南海トラフ想定地震波形に対する屋外貯蔵タンクの解析結果について

1. 南海トラフ地震に対する屋外貯蔵タンク耐震安全性確認解析

図 1.1 に示す手順により、南海トラフ地震に対する屋外貯蔵タンクの耐震安全性を調査した。 本調査は以下の3種類の解析により実施した。(各解析の手順/方法は資料 2-4-1 に同じ)

① 質点系モデルによる側板下端部の浮き上がり解析

② 2次元軸対称モデルによる浮き上がりの繰返し挙動を考慮した隅角部の疲労損傷度評価解析

③ 3次元シェルモデルによる底板浮き上がり時の側板の座屈強度評価解析

図 1.1 南海トラフ地震に対する屋外貯蔵タンク耐震安全性確認解析の流れ

2. 代表タンク

2.1 検討対象とするタンク容量

特定屋外タンク貯蔵所のタンクの全国の容量別基数は、図 2.1.1のとおりの分布となっ ている。これらのデータから、各容量帯別の中間値の容量のタンクを代表モデルとして選 定した。なお、最大容量である 10万 KL~20万 KLの区分については、地上に設置された 屋外タンク貯蔵所のタンクが概ね 10万 KLのものが最大級であることから、10万 KL で代 表させた。また、東北地方太平洋沖地震再現波形による検討において浮き上がりのあった 仙台・塩釜特防区域の旧法タンク No.4 については、代表タンクモデル番号 1 と同規模であ ることから検討対象には含めないが、広野特防区域の新法タンク No.3 については比較検討 のため検討対象とした(旧法タンク 5 種類、新法タンク 6 種類 計 11 種類)。これらの容量 をもつ旧法・新法での代表タンクの板厚、材質等は入手データに基づき、表 2.1.1、表 2.1.2 のとおりとした。

※危険物規制事務統計表より。

 $\mathbf{2}$

番号	容量 [KL]	屋根形式	内径 [m]	側板高さ [m]	1/3 液高の 側板厚 [mm]	アニュラ 板厚 [mm]	板の材質 (側板, アニュラ板)
1	2,500	固定	15.5	15.1	8	9	SS41, SM41C
2	7,500	固定	29.0	12.2	12	12	SS41, SS41
3	30,000	浮き屋根	45.1	21.3	13	12	HW50, SM400C
4	75,000	浮き屋根	69.8	21.4	23	12	HW50, HW50
5	100,000	浮き屋根	83.1	20.0	25	12	HT60, SPV450Q

表 2.1.1 代表タンクモデル(旧法)

表 2.1.2 代表タンクモデル(新法)

番号	容量 [KL]	屋根形式	内径 [m]	側板高さ [m]	1/3 液高の側 板厚 [mm]	アニュラ 板厚 [mm]	板の材質 (側板, アニュラ板)
1'	2,500	固定	15.5	15.2	9	12	SS400, SM400C
2'	7,500	固定	29.1	12.9	13	12	SS400, SM41C
3'	30,000	浮き屋根	45.9	23.0	14	15	SPV490Q, SPV490Q
4'	50,000	浮き屋根	61.0	21.0	20	18	SPV50, SPV50
5'	75,000	浮き屋根	69.8	21.9	23	18	SPV50, SPV50
6'	100,000	浮き屋根	80.0	22.0	27	21	HW50, SPV50

2.2 内容液の貯蔵率及び比重

<内容液の貯蔵率>

安全側の評価*となるよう、質点系解析においては、内容液の貯蔵率を100%として解 析を実施した。また、貯蔵率の変化による応答解析での浮き上がり量の変化を確認するた めに質点系解析において浮き上がりが大きなタンクを対象として貯蔵率を90%、80% と変化させた条件でも解析を行った。

* 質点系モデルの場合、貯蔵量の減少による液の有効質量の減少によって、地震加速度 による慣性力(加速度と貯蔵物の有効質量との積)が小さくなるため、地震応答(応 答変位と浮き上がり変位を含む)は減少する傾向となる。 <内容液の比重>

特定屋外タンク貯蔵所のタンクについて、油種別の基数は表 2.2.1 のようになっており、 特にそれらの油種は石油系ものが大半を占めている。また、主な油種について比重を示す と表 2.2.2 のとおりである。タンクの設計においては、安全側の設計となるよう内容液の最 大実比重以上(新法タンクについては最大実比重が 1.0 を満たない場合は 1.0)を用いてい るが、今回の検討においては、南海トラフ地震で想定される最大規模の低頻度の地震に対 する耐震安全性を確認するという目的、及び重質分を含む原油や重油の比重が最大 0.95 で あることから、内容液の比重は 0.95 を上限として解析を行った。また、内容液の比重の変 化による応答解析での浮き上がり量の変化を確認するために質点系解析において浮き上が りが大きなタンクを対象として内容液比重を 0.85(軽質分を中心とするナフサ、ガソリン、 灯油及び軽油を想定)とした条件でも解析を行った。

					第4	類				笛 / 粨	
	原油	ナフ サ	ガソ リン	灯油	軽油	重油	第4石 油類	アルコ ール類	その他	另4類 以外	計
1000KL 以上 5000KL 未満	46	68	504	321	319	726	225	93	1,296	65	3,663
5000KL 以上 10000KL 未満	29	119	234	193	202	351	39	22	339	13	1,541
10000KL以上 50000KL未満	164	101	163	171	150	478	13	15	157	1	1,413
50000KL以上 100000KL未満	331	33	12	16	13	19	0	1	14	0	439
100000KL以上 200000KL未満	405	4	1	1	2	0	0	0	1	0	414
計	975	325	914	702	686	1,574	277	131	1,807	79	7,470

表 2.2.1 油種別屋外タンク貯蔵所のタンク基数(平成 26 年 3 月末現在)

表 2.2.2 主な油種の比重

油種名	原油	ナフサ	ガソリン	灯油	軽油	重油
比重	$0.80 \sim 0.95$	$0.65 \sim 0.76$	0.73~0.76	0.78~0.80	0.80~0.84	0.83~0.96
割合	13%	4%	12%	9%	9%	21%

※原油の比重は、石油学会 HP より

※ナフサの比重は、石油便覧(JX 日鉱日石エネルギー)より ※その他の比重は、石油連盟 HP より 3. 質点系モデルによる側板下端部の浮き上がり解析

代表的な旧法屋外貯蔵タンク5基、新法屋外貯蔵タンク6基について非線形ばね特性を 有する質点系モデルを作成し、南海トラフ地震の検討対象として選択したA地区、B地区 及びE地区での想定地震波形(3地表波×2方向の合計6本)を作用させる地震応答解析を実施 した。

3.1 解析モデル・条件

<質点系モデルの設定>

代表的な旧法5基、新法6基のタンクの質点系モデルの諸元は添付資料1の諸元計算シートに示す。解析条件は、東北地方太平洋沖地震再現波形に対する屋外貯蔵タンクの解析 と同様とした(減衰比一律0.15、側板重量等(側板、側板の付属品及び固定屋根の重量を含 む)を考慮に入れた保有水平耐力Qyを使用)。

<入力地震波>

入力に使用したA地区、B地区、E地区の想定地震波形の加速度応答スペクトル図を図 3.1.1 から図 3.1.3 に示す。また、タンク周期近傍のピークの周期及びその応答加速度も同 図に記す。

図 3.1.1 A地区の想定地震波形の加速度応答スペクトル(減衰比:0.15)

図 3.1.2 B地区の想定地震波形の加速度応答スペクトル(減衰比:0.15)

図 3.1.3 E地区の想定地震波形の加速度応答スペクトル(減衰比:0.15)

3.2 解析結果

各タンクの浮き上がり変位と浮き上がり回数の算定結果一覧を表 3.2.1 から表 3.2.3 に示 す。

		哈李山汉	容量	A地区	EW	A地区	٧S
ダング	内容物	灯彫内1空		最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数
金 万		(m)	(KL)	(cm)	正負合計	(cm)	正負合計
旧法No.1		15.5	2500	23.4	161	5.8	133
旧法No.2	重油/原油	29.0	7500	8.2	27	12.1	34
旧法No.3	相当	45.1	30000	104.3	67	47.3	65
旧法No.4	比重:0.95	69.8	75000	91.6	13	13.8	3
旧法No.5		83.1	100000	39.5	8	6.0	4

表 3.2.1 A地区想定地震波形による浮き上がり解析結果

b		的共由汉	の旦	A地区	EW	A地区!	٧S
ダンク	内容物	<u></u> 灯殿内住		最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数
留丂		(m)	(KL)	(cm)	正負合計	(cm)	正負合計
新法No.1		15.5	2500	22.3	117	9.7	100
新法No.2	重油/原油	29.1	7500	4.8	20	7.3	24
新法No.3	相当	43.9	30000	77.5	35	13.6	41
新法No.4	比重:0.95	61.0	50000	4.9	3	4.6	2
新法No.5		69.8	750000	37.3	7	6.6	6
新法No.6		80.0	100000	24.6	1	1.7	1

表 3.2.2 B地区想定地震波形による浮き上がり解析結果

<i>b</i> . <i>b</i>		贮井山汉	<u> </u>	B地区	EW	B地区	٧S
タンク	内容物	町劇内1空		最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数
留方		(m)	(RL)	(cm)	正負合計	(cm)	正負合計
旧法No.1		15.5	2500	9.8	70	13.7	49
旧法No.2	重油/原油	29.0	7500	0	0	0.9	3
旧法No.3	相当	45.1	30000	31.6	45	48.3	22
旧法No.4	比重:0.95	69.8	75000	5.9	12	33.7	20
旧法No.5		83.1	100000	0	0	19.1	2

		哈莱古汉	<u> </u>	B地区	EW	B地区I	NS
メンク	内容物	貯 蔵 内住	谷 (KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数
留方		(m)	(KL)	(cm)	正負合計	(cm)	正負合計
新法No.1		15.5	2500	0	0	11.7	30
新法No.2	重油/原油	29.1	7500	0	0	0.5	2
新法No.3	相当	43.9	30000	8.4	18	33.7	11
新法No.4	比重:0.95	61.0	50000	0	0	0	0
新法No.5		69.8	750000	0	0	16.7	2
新法No.6		80.0	100000	0	0	8.9	1

<i>b</i> . <i>b</i>		哈井山汉	容量 -	E地区	EW	E地区(NS
- タンク - 番号	内容物	灯 咸 内 1全 (m)	谷里 (KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数
-				(cm)	止其合計	(cm)	止其合計
旧法No.1		15.5	2500	10.4	34	0	0
旧法No.2	重油/原油	29.0	7500	0	0	0	0
旧法No.3	相当	45.1	30000	33.9	16	18.5	17
旧法No.4	比重:0.95	69.8	75000	7.1	2	0	0
旧法No.5		83.1	100000	0	0	0	0

表 3.2.3 E地区想定地震波形による浮き上がり解析結果

b >. b		哈莱古汉	一一日	E地区	EW	E地区 I	NS
タンク エロ	内容物	灯彫内住	谷重	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数
留 亏		(m)	(KL)	(cm)	正負合計	(cm)	正負合計
新法No.1		15.5	2500	0	0	0	0
新法No.2	重油/原油	29.1	7500	0	0	0	0
新法No.3	相当	43.9	30000	9.3	10	0	0
新法No.4	比重:0.95	61.0	50000	0	0	0	0
新法No.5]	69.8	750000	0	0	0	0
新法No.6		80.0	100000	0	0	0	0

各対象地区の想定地震波により、最大浮き上がり変位の大きいタンクに着目し、それぞれのタンクの最大応答変位、最大応答加速度及び加速度の応答倍率を表 3.2.4 に示す。

タンク 番号	地区 地震波	方向	最大地震加速度 Su max (cm/s/s)	D/H1	降伏変位 ∆y (cm)	最大応答変位 ∆ max (cm)	最大浮き上がり変位 δ max (cm)	最大応答加速度 Sa max (cm/s/s)	加速度 応答倍率	タンク 周期 Tb (s)
	Α	EW	767.1			18.2	104.3	755.6	0.99	
旧法No.3	В	EW	424	5.09	0.76	6.0	31.6	493.4	1.16	0 2 2 0 0
(30000KL)	В	NS	532.1	0.90	0.70	8.8	48.3	525	0.99	0.3300
	Е	EW	490.6			6.4	33.9	504.9	1.03	
旧法No.4	Α	EW	767.1	0.45	1 0 0	11.6	91.6	951.5	1.24	0.2600
(75000KL)	В	NS	532.1	9.40	1.00	5.4	33.7	766.3	1.44	0.3008
旧法No.5 (100000KL)	А	EW	767.1	11.91	3.04	6.4	39.5	1003.1	1.31	0.389
新法No.3 (30000KL)	А	EW	767.1	5.94	1.19	14.2	77.5	940.3	1.23	0.3368
新法No.5 (75000KL)	А	EW	767.1	9.20	2.50	6.6	37.3	989.2	1.29	0.367
新法No.6 (100000KL)	A	EW	767.1	10.30	3.45	5.9	24.6	1096.3	1.43	0.3882

表 3.2.4 各想定地震波形により大きな浮き上がり変位を生じたタンクの応答値一覧

考察:

- (1) A地区 EW 方向の想定地震波形は加速度応答スペクトルで、特に 0.3 秒というタンクの 固有周期付近の応答加速度が最も大きいため、本浮き上がり解析ではこの地震波形によ るタンクの応答値が一番大きい。次に大きいのはB地区の NS 方向の想定地震波形の応 答値であり、一番応答値が小さい地震波形はE地区の想定地震波形である。
- (2) A地区 EW 方向の想定地震波形により大きな応答が発生したタンクは次の7基である。 旧法タンク: No.3(3 万 KL)、No.4 (7 万 KL)、No.5(10 万 KL) 新法タンク: No.3(3 万 KL)、No.5(7 万 KL)、No.6(10 万 KL)
 この6基のタンクのバルジング周期は0.3368 秒から0.3882 秒までの範囲内であり、A 地区 EW 方向の想定地震波形の加速度応答スペクトル曲線において、タンクの固有周期 がピーク(周期:0.3746 秒)に接近しているため、応答が大きくなっているものと考えら れる。(図 3.1.1 参照)。

応答が大きくなった3基の旧法タンクはアニュラ板の板厚が12mm であり、他のタ ンクと比べアニュラ板が薄いという共通の特徴をもつ。このため、浮き上がりやすくな っていると考えられる。特に旧法タンク No.3 は、アニュラ板の板厚が薄いことだけで はなく、アニュラ板材料の降伏強度(=245 N/mm²)が他の2基のタンクより小さいため、 最も応答が大きいタンクとなっていると推察される。

