369E+08	8.4824E+05
13397.36	0.00805	0.00352	0.01157	1108.80	2.7255E+08	6.7814E+05
13542.99	0.00720	0.00309	0.01030	986.46	1.8490E+08	5.2558E+05
13688.61	0.00631	0.00267	0.00898	860.13	1.1816E+08	3.9113E+05
13834.23	0.00538	0.00223	0.00761	729.62	6.9627E+07	2.7538E+05
13979.86	0.00441	0.00179	0.00621	594.73	3.6547E+07	1.7895E+05
14125.48	0.00340	0.00135	0.00475	455.25	1.6055E+07	1.0250E+05
14271.10	0.00235	0.00090	0.00325	310.97	5.1908E+06	4.6707E+04
14416.73	0.00125	0.00044	0.00169	161.68	8.9501E+05	1.2292E+04
14562.35	0.00009	-0.00002	0.00007	7.14	0.0000E+00	0.0000E+00