(3) A地区 NS 方向の想定地震波形の加速度応答スペクトル曲線では、周期 0.2264 秒にピークがあり、タンクの固有周期がこれに近いと大きな浮き上がりを生じるのでないかと 懸念された。そこで別途、固有周期が近いタンクを選定してA地区 NS 方向の想定地震 波形による応答解析を実施して、その浮き上がり変位を確認した。

対象タンク: 仙台 No.7 タンク(1 万 KL)、貯蔵量 100%、内容物比重 0.95 (周期 0.2348 秒)

浮き上がり解析結果: 20.1 cm

計算された浮き上がり変位はA地区 EW 方向の想定地震波形による旧法タンク No.3(3 万 KL)、の応答値よりも小さい値であった。

(4) B 地区 NS 方向の想定地震波形により大きな応答が発生したタンクは次の3基である。

旧法タンク: No.3(3 万 KL)、No.4 (7 万 KL)

新法タンク:No.3(3 万 KL)

これら3基のタンクのバルジング周期は0.3368 秒から0.3717 秒までの範囲内であり、 B地区の NS 方向の想定地震波形の加速度応答スペクトル曲線のピーク(周期:0.3939 秒)にタンクの固有周期が接近しているため応答が大きくなっているものと考えられる。 (図 3.2.3 参照)。 (5) 旧法タンク、新法タンクはそれぞれA地区想定地震波形に対して最も浮き上がっており、 以下2基のタンクについて疲労損傷、側板の座屈を確認する。

> 旧法タンク:No.3(3 万 KL) 新法タンク:No.3(3 万 KL)

- (6) B地区及びE地区の想定地震波形に対して、旧法タンク、新法タンクとも、A地区に比 べ地震時の浮き上がり量は少なくなっている。
- (7) これらのタンクの地震応答は最大貯蔵量(100%)と最大液比重(0.95)で算定されたものであるため、浮き上がりの応答値を大きめに想定するかなり保守的な設定と考えている。

質点系モデルの場合、貯蔵量の減少による液の有効質量の減少によって、地震加速度に よる慣性力(加速度と液の有効質量との積)が小さくなるため、地震応答(応答変位と 浮き上がり変位を含む)は減少する傾向となる。従って、最大貯蔵量(100%)と最大液比 重(0.95)で算定される場合、質点系モデルの地震応答は最大となると考えられる。

貯蔵量を90%、80%、液比重を0.85と仮定した場合、検討対象の旧法タンクNo.3(3万KL)の地震応答は低減される傾向となった(表3.2.5と図3.2.4参照)。この調査結果から、 同規模タンクでも貯蔵量や比重が減少した場合、A地区EW方向の想定地震波のような 強い地震に対しても浮き上がり量が減少することが推測される。

他の地震波形、例えば、B地区 NS 方向の想定地震波形が作用する場合でも、貯蔵量や 比重の減少によってタンクの浮き上がり量も低減すると推測される。

旧法タンク	液比重	貯蔵量	D/H1	降伏変位	最大応答変位	最大浮き上がり変位	タンク周期
番号		(%)		∆y(cm)	∆max (cm)	δ max (cm)	Tb (sec)
		100	5.98	0.76	18.2	104.3	0.3388
	0.95	90	6.73	0.85	14.8	94.2	0.3125
2		80	7.68	0.97	10.6	73.9	0.2865
3		100	5.98	0.73	17.3	99.1	0.3208
	0.85	90	6.73	0.81	12.5	78.4	0.2959
		80	7.68	0.93	9.2	63.4	0.2713

表 3.2.5 貯蔵量と液比重変更の調査結果 (A地区 EW 方向の想定地震波形)

図 3.2.4 貯蔵量と液比重の変化による浮き上がり変位の低減傾向に関する調査結果

解析したタンクの中で最も浮き上がりの大きかった旧法タンク No.3の結果詳細を代表と し、変位についての解析結果を図 3.2.5 から図 3.2.7 に記載する。また、図 3.2.8 には応答 解析における復元力の履歴を示す。図 3.2.5 は EW 方向の地震波形を作用させたときの、質 点モデルの水平 E 方向への応答変位(相対変位)を+(プラス)、W 方向への応答変位を-(マ イナス)で示している。また、当該タンクにおいて、浮き上がりが始まると判定する水平方 向の変位 (Δ_y) は±0.76 cm と算定され、図中に緑の線で表示している(この緑線を越える ときにタンクは浮き上がると判定)。また、水平方向の応答変位からタンクの浮き上がり変 位を算定した結果を図 3.2.6 に示す。この図においては、タンク W 側の浮き上がり量を+(プ ラス)、タンク E 側の浮き上がり量を-(マイナス)で示している (注:沈み込み量ではない)。

図 3.2.5 旧法タンク No.3 の質点モデルの応答変位時刻歴(A地区想定地震波形 EW)

図 3.2.6 旧法タンク No.3 の質点モデルの浮き上がり変位時刻歴(A地区想定地震波形 EW)

図 3.2.7 旧法タンク No.3 の質点モデルの浮き上がり変位と回数のヒストグラム (A 地区想定地震波形 EW)

図 3.2.8 旧法タンク No.3 の質点モデルのばね復元力履歴図(A地区想定地震波形 EW)

4. 2次元軸対称モデルによる隅角部の疲労損傷度評価

3.2 節に示す質点系モデルによる浮き上がり変位と回数の解析結果より、浮き上がり変位 の大きな旧法タンク No.3 及び新法タンク No.3 が選定され、この2基のタンクの浮き上が り時に隅角部に発生するひずみ量及び疲労損傷に対する強度を確認するために、有限要素 法を用いた静的応力解析を行った。

この2基のタンクの疲労損傷度評価結果を以下に示す。

4.1 解析モデル

4.1.1 旧法タンクの解析モデル

旧法タンクNo.3(公称容量30000 KL)の隅角部を対象として解析モデルを作成した。タンクの主な寸法と諸元を表4.1.1.1に示す。

旧法タンク No. 3					
許可容量	30000 KL				
タンク内径	4510	0 mm			
タンク高さ	2127	0 mm			
液面高さ	1880	2 mm			
液比重	0.	95			
側板の板厚(mm)と材料	-				
1段	18	HW50			
2段	15	HW50			
3段	13	HW50			
4段	11	HW50			
5段	9	HW50			
6段	8	HW50			
7段	8	HW50			
8段	8	SS41			
9段	8	SS41			
アニュラ板厚(mm)と材料	12	SM400C			
底板の板厚(mm)と材料	8 SS41				
屋根形式	シングルデッキ浮屋根				
隅角部隅肉溶接部脚長					
W1	12	mm			
W2	12 mm				

表4.1.1.1 解	『析対象タン	クの主な	寸法と諸元
------------	--------	------	-------

隅角部モデル化範囲を図4.1.1.1(a)、隅角部の一部の要素分割を図4.1.1.1(b)に示す。図 4.1.1.1(a)の左端A端部の半径方向変位を拘束し、同図上端B端部は強制変位を与える位置と した。隅角部溶接部近傍はメッシュ分割を約2mmとした。

なお、図に示した寸法はモデル上のA端部とB端部までの長さである。

地盤との接触部には非線形ばねを設置し、圧縮方向に294N/cm³の力が生じるように設定した。

(b) 隅角部の拡大図

図4.1.1.1 隅角部の解析モデル

<解析条件>

資料2-3の3.1節で示した解析方法に従い、以下の条件で解析を行った。 荷重:B端部(円周上)に側板重量等(=2764.4 kN)を負荷する。 液圧:アニュラ板に一様分布の静液圧(=0.18 N/mm²)を作用させた。 側板には高さに応じて液圧(静液圧)を作用させた。

強制変位: 表4.1.1.2に示す片側の浮き上がり変位を強制的に付与する。

繰返しサイクル:片側の浮き上がり回数の21回と設定した(最大の浮き上がり変位を含む10mm以上の浮き上がり変位のみ考慮する場合の回数)。

表4.1.1.2 各サイクルにおける浮き上がり変位

サイクル	浮き上がり変位
No.	δi
	(mm)
1	24.4
2	33.8
3	38.8
4	65
5	76
6	102.8
7	16.9
8	20.7
9	247
10	336.6
11	25.9
12	51.4
13	1042.7
14	746.3
15	281.2
16	195.2
17	15.7
18	92.8
19	18.7
20	64.4
21	28.5

<材料の物性値>

1段から7段までの側板の材料はHW50(SPV450と相当する)、8段と9段の側板の材料は SS41、アニュラ板の材料はSM400C、底板の材料はSS41であり、それぞれの材料の物性値 は表4.1.1.3.に示すとおりである。また、塑性後の応力-ひずみ特性は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用し た(図4.1.1.3参照)。硬化則には移動硬化則を使用した。

表4.1.1.3 オ	オ料の物性値	ī
------------	--------	---

		HW50	SS41/SM400C
降伏強度 (N/mm ²)	Sy	490	245
引張強度(N/mm ²)	Su	610	400
ポアソン比	ν	0.3	0.3
ヤング率 (N/mm ²)	E	205939.7	205939.7

図4.1.1.2 弾塑性解析入力用の応力—ひずみカーブ

4.1.2 新法タンクNo.3の解析モデル

新法タンクNo.3 (公称容量30000 kL)の隅角部を対象として解析モデルを作成した。タンクの主な寸法と諸元を表4.1.2.1に示す。

新法タン	ンク No.3	
許可容量		30000 KL
タンク内径	2	45900 mm
タンク高さ	4	23000 mm
液面高さ		19240 mm
液比重		0.95
側板の板厚(mm)と材料	-	
1段	21	SPV490Q
2段	17	SPV490Q
3段	14	SPV490Q
4段	12	SPV490Q
5段	9	SPV490Q
6段	9	SPV490Q
7段	9	SS400
8段	9	SS400
アニュラ板厚(mm)と材料	15	SPV490Q
底板の板厚(mm)と材料	12	SS400
屋根形式	シングルデ	ッキ浮屋根
隅角部隅肉溶接部脚長		
W1		12 mm
W2		12 mm

表4.1.2.1 解析対象タンクの主な寸法と諸元

隅角部モデル化範囲を図4.1.2.1(a)、隅角部の一部の要素分割を図4.1.2.1(b)に示す。図 4.1.2.1(a)の左端A端部の半径方向変位を拘束し、同図上端B端部は強制変位を与える位置と

した。隅角部溶接部近傍のメッシュ分割サイズは約2mmとした。

なお、図に示した寸法はモデル上のA端部とB端部までの長さである。

地盤との接触部には非線形ばねを設置し、圧縮方向に294N/cm³の力が生じるように設定した。

<解析条件>

資料2-3の3.1節で示した解析方法に従い、以下の条件で解析を行った。 荷重:B端部(円周上)に側板重量等(=3180 kN)を負荷する。 液圧:アニュラ板に一様分布の静液圧(=0.18 N/mm²)を作用させた。

側板には高さに応じて液圧(静液圧)を作用させた。 強制変位: 表4.1.2.2に示す片側の浮き上がり変位を強制的に付与する。 繰返しサイクル:片側の浮き上がり回数の14回と設定した(最大の浮き上がり変位を含

む10mm以上の浮き上がり変位のみ考慮する場合の回数)。

表4.1.2.2 各サイクルにおける浮き上がり変位

サイクル	浮上り変位
No.	(mm)
1	12.6
2	80.8
3	10.2
4	14.6
5	10.3
6	83.4
7	91.1
8	23.7
9	526.9
10	775.3
11	382.8
12	174.0
13	28.6
14	18.6

<材料の物性値>

1段から6段までの側板の材料はSPV490Q、7段と8段の側板の材料はSS400、アニュラ板の材料はSPV490Q、底板の材料はSS400であり、それぞれの材料の物性値は表4.1.2.3に示 すとおりである。また、塑性後の応力-ひずみ特性は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用した(図4.1.2.3参 照)。硬化則には移動硬化則を使用した。

表4.1.2.3 材料の物性値

		SPV490Q	SS400
降伏強度 (N/mm ²)	Sy	490	245
引張強度(N/mm ²)	Su	610	400
ポアソン比	ν	0.3	0.3
ヤング率 (N/mm ²)	Е	205939.7	205939.7

図4.1.2.3 弾塑性解析入力用の応力—ひずみカーブ

4.2 解析結果

2基の対象タンクの弾塑性ひずみ解析結果を以下に示す。

4.2.1 旧法タンクNo3の解析結果

<浮き上がり変位と抵抗力の関係>

各サイクルの参照点の浮き上がり変位とB端部に強制変位をかけた時の算定された軸方 向の抵抗力(B端部の断面上節点力の合計値、この値をnDで割ると単位長さあたりの浮き 上がり抵抗力となる)の数値を表4.2.1.1に、その関係を線図で表示すると図4.2.1.1に示す とおりである。(変位出力参照点の位置:図4.2.1.2(b)を参照)

サイクル	浮き上がり	抵抗力	浮き上がり変位	
No.	位置	(N)	(mm)	
			参照点	B端
	開始	0.0E+00	-2.2	-2.9
1	最高	1.6E+07	25.0	24.4
	最低	8.0E+06	0.6	0.0
2	最高	1.6E+07	34.5	33.8
	最低	5.9E+06	0.6	0.0
3	最高	1.6E+07	39.4	38.8
	最低	4.8E+06	0.6	0.0
4	最高	1.8E+07	65.7	65.0
	最低	3.8E+05	0.7	0.0
5	最高	1.8E+07	76.7	76.0
	最低	-2.0E+05	0.7	0.0
6	最高	1.9E+07	103.6	102.8
	最低	-1.1E+06	0.7	0.0
7	最高	1.0E+07	17.5	16.9
	最低	-1.1E+06	0.7	0.0
8	最高	1.1E+07	21.3	20.7
	最低	-1.1E+06	0.7	0.0
9	最高	2.7E+07	248.5	247.0
	最低	-5.8E+06	0.7	0.0
10	最高	3.4E+07	339.6	336.6
	最低	-8.6E+06	0.8	0.0
11	最高	1.1E+07	26.6	25.9
	最低	-8.6E+06	0.8	0.0
12	最高	1.4E+07	52.1	51.4
	最低	-8.5E+06	0.8	0.0
13	最高	7.8E+07	1078.5	1042.7
	最低	-1.7E+07	0.5	0.0
14	最高	5.9E+07	765.2	746.3
	最低	-2.0E+07	0.6	0.0
15	最高	2.4E+07	283.3	281.2
	最低	-2.1E+07	0.6	0.0
16	最高	1.9E+07	196.3	195.2
	最低	-2.2E+07	0.6	0.0
17	最高	5.2E+06	16.1	15.7
	最低	-2.2E+07	0.6	0.0
18	最高	1.4E+07	93.4	92.8
	最低	-2.2E+07	0.6	0.0
19	最高	7.9E+06	19.2	18.7
	最低	-2.2E+07	0.6	0.0
20	最高	1.3E+07	65.0	64.4
	最低	-2.1E+07	0.6	0.0
21	最高	1.0E+07	29.0	28.5
	最低	-2.1E+07	0.6	0.0

表4.2.1.1 浮き上がり変位と抵抗力の関係

図4.2.1.1 浮き上がり変位とB端部の算定された抵抗力の関係

<隅角部隅肉溶接部のひずみ振幅>

浮き上がり変位を与えて、隅角部を浮上らせる静的応力解析結果の、隅角部隅肉溶接部 近傍の注目点(A点、B点とC点、3つの点の位置を図4.2.1.2に示す)に発生した全ひずみ と全ひずみ振幅を表4.2.2に示す。A点は隅肉溶接部止端部、B点はA点から2mm内側のア ニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最も側板に近い位置)で あり、両点の半径方向全ひずみを& とする。C点は側板内面の止端部であり、その鉛直方向 ひずみを& とする。また、全ひずみ振幅はAer等とする。21サイクルにおける各点の浮き上 がり変位とひずみとの関係線図を図4.2.1.3から図4.2.1.5に示す。

表4.2.1.2	各サイクルにおける隅角部隅肉溶接部のひずみとひずみ振幅
----------	-----------------------------

(最大浮き上がり変位:104.3 cm)

サイクル	浮き上がり		全ひずみ (%)		全ひずみ振幅(%)		
No.	位置	A点	B点	C点	A点	B点	C点
		εr	εr	εz	Δεr	Δεr	Δεz
	開始	0.149	0.197	0.091			
1	最高	0.372	3.378	0.127	0.224	3.180	0.099
	最低	0.196	3.201	0.028			
2	最高	0.445	4.313	0.131	0.230	0.229	0.134
	最低	0.215	4.084	-0.003			
3	最高	0.468	4.776	0.134	0.257	0.281	0.151
	最低	0.211	4.495	-0.018			
4	最高	0.680	6.803	0.143	0.403	1.018	0.217
	最低	0.277	5.785	-0.074			
5	最高	0.736	7.627	0.148	0.455	1.839	0.228
	最低	0.281	5.788	-0.079			
6		0.971	9.398	0.158	0.554	4.092	0.242
	最低	0.417	5.306	-0.084			
7	最高	0.575	5.457	0.008	0.158	0.156	0.092
	最低	0.417	5.301	-0.084			
8	最高	0.596	5.472	0.023	0.177	0.179	0.107
	最低	0.419	5.293	-0.084			
9	最高	2.741	16.978	0.212	1.521	11.942	0.308
	最低	1.220	5.036	-0.096			
10	最高	4.103	23.043	0.282	2.690	16.247	0.348
	最低	1.413	6.797	-0.066			
11	最高	1.544	7.042	0.103	0.109	0.319	0.169
	最低	1.434	6.723	-0.065			
12	最高	1.675	8.317	0.166	0.225	1.583	0.230
	最低	1.450	6.734	-0.064			
13	最高	15.199	45.668	0.767	12.264	35.461	0.205
	最低	2.935	10.207	0.562			
14	最高	11.323	42.628	0.883	8.349	31.452	0.190
	最低	2.974	11.176	0.693			
15	<u>最高</u>	5.204	29.976	1.019	2.311	19.472	0.324
	最低	2.892	10.504	0.695			
16	<u>最高</u>	4.161	25.389	1.068	1.249	15.609	0.365
	最低	2.912	9.780	0.703			
17	<u>最高</u>	2.914	9.749	0.963	0.016	0.022	0.259
	最低	2.930	9.727	0.704			
18	最高	3.306	17.913	1.096	0.317	8.519	0.385
	<u>最低</u>	2.988	9.393	0.712			
19	<u>最高</u>	2.986	9.446	1.006	0.033	0.133	0.293
	最低	3.019	9.312	0.713			
20	最高	3.196	14.654	1.097	0.162	5.737	0.378
	<u>最低</u>	3.035	8.917	0.719			
21	最高	3.048	9.380	1.063	0.015	0.588	0.342
	し 最低	3.063	8.792	0.721			

図4.2.1.3 浮き上がり変位とA点に発生した半径方向ひずみの関係

図4.2.1.4 浮き上がり変位とB点に発生した半径方向ひずみの関係

図4.2.1.5 浮き上がり変位とC点に発生した鉛直方向ひずみの関係

<変形図とひずみ分布図>

最大浮き上がり変位が104.3 cmになるときの、隅角部の変形及び塑性ひずみ分布図を図 4.2.1.6から図4.2.1.7に示す。

図4.2.1.6 浮き上がり時の隅角部の変形図(サイクル13回目の浮き上がり時)

図4.2.1.7 隅角部の半径方向ひずみ成分分布図(サイクル13回目 最大浮き上がり変位:104.3 cm)

浮き上がり挙動によって隅角部が曲げられ、隅角部の溶接部の止端部(B点)に最も大き なひずみが発生した。この表面上のひずみは局部的なものであり、全断面での平均値はこ れよりも小さい。 4.2.2 新法タンク No.3 の解析結果

各サイクルの参照点の浮き上がり変位とB端部に強制変位をかけた時の算定された軸方 向の抵抗力(B端部の断面上節点力の合計値、この値をnDで割ると単位長さあたりの浮き 上がり抵抗力となる)の数値を表4.2.2.1に、その関係を線図で表示すると図4.2.2.1に示す とおりである。(変位出力参照点の位置:図4.1.2.1(b)を参照)

サイクル	浮き上がり	抵抗力	浮き上がり変位	
No.	位置	(N)	(m	nm)
			参照点	B端
	開始	0.00E+00	-1.54	-2.26
1	最高	1.88E+07	13.26	12.60
	最低	1.42E+07	0.63	0.00
2	最高	2.55E+07	81.61	80.80
	最低	9.54E+06	0.60	0.00
3	最高	1.67E+07	10.81	10.20
	最低	9.54E+06	0.60	0.00
4	最高	1.77E+07	15.22	14.60
	最低	9.54E+06	0.60	0.00
5	最高	1.67E+07	10.91	10.30
	最低	9.54E+06	0.60	0.00
6	最高	2.57E+07	84.21	83.40
	最低	9.05E+06	0.60	0.00
7	最高	2.61E+07	91.91	91.10
	最低	7.50E+06	0.60	0.00
8	最高	1.88E+07	24.33	23.70
	最低	7.50E+06	0.60	0.00
9	最高	5.74E+07	531.08	526.90
	最低	-2.26E+07	0.82	0.00
10	最高	7.54E+07	786.40	775.30
	最低	-3.58E+07	0.74	0.00
11	最高	3.82E+07	385.25	382.80
	最低	-3.53E+07	0.74	0.00
12	最高	2.38E+07	174.97	174.00
	最低	-3.44E+07	0.73	0.00
13	最高	3.12E+06	29.15	28.60
	最低	-3.44E+07	0.73	0.00
14	最高	-2.41E+06	19.13	18.60
	最低	-3.44E+07	0.73	0.00

表4.2.2.1 浮き上がり変位と抵抗力の関係

図4.2.2.1 浮き上がり変位とB端部の算定された抵抗力の関係

浮き上がり変位を与えて、隅角部を浮上らせる静的応力解析結果の、隅角部隅肉溶接部 近傍の注目点(A点、B点とC点、3つの点の位置を図 4.2.1.2 に示す)に発生した全ひず みと全ひずみ振幅を表 4.2.2.2 に示す。A点は隅肉溶接部止端部で、B点はA点から2mm 内側のアニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最も側板に近い 位置)で、両点の半径方向全ひずみを e_r とし、C点は側板内面の止端部でその鉛直方向ひ ずみを e_z とする。また、全ひずみ振幅は Δe_r 等とする。14 サイクルにおける各点の浮き上 がり変位とひずみとの関係線図を図 4.2.2.3 から図 4.2.2.5 に示す。

サイクル	浮き上がり	ひずみ (%)			ひずみ振幅(%)		
No.	位置	A点	B点	C点	A点	B点	C点
		εr	εr	εz	Δεr	Δεr	Δεz
	開始	0.20	0.14	0.11			
1	最高	0.46	0.25	0.17	0.26	0.12	0.06
	最低	0.34	0.16	0.12			
2	最高	1.87	1.44	0.33	0.46	0.39	0.24
	最低	1.41	1.05	0.09			
3	最高	1.52	1.14	0.13	0.11	0.09	0.05
	最低	1.41	1.05	0.09			
4	最高	1.55	1.17	0.15	0.14	0.12	0.07
	最低	1.41	1.05	0.09			
5	最高	1.52	1.15	0.14	0.11	0.09	0.05
	最低	1.41	1.05	0.09			
6	最高	1.95	1.52	0.33	0.47	0.40	0.25
	最低	1.48	1.13	0.08			
7	最高	2.21	1.81	0.34	0.52	0.43	0.27
	最低	1.69	1.39	0.07			
8	最高	1.89	1.57	0.17	0.20	0.18	0.10
	最低	1.69	1.39	0.07			
9	最高	15.52	12.18	0.85	9.28	8.56	0.79
	最低	6.24	3.62	0.06			
10	最高	23.11	18.34	1.29	15.21	13.60	0.91
	最低	7.89	4.74	0.38			
11	最高	15.73	14.14	1.22	7.97	9.53	0.84
	最低	7.75	4.61	0.38			
12	最高	10.17	8.66	1.17	2.93	4.42	0.77
	最低	7.24	4.24	0.40			
13	最高	7.26	4.56	0.70	0.03	0.32	0.30
	最低	7.23	4.24	0.41			
14	最高	7.24	4.49	0.61	0.02	0.25	0.21
	最低	7.23	4.24	0.41			

表4.2.2.2 各繰返しサイクルにおける隅角部隅肉溶接部のひずみとひずみ振幅

図4.2.2.3 浮き上がり変位とA点に発生した半径方向ひずみの関係

図4.2.2.4 浮き上がり変位とB点に発生した半径方向ひずみの関係

図4.2.2.5 浮き上がり変位とC点に発生した軸方向ひずみの関係

<変形図とひずみ分布図>

最大浮き上がり変位が77.5 cmになるときの、隅角部の変形及び塑性ひずみ分布図を図 4.2.2.6から図4.2.2.7に示す。

図 4.2.2.7 隅角部の半径方向ひずみ成分の分布図 (サイクル 10 回目、最大浮き上がり変位: 77.5 cm)
浮き上がり挙動によって隅角部が曲げられ、隅角部の溶接部の止端部(A点)に最も大き なひずみが発生した。この表面上のひずみは局部的なものであり、全断面での平均値はこ れよりも小さい。

4.3 低サイクル疲労評価

地震時の浮き上がりに対する隅角部挙動は、低サイクル疲労である。飯田*は、溶接構造 用鋼、高張力鋼、一般構造用鋼などの10種の鋼をひずみ制御疲労試験を実施し、き裂発生 寿命 *Nc*をひずみ振幅 Δ*c*に対して整理し、次式で最適疲労曲線を表した。

$$\frac{\Delta\varepsilon}{2} = 0.415 N_c^{-0.606} + 0.00412 N_c^{-0.115}$$
(4.3.1)

上式を図示すると図 4.3.1 になる。

マイナー則では、次式の疲労損傷度 D=1.0 のときを疲労寿命としており、式(4.3.2)により隅角部の疲労損傷度の評価を実施した。

$$D = \frac{n(\Delta \varepsilon_1)}{N_c(\Delta \varepsilon_1)} + \frac{n(\Delta \varepsilon_2)}{N_c(\Delta \varepsilon_2)} + \frac{n(\Delta \varepsilon_3)}{N_c(\Delta \varepsilon_3)} + \dots < 1.0$$
(4.3.2)

ただし、 D :疲労損傷度 $\Delta \epsilon_i$:ひずみ振幅 $n(\Delta \epsilon_i)$:ひずみ振幅 $\Delta \epsilon_i$ の繰返し回数 $N_c(\Delta \epsilon_i)$:ひずみ振幅 $\Delta \epsilon_i$ の疲労寿命

※ 文献: 日本材料学会編、疲労設計便覧、養賢堂、pp.135-136、1995年。

4.3.1 旧法タンク No.3 の疲労損傷度評価

旧法タンク No.3 の浮き上がり回数は最大の浮き上がり変位が算出された側の 21 回で設定し、この条件での疲労損傷度 Dを算定した。

表 4.2.1.2 に示したA点に発生した板表面上の全ひずみ振幅に対する、飯田の最適疲労曲 線式(4.3.1)で求めた疲労寿命 Nc を表 4.3.1.1 に示す。同表より、最大浮き上がり変位 104.3 cm となるA地区 EW 方向の想定地震波形に対し、当該タンクは隅角部の溶接部止端部のA 点の疲労損傷度Dは 0.067 であり、は 1.0 以下という結果になった。

表4.2.1.2 に示したB点に発生した板表面上の全ひずみ振幅の一部には約35.5%という数 値が出ており、飯田の最適疲労曲線式のグラフ範囲外となる。なお、同式にて疲労損傷度D を算出すると0.752となる。今回の隅角部の疲労破壊の可能性評価については、1994年三 陸はるか沖地震や1995年兵庫県南部地震に対する石油タンク隅角部の繰返し片浮き上がり 挙動解析に用いられた一連の解析システムを採用したが、今回のような大きな浮き上がり に対し、そのまま適用することの妥当性については3次元モデルの有限要素法による解析 なども含め、検討していく必要がある。

サイクル	浮き上がり変位		A点				
No.	δi	ひずみ振幅	許容繰返し回数	疲労損傷度			
	(mm)	Δεr(%)	Nc	D			
1	24.4	0.22	403585	0.000002			
2	33.8	0.23	320500	0.000003			
3	38.8	0.26	177350	0.000006			
4	65	0.40	33195	0.000030			
5	76	0.45	22740	0.000044			
6	102.8	0.55	12600	0.000079			
7	16.9	0.16	500000	0.000002			
8	20.7	0.18	500000	0.000002			
9	247	1.52	1159	0.000863			
10	336.6	2.69	378	0.002646			
11	25.9	0.11	500000	0.000002			
12	51.4	0.22	403585	0.000002			
13	1042.7	12.26	25	0.040000			
14	746.3	8.35	49	0.020408			
15	281.2	2.31	505	0.001980			
16	195.2	1.25	1744	0.000573			
17	15.7	0.02	500000	0.000002			
18	92.8	0.32	73940	0.000014			
19	18.7	0.03	500000	0.000002			
20	64.4	0.16	500000	0.000002			
21	28.5	0.02	500000	0.000002			
			合計	0.066665			

表 4.3.1.1 旧法タンク No.3 の隅角部の疲労損傷度評価結果

表 4.3.1.1 に示す許容繰り返し回数を用いて、以下のようにA点の疲労.損傷度D(合計)

を計算した。

 $D = \sum_{i=1}^{21} \frac{1}{Nci} = \frac{1}{403585} + \frac{1}{320500} + \frac{1}{177350} + \bullet \bullet \bullet \frac{1}{25} + \frac{1}{49} + \frac{1}{505} + \bullet \bullet \bullet \frac{1}{500000} = 0.066665$

4.3.2 新法タンク No.3 の疲労損傷度評価

新法タンク No.3 の浮き上がり回数は最大の浮き上がり変位が算出された側の 14 回で設定し、この条件での疲労損傷度 Dを算定した。

表 4.2.2.2 に示したA点とB点に発生した板表面上の全ひずみ振幅に対する、飯田の最適 疲労曲線式(4.3.1)で求めた疲労寿命 Nc を表 4.3.2.1 に示す。同表より、最大浮き上がり変 位 77.5 cm となるA地区 EW 方向の想定地震波形に対し、当該タンクは隅角部の溶接部止 端部のA点とB点の疲労損傷度Dは 0.190 と 0.101 であり、1.0 以下という結果になった。

サイクル	浮き上がり変位		A点			B点	
No.	δi	ひずみ振幅	許容繰返し回数	疲労損傷度	ひずみ振幅	許容繰返し回数	疲労損傷度
	(mm)	Δεr(%)	Nc	D	Δεr(%)	Nc	D
1	12.6	0.26	177350	0.000006	0.12	500000	0.000002
2	80.8	0.46	21250	0.000047	0.39	36130	0.000028
3	10.2	0.11	500000	0.000002	0.09	500000	0.000002
4	14.6	0.14	500000	0.000002	0.12	500000	0.000002
5	10.3	0.11	500000	0.000002	0.09	500000	0.000002
6	83.4	0.47	19900	0.000050	0.40	33190	0.000030
7	91.1	0.52	14770	0.000068	0.43	262300	0.000004
8	23.7	0.20	500000	0.000002	0.18	500000	0.000002
9	526.9	9.28	41	0.024390	8.56	47	0.021277
10	775.3	15.21	17	0.058824	13.60	21	0.047619
11	382.8	7.97	53	0.018868	9.53	39	0.025641
12	174.0	2.93	322	0.003106	4.42	151	0.006623
13	28.6	0.03	500000	0.000002	0.32	73940	0.000014
14	18.6	0.02	500000	0.000002	0.25	212800	0.000005
			合計	0.189968		合計	0.101249

表 4.3.2.1 新法タンク No.3 の隅角部の疲労損傷度評価結果

表 4.3.2.1 に示す許容繰り返し回数を用いて、以下のようにA点とB点の疲労.損傷度D (合計)を計算した。

A点:

$$D = \sum_{i=1}^{14} \frac{1}{Nci} = \frac{1}{177350} + \frac{1}{21250} + \frac{1}{500000} + \bullet \bullet \frac{1}{41} + \frac{1}{17} + \frac{1}{53} + \bullet \bullet \frac{1}{500000} = 0.189968$$

B \vert :
$$D = \sum_{i=1}^{14} \frac{1}{Nci} = \frac{1}{500000} + \frac{1}{36130} + \frac{1}{500000} + \bullet \bullet \frac{1}{47} + \frac{1}{21} + \frac{1}{39} + \bullet \bullet \frac{1}{212800} = 0.101249$$

5. 3次元シェルモデルによる側板の座屈強度評価解析

非線形ばねを有する質点系モデルの浮き上がり解析結果によって、以下の浮き上がりが 発生した2基のタンクを選定し、3次元シェル要素モデルによる弾性大変形解析を実施し、 最大浮き上がり変位が生じるときの沈み込み側の側板下端に発生する最大軸方向圧縮応力 を求めた(通常は側板の最下端付近が最大となる)。側板の限界座屈応力との比較により側板 の地震時の座屈強度評価を行った。

- (1) 旧法タンク No.3(30000 KL)(算定された最大浮き上がり変位:104.3 cm)
- (2) 新法タンク No.3 (30000 KL)(算定された最大浮き上がり変位:77.5 cm)

5.1 解析モデル

タンクの浮き上がり側及び沈み込み側に着目するため、2 基のタンクの3 次元シェルモデ ルを作成した。タンク形状は 1/2 部分であるが、その切断面には対称条件を設定した。底板 は形状として全面作成しているが、タンク半径の 70%の位置からの底板の一部を剛体要素 でモデル化し、中心の参照点と連動させている。

タンク側板上端のトップアングルのみモデル上には含まれている。上端拘束条件はフリーとした。底板およびアニュラ板と基礎との接触・離間を考慮するため、軸方向の圧縮のみに 294N/cm³の力が生じるようなばね要素を設定した。

5.1.1 旧法タンクNo.3の解析モデル

旧法タンクNo.3 (30000 KL)を対象として解析モデルを作成した(図5.1.1.1参照)。タンクの主な寸法と諸元は4.1.1節の表4.1.1.1に示すとおりである。

図5.1.1.1 旧法タンクNo.3の3次元シェルモデル

側板重量等(合計:2760kN)は側板に均等に分布させて調整(側板の質量密度を増加)した。 アニュラ板と底板の自重もモデル上考慮した。

材料の物性値は4.1.1節の表4.1.1.3に示しているとおりである。

5.1.2 新法タンクNo.3の解析モデル

新法タンクNo.3 (30000 KL)を対象として解析モデルを作成した(図5.1.2.1参照)。タンクの主な寸法と諸元は4.1.2節の表4.1.2.1に示しているとおりである。

図5.1.2.1 新法タンクNo.3の3次元シェルモデル

側板重量等(合計:3530 kN)は側板に均等に分布させて調整(側板の質量密度を増加)した。 アニュラ板と底板の自重もモデル上考慮した。

材料の物性値は4.1.2節の表4.1.2.3に示しているとおりである。

5.2 荷重条件

1) 荷重

側板重量等は側板に均等に分布させて調整(側板の質量密度を増加)した。アニュラ板 と底板の自重もモデル上考慮した。

2) 動液圧の算定

入力地震動は、地震動レベル1の設計水平震度 Kh1を基準として、消防法により規定 された以下の算出式で求めた動液圧を静的に作用させた。算出した動液圧は、1/2 対称 境界面を最大/最小として、側板と底板の周方向に余弦分布させてモデルに入力した。

水平方向地震動による側板部作用する液圧は、次式で表される。

$$P_h = P_{h0} + P_{h1} \tag{5.2.1}$$

 P_h は、底部からの高さZにおける側板部に作用する動液圧(N/mm²)である。 P_{h0} 及び P_{h1} は次式のとおり。

$$P_{h0} = \frac{9.80665\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{0i} \left(\frac{Z}{H}\right)^{i} \right\} K_{h1} / \nu_{3}$$
(5.2.2)

$$P_{h1} = \frac{9.80665\,\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{1i} \left(\frac{Z}{H}\right)^{i} \right\} (1 - \frac{1}{V_{3}}) K_{h1}$$
(5.2.3)

ここで、pは、貯蔵液の比重、Hは最高液面高さ (m)、v₃は特定屋外貯蔵タンクの 固有周期を考慮した応答倍率 (·)、C₀とC_{1i}は、特定屋外貯蔵タンクの最高液面高さと直 径との比により、求めた係数である。

算定された2基の対象タンクの動液圧を添付資料2に示す。

4) 解析ステップ

解析ステップを、次のように2段階に分けて実施した。

- ステップ1: 通常時荷重(静液圧)
- ステップ2: 地震時荷重(静液圧+動液圧)

静液圧が負荷されている状態から、動液圧を準静的に段階的に負荷させた。

質点系モデルにて算定された最大浮き上がり変位となるときに側板に発 生する応力を確認した。

5.3 解析結果

2基のタンクの解析結果を以下に示す。

5.3.1 旧法タンクNo.3の解析結果

以下に旧法タンクNo.3の最大浮き上がり変位104.3 cmまでの解析結果を示す。

側板下端部の円周方向角度に対応する軸方向変位を図5.3.1.1に示す。最大浮き上がり変 位が104.3 cmのとき、沈み込み側の最大沈み込み変位は僅か0.6 cmであることが確認され た。

沈み込み側の軸方向膜応力と側板の高さの関係を図5.3.1.2に示す。このとき沈み込み側 の側板下端に発生する最大軸方向圧縮応力は13.1 N/mm²であった。また、沈み込み側の円 周方向膜応力と側板の高さの関係を図5.3.1.3に示す。このとき沈み込み側の側板最下段に 発生する最大円周方向膜応力は336 N/mm²であった。

図5.3.1.1 側板下端部の円周方向の角度に対応する軸方向変位

図5.3.1.2 側板に発生した軸方向の膜応力と側板の高さの関係

図5.3.1.3 側板に発生した円周方向の膜応力と側板の高さの関係

側板最下端の浮き上がり104.3 cm時の変形を図5.3.1.4、応力分布を図5.3.1.5、浮き上が り範囲を図5.3.1.6に示す。

図5.3.1.4 変形図(104.3 cm浮き上がり時)

浮き上がり側の側板は動液圧の影響でタンク内側へ凹むように変形している。本 モデル作成において、沈み込み側下部の圧縮に着目した評価を行うためタンクモデ ルの形状を単純化してウインドガーダー等を含めていないことから、浮き上がり側 の側板上部に大きな変形が生じている。本検討では沈み込み側下部の圧縮に注目し て座屈評価をし、浮き上がり側の側板及びアニュラ板に発生した応力の評価は除外 する。

図5.3.1.6 浮き上がり範囲(104.3 cm浮き上がり時)

5.3.2 新法タンクNo.3の解析結果

以下に新法タンクNo.3の最大浮き上がり変位77.5 cmまでの解析結果を示す。

側板下端部の円周方向角度に対応する軸方向変位を図5.3.2.1に示す。最大浮き上がり変 位が77.5 cmのとき、沈み込み側の最大沈み込み変位は僅か0.5 cmであることが確認された。

沈み込み側の軸方向膜応力と側板の高さの関係を図5.3.2.2に示す。このとき沈み込み側 の側板下端に発生する最大軸方向圧縮応力は14.0 N/mm²であった。また、沈み込み側の円 周方向膜応力と側板の高さの関係を図5.3.2.3に示す。このとき沈み込み側の側板最下段に 発生する最大円周方向膜応力は285 N/mm²であった。

側板最下端の浮き上がり77.5 cm時の変形を図5.3.2.4、応力分布を図5.3.2.5、浮き上がり 範囲を図5.3.2.6に示す。

図5.3.2.1 側板下端部の円周方向の角度に対応する軸方向変位

図5.3.2.2 側板に発生した軸方向の膜応力と側板の高さの関係

図5.3.2.3 側板に発生した円周方向の膜応力と側板の高さの関係

図5.3.2.4 変形図(77.5 cm浮き上がり時)

浮き上がり側の側板は動液圧の影響でタンク内側へ凹むように変形している。本 モデル作成において、沈み込み側下部の圧縮に着目した評価を行うためタンクモデ ルの形状を単純化してウインドガーダー等を含めていないことから、浮き上がり側 の側板上部に大きな変形が生じている。本検討では沈み込み側下部の圧縮に注目し て座屈評価をし、浮き上がり側の側板及びアニュラ板に発生した応力の評価は除外 する。

図5.3.2.6 浮き上がり範囲(77.5cm浮き上がり時)

5.4 座屈強度評価

座屈強度評価においては、以下のような手順で軸圧縮限界座屈応力を評価するが、必要 に応じて内圧を考慮した評価を行う。

一様軸圧縮を受ける内圧のない円筒殻の弾性軸圧縮限界座屈応力は、次式で表される。

$$\sigma_{cr} = 0.4E \frac{t_s}{D} \tag{5.4.1}$$

ここで、

ocr: 一様軸圧縮を受ける円筒殻の弾性軸圧縮限界座屈応力(N/mm²)

E: 側板のヤング率 (N/mm²)

ts:側板最下端の板厚 (mm)

運転時満液状態にある平底円筒形石油貯槽においては、地震時動液圧負荷側(図 5.3.2.5、 図 5.3.1.5の沈み込み側)の最下段側板の円周方向膜応力が、降伏応力の 0.3 倍を上回って いる場合、象の脚型座屈の評価が要求されている。

ここでは容器構造設計指針において、円周方向膜応力/降伏応力比が0.3以上の場合の限 界座屈応力値に着目し、内圧下における側板の象の脚型座屈限界応力を以下に示す。

$$\frac{\sigma_{\phi}}{\sigma_{y}} \ge 0.3$$
 かつ、 $\frac{D}{t_{s}} \ge 1.614(\frac{E}{\sigma_{y}})$ の場合

$$\sigma_{cr} = 0.96E \frac{t_s}{D} (1 - \frac{\sigma_{\phi}}{\sigma_y}) \qquad (5.4.2)$$

5.4.1 旧法タンク No.3 の座屈強度評価

当該タンクの材料のヤング率 E=205939.7 N/mm²、側板厚 t_s=18 mm、内径 D=45100 mm を代入すると、軸圧縮限界座屈応力 o_{cr} =32.9 N/mm²となる。

当該タンクの側板最下段に発生した最大円周方向膜応力(336 N/mm²)は、降伏応力(490 N/mm²)との比(0.69)が0.3以上であることが確認されたので、象の脚型座屈の評価は必要となる。式(5.4.2)で計算された象の脚座屈限界応力は24.5 N/mm²となる。

以上により、計算された旧法タンクNo.3の限界座屈応力は、32.9 N/mm²(ダイヤモンド型 座屈)、24.5 N/mm²(象の脚型座屈)となり、解析結果から得られた軸圧縮応力の最大値の 13.1N/mm²よりも大きな値となっている。

そのため、当該区域の再現地震波形に対して、旧法タンクNo.3の最大浮き上がり変位が 104.3 cm発生した場合の応力は、従来評価手法の限界応力を超えない。 5.4.2 新法タンク No.3 の座屈強度評価

当該タンクの材料のヤング率 E=205939.7 N/mm²、側板厚 ts=21 mm、直径 D=45900 mm を代入すると、軸圧縮限界座屈応力 o_{cr} =37.7 N/mm²となる。

当該タンクの側板最下段に発生した最大円周方向膜応力(285 N/mm²)は、降伏応力(490 N/mm²)との比(0.58)が0.3以上であることが確認されたので、象の脚座屈の評価は必要となる。式(5.4.2)で計算された象の脚座屈限界応力は38.0 N/mm²となる。

以上により、計算された新法タンクNo.3の限界座屈応力は、37.7 N/mm²(ダイヤモンド型 座屈)、38.0 N/mm²(象の脚型座屈)となり、解析結果から得られた軸圧縮応力の最大値の14.0 N/mm²よりも大きな値となっている。

そのため、当該区域の再現地震波形に対して、新法タンク No.3 の最大浮き上がり変位が 77.5 cm 発生した場合の応力は、従来評価手法の限界応力を超えない。

6. まとめ

6.1 解析手法等

今年度は、南海トラフ沿いで発生する最大クラスの巨大地震に対する屋外貯蔵タンクの 単体による解析を、タンク本体への影響という観点から短周期地震動に着目し実施した。 なお、この解析にあたっては、解析手法について一定の信頼性があることを確認するため、 東北地方太平洋沖地震における屋外タンク貯蔵所の実態と矛盾しないことの確認を行った。 今回対象とした地震動は、現時点で考えられる最新の科学的知見を踏まえ内閣府の検討会 においてとりまとめられたものであるが、通常のタンクの設計で用いられるような比較的 発生頻度の高い地震ではなく、千年に一度あるいはそれよりもっと発生頻度が低いもので あり、また、考え得る最大クラスの地震である。

今回の解析においては、入力する地震動は、揺れが大きい地区を選定するなど安全側と なるような評価を実施しつつ、このような地震動に対するタンクの挙動を再現し耐震安全 性を確認するという観点から、通常の耐震設計で用いられている簡易な方法ではなく、詳 細な解析手法を採用し、より精緻に耐震安全性を確認した。タンクで通常用いられている 耐震設計と今回の解析の主な違いについて、以下にまとめた。

	耐震設計	今回の耐震評価		
評価手法	静的耐震評価法の1つである修正震度	動的耐震評価法の1つである時刻歴		
	法を用いて、構造物の固有周期に応じ	応答法を用いて、加速度を 1/100 程度		
	た加速度を構造物の中心に作用させ	の刻みで構造物に作用させる。		
	修正震度法のイメージ	時刻歴応答法のイメージ		
耐震評価	以下のような簡易的な方法で評価	以下のような詳細な方法で評価。		
	○隅角部	○隅角部		
	保有水平耐力が必要保有水平耐力以	質点系による浮き上がり量に基づ		
	上であること。	くFEMモデルによる評価		
	Q _{dw} =0.15 _{v₁v₂v₃v_p・D_S・W₀ 0.15_{v₁v₂v₃:設計水平震度 v_p:塑性設計係数 D_S:構造特性係数 W₀:有効液重量}}	解析モデルのイメージ		
	○側板部	○側板部		
	発生応力が許容応力以下であるこ	質点系による浮き上がり量に基づ		
		くFEMモデルによる評価		
	(例) 許容圧縮応力 S'= $\frac{0.4E \cdot t}{2.25D} \times 1.5$			
	D [:] 但住、L [:] ヤノク半、L [:] 則板厚	解析モデルのイメージ		

表 6.1 特定屋外タンク貯蔵所の耐震設計と今回の耐震評価による主な比較

また、今回の解析に用いた解析条件については、以下のように、実態に即した形としながらも、保守的評価となるように設定を行った。

項目	解析条件
入力地震動	特防区域を含む市町村において南海トラフ巨大地震の
	想定震度が7の地域を抽出し、その中で特防区域の揺
	れが大きい地区を選定し入力地震動を作成
タンクモデル	容量の違いを考慮した代表的なタンクモデルについ
	て、簡易的に浮き上がり量を解析し、浮き上がり量が
	大きいものを選定し詳細解析を実施
貯蔵量(液高さ)	100%の液高さで解析
	(液高さを変化させた場合も解析)
比重	石油類の比重の最大値を想定し0.95で解析
	(0.85 の場合も解析)

タンクの弾塑性の復元	非線形ばね特性の第2剛性のK2を0として解析
カモデルの非線形ばね	(タンクの底部板の全断面が塑性化した以降のばね特
特性	性は 0~0.3 の値と想定されるが、安全側となるよう 0
	とした。)
浮き上がり量の解析手	1 質点系モデルにより解析
法	(一般に3質点系より浮き上がり量の観点で保守的評
	価を与える。)
地下逸散減衰	通常減衰比は 0.1 であるが、東日本大震災での実態の
	再現性から、地下逸散減衰を考慮した減衰比 0.15 を採
	用

6.2 解析結果

<質点系モデル解析結果>

入力に使用した南海トラフの想定地震波形のうち、A地区で旧法タンク及び新法タンク ともに最も大きな浮き上がりが生じており、最も大きな浮き上がりが生じた以下2基の タンクについて隅角部溶接部の疲労損傷度、沈み込み側の側板の座屈強度を評価した。

旧法タンク: No.3(3 万 KL) 104.3cm 浮き上がり

新法タンク: No.3(3 万 KL) 77.5cm 浮き上がり

<疲労損傷評価>

隅角部の疲労損傷は、旧法タンク、新法タンクともに疲労損傷度 D は 1.0 以下という 結果になった。

<側板座屈評価>

側板の座屈評価は、旧法タンク、新法タンクともに浮き上がり時に発生した最大軸圧 縮応力が軸圧縮限界座屈応力及び象の脚限界座屈応力以内という結果になった。

6.3 まとめ

今回、南海トラフ地震の耐震性評価については、解析のために一定の条件を設定し、東 日本大震災の再現解析が行えた手法として、質点系モデルによる簡易解析を用いた有限要 素法によるタンク隅角部及び側板部を評価するという手法で解析を行ったところ、従来の 評価手法で評価すれば、隅角部の破断や側板の座屈には至らないという結果が得られた。 ただし、解析にあたっては、検討手法は安全側の解析となるように配慮しているが、想定 地震動など、本解析で前提とした条件の範囲を超えるような場合も完全には否定できない ことから必ずしも安全性を担保するというものではないということに留意が必要である。 なお、今回の解析は、発生頻度が千年に一度あるいはそれよりもっと発生頻度が低い地 震であるということに鑑み、現状の耐震設計基準によって建設された屋外貯蔵タンクの安 全性を、詳細な解析手法を採用し、より精緻に耐震安全性を確認したものであり、設計を 目的とした検討ではないことから、屋外貯蔵タンクの設計において、今回の解析手法をそ のまま用いて行って良いというものではない。

また、今回の解析では、腐食等は考慮していないが、経年劣化によるタンクの底部板の 腐食の形態については、一般に、連続板厚測定法による測定結果などから、局部的に進行 するものや孔食が広い範囲に分布することが分かっており、底部板が一様に減肉すること によって保有水平耐力が大きく低下することなどは想定し難いものの、解析結果からは、 大きな浮き上がり現象が生じる可能性もあり、開放点検等の機会を捉え、溶接部や板厚の 健全性を確認し、適切に管理していくことが重要である。

このほか、アニュラ板を厚くするということは、一定の耐震性の向上が見込められると いう解析結果が得られたことから、機会を捉え、板厚を厚くすることなどの対策は従前よ り腐食対策として実施されていたが、耐震面からも有効であると考えられる。

さらに、地震等により屋外貯蔵タンクに顕著な浮き上がりが生じた場合は、屋外貯蔵タンクに破断に至らない損傷が生じている可能性があることから、必要に応じて点検を行い、 その結果に応じて補修を行うことが求められる。

添付資料 1

質点系モデルの入力諸元の計算結果(南海トラフ検討用)

代表的な旧法タンク5基と新法タンク6基の質点系モデルの入力諸元の計算結果の一覧 表を付表 1-1 に示す。

代表的な旧法タンク5基の質点系モデルの入力諸元の計算シートを付表1-2に示す。 代表的な新法タンク6基の質点系モデルの入力諸元の計算シートを付表1-3に示す。

付表 1-1 質点系モデルの入力諸元の計算結果の一覧表

			アニュラ板	ā	側板自重による抵抗力	浮き上がり抵抗力	保有水平耐力	Qyの増加	降伏変位	タンク周期
タンク	容量	板厚	材質	降伏強度	Vo	qy	Qy	倍率	Δy	Ть
番号	(KL)	(mm)		(N/mm2)	(N/cm)	(N/cm)	(N)		(cm)	(sec)
旧法No.1	2500	9	SM41C	245	121.2	405.4	3.2E+06	1.30	0.15	0.1736
旧法No.2	7500	12	SS41	245	148.2	648.0	1.9E+07	1.30	0.45	0.1740
旧法No.3	30000	12	SM400C	245	195.1	641.7	3.5E+07	1.30	0.76	0.3388
旧法No.4	750000	12	HW50	490	318.6	918.0	1.3E+08	1.36	1.88	0.3608
旧法No.5	100000	12	SPV450Q	450	343.6	861.4	1.9E+08	1.40	3.04	0.3890

			アニュラ板	i	側板自重による抵抗力	浮き上がり抵抗力	保有水平耐力	Qyの増加	降伏変位	タンク周期
タンク	容量	板厚	材質	降伏強度	Vo	qy	Qy	倍率	Δy	Tb
番号	(KL)	(mm)		(N/mm2)	(N/cm)	(N/cm)	(N)		(cm)	(sec)
新法No.1	2500	12	SS400	245	140.7	542.9	4.1E+06	1.26	0.17	0.1655
新法No.2	7500	12	SM41C	245	107.3	500.1	1.8E+07	1.21	0.39	0.1683
新法No.3	30000	15	SPV490Q	490	244.9	1147.4	6.0E+07	1.21	1.19	0.3368
新法No.4	50000	18	SPV50	490	578.5	1315.3	1.4E+08	1.27	2.06	0.3052
新法No.5	750000	18	SPV50	490	324.7	1393.8	1.7E+08	1.24	2.50	0.3670
新法No.6	100000	21	HW50	490	363.1	1656.7	2.6E+08	1.23	3.45	0.3882

付表 1-2 代表的な旧法タンク 6 基の質点系モデルの入力諸元の計算シート

旧法タンク No.1

質点系モデルによる側板下端の浮き上がり変位計算用諸元

(SI単位)

<u> 質点系モデルによる側板下端の浮き</u>	(赤字:入力値)		
[諸元]			
公称容量	VOL (kl)	2500	(kl)
貯槽内径	D	15500	(mm)
側板高さ	Hmax	15087	(mm)
最下段側板厚	ts	10	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	8	(mm)
アニュラ板厚	t _b	9	(mm)
<u>鋼材のヤング率(SM41C)</u>	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σγ	245	(N/mm2)
最高液高さ	Н	13344	(mm)
液密度	r	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	1.16	(-)
液高さ/直径比	H/D	0.86	(-)
消防法/有効液重量率 f_{w0} $f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^3$	0.73	(-)	
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 (\frac{H}{D})^4 + 0.9653 (\frac{H}{D})^3 - 2.2807 (\frac{H}{D})^3$	0.67	(-)	
消防法/有効液の重心高さ係数 f _{h0}		0.07	
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^3$	0.42	(-)	
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^3$	0.47	(-)	
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.12	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	4.13E+02	(KN)
側板付属品重量	Ws1	5.52E+01	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き蓋	Wr1	1.08E+02	(KN)
固定屋根重量	Wcr0	6.75E+01	(KN)
固定屋根骨重量	Wcr1	1.22E+01	(KN)
固定屋根付属品重量	Wcr2	4.25E+01	(KN)
タンク本体重量 合計	Wsr	6.99E+05	(N)

[計算式と質点系モデルの入力数値]	紫字:入力値			
		<u>(単位:N, cm)</u>		
貯槽の固有周期				
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.1736	(sec)	
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2514	(-)	
液重量 W = g $\gamma \pi D^2$ H / 4	w	2.35E+07	(N)	
合計重量(W+Wsr)	W+Wsr	2.42E+07	(N)	
減衰比	ζ	0.15	(-)	
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)	
有効液重量				
$W_0 = f_{w0} * (W + Wsr)$		1.75E+07	(N)	
$W_1 = f_{w1} * (W + Wsr)$		1.61E+07	(N)	
消防法/有効液重量率	f _{w0}	0.73	(-)	
	f _{w1}	0.67	(-)	
有効液の重心高さ				
$H_0 = f_{h0} * H$		556.65	(cm)	
$H_1 = f_{h1} * H$		624.33	(cm)	
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)	
	f _{h1}	0.47	(-)	
側板自重による鉛直抵抗力	V0	121.23	(N/cm)	
ばね係数	Кь	2.15E+07	(N/cm)	
浮き上がり抵抗力	qy	405.55	(N/cm)	
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V0	526.78	(N/cm)	
保有水平耐力(降伏耐力)	Qy	3.18E+06	(N)	
降伏変位 (=Qy/Kb)	Δy	0.15	(cm)	
減衰係数	С	1.78E+05	(N/(cm/s))	
貯蔵内径と有効液の重心高さの比	D/H1	2.48	(-)	

(SI単位)

質点系モデルによる側板下端の浮き上が		(赤字:入力値)	
[諸元]			
公称容量	VOL (kl)	7500	(kl)
貯槽内径	D	29000	(mm)
側板高さ	Hmax	12200	(mm)
最下段側板厚	t _s	16	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	12	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SS41)	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11410	(mm)
液密度	r	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	2.54	(-)
液高さ/直径比	H/D	0.39	(-)
消防法/有効液重量率 f _{wo}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0000000000000000000000000000000000$	$2.0933(\frac{H}{D}) - 0.1172$	0.46	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 +$	$2.3017(\frac{H}{D}) - 0.1634$	0.44	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	$0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0.0207(\frac{H}{D}) + 0.3644$	0.40	(-)
底板に作用する最大静液圧			
P ₀ =g γ H		0.11	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	8.64E+02	(KN)
側板付属品重量	Ws1	5.92E+01	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	2.40E+02	(KN)
固定屋根骨重量	Wcr1	1.75E+02	(KN)
固定屋根付属品重量	Wcr2	1.18E+01	(KN)
タンク本体重量 合計	Wsr	1.35E+06	(N)

[計算式と質点系モデルの入力数値]		紫字:入力值	
		(単位:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.1740	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3523	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	W	7.02E+07	(N)
合計重量(W+Wsr)	W+Wsr	7.16E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		3.28E+07	(N)
$W_1 = f_{w1} * (W + Wsr)$		3.18E+07	(N)
消防法/有効液重量率	f _{w0}	0.46	(-)
	f _{w1}	0.44	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		457.83	(cm)
$H_1 = f_{h1} * H$		454.29	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.40	(-)
側板自重による鉛直抵抗力	V0	148.17	(N/cm)
ばね係数	Кь	4.23E+07	(N/cm)
浮き上がり抵抗力	qу	500.02	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V0	648.18	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.88E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.45	(cm)
減衰係数	C	3.51E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	6.38	(-)

	旧法タンク No.3			(SI単位)
Implementation Vol (k) 30000 (k) Brite D 45100 (mm) Brite Brite D 45100 (mm) Brite Brite Max 21270 (mm) Brite Brite (mm) 1/30 Basic Hmax 21270 (mm) 1/30 Basic H Has (mm) (mm) (mm) 1/30 Basic (M/mm2) Basic H 12 (mm) (M/mm2) 0.3 (-) Bdito σ_{Y} 245 (N/mm2) Basic (M/mm2) Basic (M/mm2) Basic (M/mm2) Basic (M/mm2) Basic (M/ma) E E (M/ma) E E (M/ma) E E E E E	質点系モデルによる側板下端の浮き上がり	変位計算用諸元		(赤字:入力値)
日本日本 VOL (w) 30000 (m) 開花内径 D 45100 (mm) 創拓高さ Hmax 21270 (mm) 最下段側板厚 t _a 18 (mm) 見下段側板厚 t _a 18 (mm) 夏花のヤング車 (SM400C) E 205939.7 (N/mm2) 顕花のヤング車 (SM400C) E 205939.7 (N/mm2) 顕花のヤング車 (SM400C) E 205939.7 (N/mm2) 顕花点さ H 18802 (mm) 遺法次言さ比 D/H 245 (N/mm2) 遺査法/演言さ比 D/H 240 (-) 満防法/有効液重量率 f _{w0} H/D 0.42 (-) 消防法/有効液重量率 f _{w1} f _{w0} = -0.1408($\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634 0.47 (-) 消防法/有効液の重心高さ係数 fh0 fH0 = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.4096 fH1 = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D$	山龍九」		20000	(14)
Bit Table Display Particle Particle By Eagle 2 Hmax 21270 (mm) 最下段側板厚 t _a 18 (mm) T/30最高液高さにおける側板厚 t _{1/3} 13 (mm) アニュラ板厚 t _b 12 (mm) 鋼材のヤング軍 (SM400C) E 205939.7 (N/mm2) 鋼材のオアンシ比 ν 0.3 (-) 陸状応力 σ_Y 245 (N/mm2) 島滴液高さ H 18802 (mm) 遺液高さ H 18802 (mm2) 島滴液高さ H 18802 (mm2) 最高液高さ H 18802 (mm2) 島滴流高さ H 18802 (mm3) 直径/液高さ H 18802 (mm3) 直径/液高さ H/D 0.42 (-) 湖防法/有効液重量率 f _{w1} 0.41 (-) ボ防法/有効液の重心高さ係数 f _b -0.10807($\frac{H}{D}$) 0.163 $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.4096 0.40<$			45100	(mm)
and and the product of the product	創行になった。	Hmax	21270	(mm)
ax 1 wom NAP ts 10 (Mm) 1/3 OB as ixe is its its its its its its its its its	最大的側板厚	+	18	(mm)
Image (1) Image (1) <thimage (1)<="" th=""> <thimage (1)<="" th=""> <thimage (1)<="" th=""></thimage></thimage></thimage>	取り及前版学	t,	13	(mm)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		+.	10	(mm)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ノーエノ版序 細材のわた/グ変(SM400C)		205020.7	(N/mm2)
即内のアノシビレ レ 0.3 (F) 最高波高さ σ_y 245 (N/mm2) 最高波高さ H 18802 (mm) 波密度 γ 9.50E-07 (kg/mm3) 直径//液高さ止 D/H 2.40 (-) 激高之/直径上 H/D 0.42 (-) 消防法/有効液重量率 f_{w0} 0.48 (-) 消防法/有効液重量率 f_{w1} 0.48 (-) 消防法/有効液重量率 f_{w1} 0.48 (-) 消防法/有効液重量率 f_{w1} 0.48 (-) 消防法/有効液面重心高さ係数 f_{h0} 0.48 (-) 消防法/有効液の重心高さ係数 f_{h0} 0.47 (-) 消防法/有効液の重心高さ係数 f_{h1} 0.40 (-) 消防法/有効液の重心高さ係数 f_{h1} 0.40 (-) 消防法/有効液の重心高さ係数 f_{h1} 0.40 (-) パー 0.18 (N/mm2) タンク本体重量(赤字:入力値) 0.40 (-) 原板に作用する最大静液圧 0.40 (-) 原本恒量量量 Ws0 2.41E+03 (KN) 関板重	<u>鋼材のヤング率(3M4000)</u> 網社のポマルルド		200939.7	(N/mmZ)
Implementation OV Implementation Baixagin and the set of t		ν σ.	0.5	(N/mm2)
風雨风雨ご П 10002 (IIIII) 渡密度 ア 9.50E-07 (kg/mm3) 直径/液高さ比 D/H 2.40 (-) 液高さ/直径比 H/D 0.42 (-) 消防法/有効液重量率 f _{w0} -0.1408($\frac{H}{D}$) ⁴ + 0.8427($\frac{H}{D}$) ³ - 1.916($\frac{H}{D}$) ² + 2.0933($\frac{H}{D}$) - 0.1172 0.48 (-) 消防法/有効液重量率 f _{w1} -0.1429($\frac{H}{D}$) ⁴ + 0.9653($\frac{H}{D}$) ³ - 2.2807($\frac{H}{D}$) ² + 2.3017($\frac{H}{D}$) - 0.1634 -0.47 (-) 消防法/有効液の重心高さ係数 f _{n0} -0.1429($\frac{H}{D}$) ⁴ - 0.1493($\frac{H}{D}$) ³ + 0.204($\frac{H}{D}$) ² - 0.0807($\frac{H}{D}$) + 0.4096 -0.47 (-) 消防法/有効液の重心高さ係数 f _{n0} -0.40 (-) - - /// 指防法/有効液の重心高さ係数 f _{n1} -0.40 (-) - - // 指防法/有効液の重心高さ係数 f _{h1} -0.40 (-) - - // 指防法/有効液の重心高さ条数 f _{h1} -0.40 (-) - - // 指防法/有効液の重心高さ係数 f _{h1} -0.1387($\frac{H}{D}$) ³ + 0.216($\frac{H}{D}$) ² + 0.0207($\frac{H}{D}$) + 0.3644 - - - // 指防法/有効液の重量 -0.1387($\frac{H}{D}$) ³ + 0.216($\frac{H}{D}$) ² + 0.0207($\frac{H}{D}$) + 0.3644 - - </td <td></td> <td>U V</td> <td>10000</td> <td></td>		U V	10000	
Realize P 3.50E of (Re) (RE) \bar{g} (Re) D/H 2.40 (-) \bar{g} (Re) \bar{g} (Re) 0.42 (-) \bar{g} (Re) \bar{g} (Re) 0.42 (-) \bar{g} (Re) \bar{g} (Re) 0.42 (-) \bar{g} (Re) 0.42 (-) (-) \bar{g} (Re) 0.48 (-) \bar{g} (Re) 0.47 (-) \bar{g} (Re) 0.47 (-) \bar{g} (Re) 0.48 (-) \bar{g} (Re) 0.40 (-) \bar{g} (Re) 0.18 (N/ma2) <t< td=""><td><u>取同权同C</u></td><td></td><td>0.505-07</td><td>(mm)</td></t<>	<u>取同权同C</u>		0.505-07	(mm)
$B = L^{2} / R B \in L^{2}$ D / Π 2.40 (7) \ddot{g} \ddot{g} \ddot{g} \ddot{g} \ddot{g} \ddot{g} \ddot{g} H/D 0.42 (-) \ddot{g} H/D 0.42 (-) \ddot{g} \ddot{g} \ddot{g} \ddot{g} \ddot{g} \ddot{g} \ddot{g} \ddot{g} \ddot{g} \dot{g}	夜山皮		<u>9.J0E-07</u> 2.40	(kg/ mm3)
加防之/面白之/面白之/ 四日之/ (1)/0 0.42 (1)/0 消防法/有効液重量率 f_{w0} 0.48 (1) 消防法/有効液重量率 f_{w1} 0.48 (1) 消防法/有効液重量率 f_{w1} 0.48 (1) 消防法/有効液重量率 f_{w1} 0.48 (1) <i>f</i> _{W1} = -0.1429($\frac{H}{D}$) ⁴ + 0.9653($\frac{H}{D}$) ³ - 2.2807($\frac{H}{D}$) ² + 2.30 17($\frac{H}{D}$) - 0.1634 0.47 (-) 消防法/有効液の重心高さ係数 f_{n0} 0.47 (-) (-) 消防法/有効液の重心高さ係数 f_{n0} 0.40 (-) 消防法/有効液の重心高さ係数 f_{n1} 0.40 (-) 消防法/有効液の重心高さ係数 f_{n1} 0.40 (-) 消防法/有効液の重心高さ係数 f_{n1} 0.40 (-) 消防法/有効液の重心高さ係数 f_{n1} 0.40 (-) パー 0.18 (N/mm2) 0.40 (-) 消防法/有効液の重点 0.18 (N/mm2) 0.18 (N/mm2) タンク本体重量(赤字:入力値) 0.18 (KN) (KN) 1.3500 (KN) 現板重量 Wr0 1.43203 (KN) (KN) 1.43203 (KN) <t< td=""><td><u>但任/ 水向C比</u> 法古大/古久比</td><td></td><td>2.40</td><td>(-)</td></t<>	<u>但任/ 水向C比</u> 法古大/古久比		2.40	(-)
用助法/ 有効液量重率 f_{w0} $f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$ 消防法/ 有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$ $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$ $f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$ $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ $P_{0}=g \gamma H$ $Q_{2}/2 p A K m E $ $Q_{2}/2 p A K m E $ $Q_{2}/2 p A K m E $ Wr0 1.43E+03 Wr1 3.51E+02 KN) Bz E R M T m B E = M Wr1 3.51E+02 Wr0 Mr M = D Wr2 0.00E+00 KN) Mr M = D Wr2 0.00E+00 KN) Mr M = D Wr M = D Mr		Π/ U	0.42	(-)
$f_{w_1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$ 0.47 (-) 消防法/有効液の重心高さ係数 f _{h0} (-) (-) 消防法/有効液の重心高さ係数 f _{h0} (-) 消防法/有効液の重心高さ係数 f _{h1} (-) パ防法/有効液の重心高さ係数 f _{h1} (-) パ防法/有効液の重心高さ係数 f _{h1} (-) パ防法/有効液の重心高さ係数 f _{h1} (-) 修正(H) $^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ 0.40 $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ 0.40 $g_{0} = g \gamma H$ 0.18 (N/mm2) タンク本体重量(赤字: 入力値) (KN) (KN) 関板重量 Ws0 2.41E+03 (KN) 浮き屋根重量 Wr0 1.43E+03 (KN) 調抜付属品重量 Wcr0 0.00E+00 (KN) 調抜 3.51E+02 (KN) (KN) 調抜 0.00E+00 (KN) (KN)	$f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 +$ 消防法/有効液重量率 f _{w1}	$2.0933(\frac{H}{D}) - 0.1172$	0.48	(-)
消防法/有効液の重心高さ係数 f _{h0}	$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 +$	$2.3017(\frac{H}{D}) - 0.1634$	0.47	(-)
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$ 0.40 (-) 消防法/有効液の重心高さ係数 f_{h1} (-) $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ 0.40 (-) 底板に作用する最大静液圧 0.40 (-) Po=g γ H 0.18 (N/mm2) タンク本体重量(赤字:入力値) - - 側板重量 Ws0 2.41E+03 (KN) 側板付属品重量 Ws1 3.50E+02 (KN) 浮き屋根重量 Wr0 1.43E+03 (KN) 万字き屋根可量量 Wc1 0.00E+00 (KN) 固定屋根可量量 Wc2 0.00E+00 (KN) 固定屋根可量量 Wc2 0.00E+00 (KN)	消防法/有効液の重心高さ係数 f _{h0}			
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ 底板に作用する最大静液圧 P_0=g γ H 0.18 (N/mm2) タンク本体重量(赤字:入力値) 個板重量 Ws0 2.41E+03 (KN) 倒板付属品重量 Ws1 3.50E+02 (KN) 浮き屋根重量 Wr0 1.43E+03 (KN) 浮き屋根重量 Wr1 3.51E+02 (KN) 浮き屋根重量 Wcr0 0.00E+00 (KN) 固定屋根重量 Wcr1 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN)	$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0000000000000000000000000000000000$	$0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ 0.40(-)底板に作用する最大静液圧0.40(-) $P_0=g\gamma H$ 0.18(N/mm2)タンク本体重量(赤字:入力値)90.18(N/mm2)御板重量Ws02.41E+03(KN)御板付属品重量Ws13.50E+02(KN)浮き屋根重量Wr01.43E+03(KN)浮き屋根重量Wr13.51E+02(KN)固定屋根重量Wcr00.00E+00(KN)固定屋根雪量Wcr10.00E+00(KN)固定屋根骨重量Wcr20.00E+00(KN)固定屋根付属品重量Wcr20.00E+00(KN)	消防法/有効液の重心高さ係数 f _{h1}			
底板に作用する最大静液注 0.18 (N/mm2) P ₀ =gγH 0.18 (N/mm2) タンク本体重量(赤字:入力値) 側板重量 Ws0 2.41E+03 (KN) 側板付属品重量 Ws1 3.50E+02 (KN) 浮き屋根重量 Wr0 1.43E+03 (KN) 浮き屋根重量 Wr1 3.51E+02 (KN) 固定屋根重量 Wcr0 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN) 固定屋根付属品重量 Wcr2 0.00E+00 (KN)	$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0.0207(\frac{H}{D}) + 0.3644$	0.40	(-)
P0=g γ H 0.18 (N/mm2) タンク本体重量(赤字:入力値) 側板重量 Ws0 2.41E+03 (KN) 側板付属品重量 Ws1 3.50E+02 (KN) 浮き屋根重量 Wr0 1.43E+03 (KN) 浮き屋根重量 Wr1 3.51E+02 (KN) 固定屋根重量 Wcr0 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN) 固定屋根付属品重量 Wcr2 0.00E+00 (KN)	低			
タンク本体重量(赤字:入力値) Ws0 2.41E+03 (KN) 側板重量 Ws0 2.41E+03 (KN) 側板付属品重量 Ws1 3.50E+02 (KN) 浮き屋根重量 Wr0 1.43E+03 (KN) 浮き屋根付属品重量 Wr1 3.51E+02 (KN) 固定屋根重量 Wcr0 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN) 固定屋根付属品重量 Wcr2 0.00E+00 (KN)	$P_0 = g \gamma H$		0.18	(N/mm2)
創板重量 Ws0 2.41E+03 (KN) 創板付属品重量 Ws1 3.50E+02 (KN) 浮き屋根重量 Wr0 1.43E+03 (KN) 浮き屋根重量 Wr1 3.51E+02 (KN) 固定屋根重量 Wcr0 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN) 固定屋根付属品重量 Wcr2 0.00E+00 (KN)	タンク本体重量(赤字・λ 力値)			
間板付属品重量 Ws1 3.50E+02 (KN) 浮き屋根重量 Wr0 1.43E+03 (KN) 浮き屋根可量 Wr1 3.51E+02 (KN) 固定屋根重量 Wcr0 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN) 固定屋根付属品重量 Wcr2 0.00E+00 (KN) 固定屋根付属品重量 Wcr2 0.00E+00 (KN)	<u>们</u> 板香景	We∩	2 41E+03	(KN)
深き屋根重量 Wr0 1.43E+03 (KN) 浮き屋根付属品重量 Wr1 3.51E+02 (KN) 固定屋根重量 Wcr0 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN) 固定屋根骨重量 Wcr2 0.00E+00 (KN) 国定屋根付属品重量 Wcr2 0.00E+00 (KN)	四····································	Ws1	3 50F+02	(KN)
アと屋根重量 Wr0 1.102.000 (NN) 浮き屋根付属品重量 Wr1 3.51E+02 (KN) 固定屋根重量 Wcr0 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN) 固定屋根付属品重量 Wcr2 0.00E+00 (KN) タンク本体重量 合計 Wer 4.55E+06 (N)	図版的商品主要	Wr0	1 43E+03	(KN)
固定屋根重量 Wcr0 0.00E+00 (KN) 固定屋根骨重量 Wcr1 0.00E+00 (KN) 固定屋根付属品重量 Wcr2 0.00E+00 (KN) タンク本体重量 会計 Wer 4.55E+06 (N)	1752年18半年	Wr1	3 51 F+02	(KN)
<u>固定屋根骨重量</u> 固定屋根骨重量 固定屋根付属品重量 Wcr1 0.00E+00 (KN) タンク本体重量 会計 Wer 4.55E+06 (N)	<u>いてにたい。「「「「」」」」</u> 「日定 屋根 香 島	Werfl	0.012+02	(KN)
ロンク本体重量 会計 Wer 4,555+06 (NN)	<u>四天子派手手</u> 因完层根骨重量	Wor1		
<u> 単に注)(時間単単単 WC12 0.000-00 (NN)</u> タンク太休		Wor2		
	<u>にたたにには、1000年半</u> タンク本体電量 合計	Wsr	4 55E+06	(N)

旧法タンク No.3			
「計算式と質点系モデルの入力数値」		紫字:入力值	
		(単位:N, cm)	
貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.3388	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3466	(-)
液重量 W=gγπD ² H/4	W	2.80E+08	(N)
合計重量(W+Wsr)	W+Wsr	2.84E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		1.36E+08	(N)
$W_1 = f_{w1} * (W + Wsr)$		1.32E+08	(N)
消防法/有効液重量率	f _{w0}	0.48	(-)
	f _{w1}	0.47	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		755.38	(cm)
H ₁ = f _{h1} *H		754.51	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.40	(-)
側板自重による鉛直抵抗力	V0	195.11	(N/cm)
ばね係数	Кь	4.64E+07	(N/cm)
浮き上がり抵抗力	qу	641.86	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V0	836.97	(N/cm)
保有水平耐力(降伏耐力)	Qy	3.54E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.76	(cm)
減衰係数	С	7.51E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	5.98	(-)

(SI単位)

_質点系モデルによる側板下端の浮き上がり変位計算用諸元			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	73500	(kl)
貯槽内径	D	69765	(mm)
側板高さ	Hmax	21355	(mm)
最下段側板厚	t _s	29	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(HW50)</u>	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σγ	490	(N/mm2)
最高液高さ	Н	19229	(mm)
液密度	r	9.50E-07	(kg∕mm3)
直径/液高さ比	D/H	3.63	(-)
液高さ/直径比	H/D	0.28	(-)
消防法/有効液重量率 f _{w0}	Н		
$f_{W0} = -0.1408(\frac{n}{D})^4 + 0.8427(\frac{n}{D})^3 - 1.916(\frac{n}{D})^2 + 2$	$2.0933(\frac{n}{D}) - 0.1172$	0.33	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 100000000000000000000000000000000000$	$2.3017(\frac{H}{D}) - 0.1634$	0.32	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	$0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
		0.40	
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0.0207(\frac{H}{D}) + 0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.18	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	6.29E+03	(KN)
側板付属品重量	Ws1	6.89E+02	(KN)
浮き屋根重量	Wr0	2.34E+03	(KN)
浮き屋根付属品重量	Wr1	5.05E+02	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	9.83E+06	(N)

[計算式と質点系モデルの入力数値] 紫字:入力値				
	_	<u>(単位 : N, cm)</u>		
貯槽の固有周期				
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.3608	(sec)	
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3824	(-)	
液重量 W = g $\gamma \pi D^2$ H / 4	w	6.85E+08	(N)	
合計重量(W+Wsr)	W+Wsr	6.95E+08	(N)	
減衰比	ξ	0.15	(-)	
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)	
有効液重量				
$W_0 = f_{w0} * (W + Wsr)$		2.30E+08	(N)	
$W_1 = f_{w1} * (W + Wsr)$		2.20E+08	(N)	
消防法/有効液重量率	f _{w0}	0.33	(-)	
	f _{w1}	0.32	(-)	
有効液の重心高さ				
$H_0 = f_{h0} * H$		769.06	(cm)	
$H_1 = f_{h1} * H$		737.93	(cm)	
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)	
	f _{h1}	0.38	(-)	
側板自重による鉛直抵抗力	Vo	318.63	(N/cm)	
ばね係数	Кь	6.81E+07	(N/cm)	
浮き上がり抵抗力	qy	9.18E+02	(N/cm)	
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V0	1.24E+03	(N/cm)	
保有水平耐力(降伏耐力)	Qy	1.28E+08	(N)	
降伏変位 (=Qy/Kb)	Δy	1.88	(cm)	
減衰係数	С	1.17E+06	(N/(cm/s))	
貯蔵内径と有効液の重心高さの比	D/H1	9.45	(-)	

質点系モデルによる側板下端の浮き上がり変位計算用諸元			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	100000	(kl)
貯槽内径	D	83100	(mm)
側板高さ	Hmax	19985	(mm)
最下段側板厚	t _s	33	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	25	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(SPV450Q)</u>	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	450	(N/mm2)
最高液高さ	н	18447	(mm)
液密度	r	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	4.50	(-)
液高さ/直径比	H/D	0.22	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.26	(-)
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.25	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2$	$+0.0207(\frac{H}{D})+0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.17	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	7.79E+03	(KN)
側板付属品重量	Ws1	1.18E+03	(KN)
浮き屋根重量	Wr0	2.65E+03	(KN)
浮き屋根付属品重量	Wr1	6.58E+02	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.23E+07	(N)

計算式と質点系モデルの入力数値] 紫字:入力値			
		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.3890	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3967	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	W	9.32E+08	(N)
合計重量(W+Wsr)	W+Wsr	9.44E+08	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		2.47E+08	(N)
$W_1 = f_{w1} * (W + Wsr)$		2.32E+08	(N)
消防法/有効液重量率	f _{w0}	0.26	(-)
	f _{w1}	0.25	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		738.25	(cm)
$H_1 = f_{h1} * H$		697.64	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力	V0	343.57	(N/cm)
ばね係数	K⊳	6.16E+07	(N/cm)
浮き上がり抵抗力	qy	861.64	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	$q_y + V_0$	1205.22	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.87E+08	(N)
降伏変位 (=Qy/Kb)	Δy	3.04	(cm)
減衰係数	С	1.14E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	11.91	(-)

付表 1-3 代表的な新法タンク6基の質点系モデルの入力諸元の計算シート

新法タンク No.1

(SI単位)

<u> 質点系モデルによる側板下端の浮き上り変位</u>	計算用諸元		(赤字:入力值)
[諸元]			
公称容量	VOL (kl)	2535	(kl)
貯槽内径	D	15500	(mm)
側板高さ	Hmax	15200	(mm)
最下段側板厚	t _s	14	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	9	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率 (SS400)	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	13459	(mm)
液密度	γ	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	1.15	(-)
液高さ/直径比	H/D	0.87	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.$	$0933(\frac{H}{D}) - 0.1172$	0.73	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.67	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.42	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0207(\frac{H}{D}) + 0.3644$	0.47	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.13	(N/mm2)

タンク本体重量(赤字:入力値)

側板重量	Ws0	4.65E+02	(KN)
側板付属品重量	Ws1	5.65E+01	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	1.09E+02	(KN)
固定屋根重量	Wcr0	7.07E+01	(KN)
固定屋根骨重量	Wcr1	4.82E+01	(KN)
固定屋根付属品重量	Wcr2	4.44E+01	(KN)
タンク本体重量 合計	Wsr	7.94E+05	(N)
[計算式と質点系モデルの入力数値]

		(単位:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.1655	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2500	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	2.37E+07	(N)
合計重量(W+Wsr)	W+Wsr	2.45E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		1.78E+07	(N)
$W_1 = f_{w1} * (W + Wsr)$		1.63E+07	(N)
消防法/有効液重量率	f _{w0}	0.73	(-)
	f _{w1}	0.67	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		561.81	(cm)
$H_1 = f_{h1} * H$		631.20	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.47	(-)
側板自重による鉛直抵抗力	Vo	140.66	(N/cm)
ばね係数	Кь	2.39E+07	(N/cm)
浮き上がり抵抗力	qy	543.06	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	q _y +V ₀	683.72	(N/cm)
保有水平耐力(降伏耐力)	Qy	4.09E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.17	(cm)
減衰係数	С	1.89E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	2.46	(-)

紫字:入力值

質点系モデルによる側板下端の浮き上り変位計算用諸元			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	7600	(kl)
貯槽内径	D	29060	(mm)
側板高さ	Hmax	12945	(mm)
最下段側板厚	t _s	16	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	13	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SM41C)	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11420	(mm)
液密度	r	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	2.54	(-)
液高さ/直径比	H/D	0.39	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.46	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.44	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^3$	$h^2 + 0.0207(\frac{H}{D}) + 0.3644$	0.40	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.11	(N/mm2)

側板重量	Ws0	9.20E+02	(KN)
側板付属品重量	Ws1	5.92E+01	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	1.01E+03	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.99E+06	(N)

新法タンク No.2 [計算式と質点系モデルの入力数値]

紫字:入力値 (単位:N, cm)

案子:
(単位

貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.1683	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3525	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	7.06E+07	(N)
合計重量(W+Wsr)	W+Wsr	7.26E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		3.32E+07	(N)
$W_1 = f_{w1} * (W + Wsr)$		3.22E+07	(N)
消防法/有効液重量率	f _{w0}	0.46	(-)
	f _{w1}	0.44	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		458.22	(cm)
$H_1 = f_{h1} * H$		454.61	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.40	(-)
側板自重による鉛直抵抗力	Vo	107.25	(N/cm)
ばね係数	Кь	4.58E+07	(N/cm)
浮き上がり抵抗力	qy	500.23	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +V ₀)	q _y +V ₀	607.49	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.77E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.39	(cm)
減衰係数	С	3.68E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	6.39	(-)

当該「「「」」では「「」」では「「」」では「「」」では「「」」では「「」」では、「」では、「			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	31800	(kl)
貯槽内径	D	45900	(mm)
側板高さ	Hmax	23000	(mm)
最下段側板厚	t _s	21	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	14	(mm)
アニュラ板厚	t _b	15	(mm)
鋼材のヤング率(SPV490Q)	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	19240	(mm)
液密度	γ	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	2.39	(-)
液高さ/直径比	H/D	0.42	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.48	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.47	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.40	(-)
底板に作用する最大静液圧			
P ₀ =g γ H		0.18	(N/mm2)

側板重量	Ws0	3.18E+03	(KN)
側板付属品重量	Ws1	3.50E+02	(KN)
浮き屋根重量	Wr0	1.39E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.92E+06	(N)

[計算式と質点系モデルの入力数値]

紫字:入力値 (単位:N, cm)

貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.3368	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3460	(-)
液重量 W=gγπD ² H/4	w	2.97E+08	(N)
合計重量(W+Wsr)	W+Wsr	3.02E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		1.45E+08	(N)
$W_1 = f_{w1} * (W + Wsr)$		1.41E+08	(N)
消防法/有効液重量率	f _{w0}	0.48	(-)
	f _{w1}	0.47	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		773.07	(cm)
H ₁ = f _{h1} *H		772.69	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.40	(-)
側板自重による鉛直抵抗力	Vo	244.86	(N/cm)
ばね係数	Kь	5.00E+07	(N/cm)
浮き上がり抵抗力	qy	1147.81	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	$q_y + V_0$	1392.67	(N/cm)
保有水平耐力(降伏耐力)	Qy	5.96E+07	(N)
降伏変位 (=Qy/Kb)	Δy	1.19	(cm)
減衰係数	С	8.04E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	5.94	(-)

```
(SI単位)
```

<u>、質点系モデルによる側板下端の浮き上り変位計算用諸元</u>			(赤字:入力值)
[諸元]			-
<u>公称容量</u>	VOL (kl)	50000	(kl)
貯槽内径	D	61000	(mm)
側板高さ	Hmax	21000	(mm)
最下段側板厚	ts	26	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23	(mm)
アニュラ板厚	t _b	18	(mm)
鋼材のヤング率 (WT62)	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490.00	(N/mm2)
最高液高さ	Н	17545.00	(mm)
液密度	γ	9.50E-07	(kg∕mm3)
直径/液高さ比	D/H	3.48	(-)
液高さ/直径比	H/D	0.29	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.000$	$0933(\frac{H}{D}) - 0.1172$	0.35	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.5$	$3017(\frac{H}{D}) - 0.1634$	0.33	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0000000000000000000000000000000000$	$807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0$	$207(\frac{H}{D}) + 0.3644$	0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.16	(N/mm2)

側板重量	Ws0	6.77E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	4.32E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.11E+07	(N)

[計算式と質点系モデルの入力数値]		紫字:入力值 (単位:N_cm)	
貯槽の固有周期		(半世.N, Chi)	
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.3052	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3793	(-)
液重量 W=gγπD ² H/4	w	4.78E+08	(N)
合計重量(W+Wsr)	W+Wsr	4.89E+08	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有⁄勿液里重 ₩. = f.*(W +Wcr)		1 60E+08	(N)
$W_0 = f_{W0} + (W_1 + W_{ov})$		1.62E+08	(N) (N)
₩ ₁ - I _{w1} *(₩ Ŧ₩Sr)		1.02E+00	
消防法/有 効液里重率	t _{w0}	0.35	(-)
	f _{w1}	0.33	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		701.76	(cm)
$H_1 = f_{h1} * H$		675.65	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力	V0	353.27	(N/cm)
ばね係数	Кь	7.01E+07	(N/cm)
浮き上がり抵抗力	qу	1315.30	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V0	1668.57	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.44E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.06	(cm)
減衰係数	С	1.02E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	9.03	(-)

(SI単位)

質点系モデルによる側板下端の浮き上り変位	計算用諸元		(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	74600	(kl)
貯槽内径	D	69750	(mm)
側板高さ	Hmax	21855	(mm)
最下段側板厚	t _s	29	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23	(mm)
アニュラ板厚	t _b	18	(mm)
鋼材のヤング率(SPV50)	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	19715	(mm)
液密度	r	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	3.54	(-)
液高さ/直径比	H/D	0.28	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.34	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.33	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.18	(N/mm2)

側板重量	Ws0	6.43E+03	(KN)
側板付属品重量	Ws1	6.89E+02	(KN)
浮き屋根重量	Wr0	2.81E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	9.93E+06	(N)

新法タンク No.5 [計算式と質点系モデルの入力数値]

紫字:入力值

(単位:N, cm)

貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.3670	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3806	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	7.02E+08	(N)
合計重量(W+Wsr)	W+Wsr	7.12E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		2.42E+08	(N)
$W_1 = f_{w1} * (W + Wsr)$		2.32E+08	(N)
消防法/有効液重量率	f _{w0}	0.34	(-)
	f _{w1}	0.33	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		788.52	(cm)
$H_1 = f_{h1} * H$		758.12	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力	Vo	324.73	(N/cm)
ばね係数	Кь	6.93E+07	(N/cm)
浮き上がり抵抗力	qy	1394.27	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _y +Vo)	qy+V0	1719.00	(N∕cm)
保有水平耐力(降伏耐力)	Qy	1.41E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.03	(cm)
減衰係数	С	1.21E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	9.20	(-)

<u> 質点系モデルによる側板下端の浮き上り変位</u>	(赤字:入力値)		
[諸元]			
公称容量	VOL (kl)	102700	(kl)
貯槽内径	D	80000	(mm)
側板高さ	Hmax	22000	(mm)
最下段側板厚	t _s	35	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	27	(mm)
アニュラ板厚	t _b	21	(mm)
鋼材のヤング率(HW50)	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	20440	(mm)
液密度	γ	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	3.91	(-)
液高さ/直径比	H/D	0.26	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2$	$.0933(\frac{H}{D}) - 0.1172$	0.31	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2$	$2.3017(\frac{H}{D}) - 0.1634$	0.29	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0000000000000000000000000000000000$	0.40	(-)	
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0$	$0.0207(\frac{H}{D}) + 0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0=g \gamma H$		0.19	(N/mm2)

側板重量	Ws0	7.95E+03	(KN)
側板付属品重量	Ws1	1.18E+03	(KN)
浮き屋根重量	Wr0	3.95E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.31E+07	(N)

[計算式と質点系モデルの入力数値]		紫字:入力値 (単位:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W+Wsr)/(g\pi E*t_{1/3}))*j$		0.3882	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3877	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	9.57E+08	(N)
合計重量(W+Wsr)	W+Wsr	9.70E+08	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j =	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + Wsr)$		2.97E+08	(N)
$W_1 = f_{w1} * (W + Wsr)$		2.83E+08	(N)
消防法/有効液重量率	f _{w0}	0.31	(-)
	f _{w1}	0.29	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$		817.54	(cm)
$H_1 = f_{h1} * H$		779.96	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力	Vo	363.06	(N/cm)
ばね係数	Кь	7.55E+07	(N/cm)
浮き上がり抵抗力	qy	1656.28	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+Vo)	qy+V0	2019.34	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.60E+08	(N)
(年人) (FUy/Kb) 減高仮数		3.45	(cm)
減衰除数		1.40E+06	(N/(cm/s))
町 風 内 住 と 有 幼 液 の 里 い 尚 さ の 比	[U/H1	10.26	(-)

添付資料 2

動液圧計算結果

付表 2-1 旧法タンク No.3 の動液圧計算用入力データ

D	45100 mm
Н	18802 mm
Kh1	0.504
ν3	1.68
ρ	9.50E-07 kg/mm2

H/D	0.416896
分割	100
⊿н	188.02 mm
g	9.8 m/sec2
Z	9.01E+12 mm3

C00	C01	C02	C03	C04	C05
0.782173	-0.12951	0.723741	-4.12859	5.558585	-2.80014
C10	C12	C12	C13	C14	C15
0.716301	0.23289	-0.34748	-1.52302	1.928093	-1.00475

付図 2-1 側板の高さにおける動液圧の分布(旧法タンク No.3)

				P = 2D*Ph(z)*	<u>π/4 より</u>	
<u>7</u> mm)	Ph0(Z)	Ph1(Z)	Ph(Z)	P (N/mm)	M (Nmm)	Q (NI)
0.00	0.04108	0.02558	0.06665	(N/ mm) 4721 95	5 0051F+11	6 6342E+07
188.02	0.04101	0.02566	0.06667	4723.18	4 8812E+11	6 5454E+07
376.04	0.04101	0.02500	0.00007	4723.10	4.0012L+11	6.4566E+07
570.04	0.04095	0.02574	0.00009	4724.07	4./590E+11	0.4000E+07
504.00	0.04090	0.02582	0.00072	4720.30	4.0384E+11	0.30/8E+0/
/52.08	0.04085	0.02589	0.06674	4/2/.98	4.5195E+11	6.2/89E+0/
940.10	0.04080	0.02596	0.06676	4/29.60	4.4023E+11	6.1900E+07
1128.12	0.04076	0.02602	0.06678	4731.09	4.2868E+11	6.1010E+07
1316.14	0.04072	0.02608	0.06680	4732.35	4.1729E+11	6.0121E+07
1504.16	0.04067	0.02614	0.06681	4733.31	4.0607E+11	5.9231E+07
1692.18	0.04063	0.02619	0.06682	4733.89	3.9502E+11	5.8341E+07
1880.20	0.04059	0.02624	0.06682	4734.03	3.8413E+11	5.7451E+07
2068.22	0.04054	0.02628	0.06682	4733.66	3.7341E+11	5.6561E+07
2256.24	0.04049	0.02632	0.06681	4732 72	3.6286F+11	55671E+07
2444.26	0.04043	0.02635	0.06678	4731.16	3 5248E+11	54781E+07
2444.20	0.04040	0.02000	0.06675	4701.10	2 4 2 2 6 E + 1 1	5 2002E+07
2032.20	0.04036	0.02030	0.00075	4/20.92	3.4220ET11	5.3692E+07
2820.30	0.04031	0.02640	0.00071	4725.97	3.3221E+11	5.3003E+07
3008.32	0.04025	0.02641	0.06666	4/22.25	3.2233E+11	5.2115E+07
3196.34	0.04017	0.02642	0.06659	4717.72	3.1262E+11	5.1227E+07
3384.36	0.04010	0.02642	0.06652	4712.36	3.0307E+11	5.0341E+07
3572.38	0.04001	0.02642	0.06643	4706.13	2.9369E+11	4.9455E+07
3760.40	0.03992	0.02641	0.06633	4699.00	2.8447E+11	4.8571E+07
3948.42	0.03982	0.02639	0.06622	4690.95	2.7542E+11	4.7688E+07
4136.44	0.03972	0.02637	0.06609	4681.96	2.6654E+11	4.6807E+07
4324 46	0.03961	0 0 2 6 3 4	0 06595	467199	2 5782F+11	4 5928F+07
451248	0.03949	0.02631	0.06579	4661.05	2 4927F+11	4 5050F+07
4700 50	0.03936	0.02627	0.06563	4649 11	2.4088E+11	4 4175E+07
4700.50	0.00000	0.02027	0.06544	4626 17	2.400000111	4.2202E±07
4000.JZ	0.03922	0.02022	0.00544	4030.17	2.3200E+11	4.3302E+07
5070.54	0.03908	0.02010	0.00525	4022.21	2.2400E+11	4.2432E+07
5264.56	0.03893	0.02610	0.06503	4607.22	2.16/0E+11	4.1564E+07
5452.58	0.03877	0.02603	0.06481	4591.20	2.089/E+11	4.0699E+07
5640.60	0.03861	0.02596	0.06457	4574.16	2.0139E+11	3.9838E+07
5828.62	0.03844	0.02588	0.06431	4556.07	1.9398E+11	3.8979E+07
6016.64	0.03825	0.02579	0.06404	4536.95	1.8674E+11	3.8125E+07
6204.66	0.03806	0.02569	0.06376	4516.80	1.7965E+11	3.7273E+07
6392.68	0.03787	0.02559	0.06346	4495.61	1.7272E+11	3.6426E+07
6580.70	0.03766	0.02548	0.06315	4473.40	1.6595E+11	3.5583E+07
6768.72	0.03745	0.02537	0.06282	4450.15	1.5934E+11	3.4744E+07
695674	0 0 3 7 2 3	0 0 2 5 2 4	0 06247	4425 89	1 5288F+11	3 3910F+07
7144 76	0.03700	0.02511	0.06212	4400.61	14659F+11	3 3080E+07
7332 78	0.03677	0.02498	0.06175	4374 32	1.4044E+11	3 2 2 5 5 E + 0 7
7520.80	0.03653	0.02430	0.06136	4374.32	1.4044L+11	3.2235E+07
7320.00	0.03033	0.02463	0.00130	4347.02	1.0440E+11	3.1433E+07
7708.82	0.03628	0.02408	0.06096	4318.72	1.2802E+11	3.0620E+07
/890.84	0.03602	0.02453	0.06055	4289.43	1.2294E+11	2.9811E+07
8084.86	0.03576	0.02436	0.06012	4259.14	1.1/41E+11	2.900/E+0/
8272.88	0.03549	0.02419	0.05968	4227.88	1.1203E+11	2.8210E+07
8460.90	0.03521	0.02401	0.05922	4195.63	1.0680E+11	2.7418E+07
8648.92	0.03493	0.02383	0.05876	4162.41	1.0172E+11	2.6632E+07
8836.94	0.03464	0.02364	0.05827	4128.21	9.6789E+10	2.5853E+07
9024.96	0.03434	0.02344	0.05778	4093.05	9.2001E+10	2.5080E+07
9212.98	0.03403	0.02323	0.05727	4056.91	8.7357E+10	2.4314E+07
9401.00	0.03372	0.02302	0.05674	4019.80	8.2857E+10	2.3554E+07
9589.02	0.03341	0.02280	0.05620	3981.72	7.8499E+10	2.2802E+07
9777.04	0.03308	0 0 2 2 5 7	0.05565	3942.66	74282F+10	2 2057F+07
9965.06	0.03275	0.02234	0.05509	3902.61	7 0204F+10	2 1320E+07
10153.00	0.032/1	0.02204	0.05451	3861 59	6 6 2 6 4 E + 1 0	2 0500E+07
102/1110	0.03241	0.02209	0.05302	301054	6 2461E+10	1 98685+07
10590.10	0.03207	0.02100	0.000002	2776.40	5 0700E+10	10152540
10029.12	0.031/2	0.02139	0.00001	3770.49		104475-0
10/1/.14	0.03136	0.02132	0.05269	3/32.42	5.5258E+10	1.844/E+0/
10905.16	0.03100	0.02105	0.05205	368/30	5.1855E+10	1.//50E+07
11093.18	0.03062	0.02077	0.05140	3641.12	4.8582E+10	1.7061E+07
11281.20	0.03024	0.02049	0.05073	3593.85	4.5438E+10	1.6381E+07
11469.22	0.02985	0.02019	0.05005	3545.47	4.2421E+10	1.5710E+07
11657.24	0.02946	0.01989	0.04935	3495.95	3.9530E+10	1.5048E+07
11845.26	0.02905	0.01958	0.04863	3445.25	3.6762E+10	1.4395E+07
12033.28	0.02864	0.01926	0.04790	3393.35	3.4116E+10	1.3752E+07
10001 00	0.02822	0.01893	0 0 4 7 1 5	3340.20	3.1590F+10	1.3119F+07
1227130						

付表 2-2 旧法タンク No.3 の動液圧計算結果

12597.34	0.02734	0.01825	0.04559	3229.99	2.6889E+10	1.1884E+07
12785.36	0.02689	0.01790	0.04479	3172.82	2.4712E+10	1.1282E+07
12973.38	0.02642	0.01754	0.04396	3114.21	2.2646E+10	1.0691E+07
13161.40	0.02594	0.01717	0.04311	3054.09	2.0690E+10	1.0111E+07
13349.42	0.02545	0.01679	0.04224	2992.41	1.8843E+10	9.5425E+06
13537.44	0.02495	0.01640	0.04135	2929.08	1.7101E+10	8.9858E+06
13725.46	0.02443	0.01599	0.04043	2864.05	1.5463E+10	8.4412E+06
13913.48	0.02390	0.01558	0.03948	2797.22	1.3926E+10	7.9090E+06
14101.50	0.02335	0.01516	0.03851	2728.51	1.2487E+10	7.3895E+06
14289.52	0.02279	0.01473	0.03752	2657.84	1.1146E+10	6.8832E+06
14477.54	0.02220	0.01429	0.03649	2585.11	9.8977E+09	6.3903E+06
14665.56	0.02160	0.01383	0.03543	2510.21	8.7413E+09	5.9113E+06
14853.58	0.02098	0.01337	0.03434	2433.04	7.6735E+09	5.4466E+06
15041.60	0.02033	0.01289	0.03322	2353.49	6.6917E+09	4.9966E+06
15229.62	0.01966	0.01240	0.03206	2271.44	5.7932E+09	4.5618E+06
15417.64	0.01897	0.01190	0.03087	2186.76	4.9749E+09	4.1427E+06
15605.66	0.01825	0.01138	0.02963	2099.32	4.2338E+09	3.7397E+06
15793.68	0.01751	0.01085	0.02836	2008.99	3.5670E+09	3.3535E+06
15981.70	0.01674	0.01030	0.02704	1915.61	2.9712E+09	2.9846E+06
16169.72	0.01593	0.00974	0.02568	1819.03	2.4430E+09	2.6335E+06
16357.74	0.01510	0.00917	0.02427	1719.10	1.9791E+09	2.3009E+06
16545.76	0.01423	0.00858	0.02281	1615.65	1.5760E+09	1.9874E+06
16733.78	0.01332	0.00797	0.02129	1508.51	1.2299E+09	1.6936E+06
16921.80	0.01237	0.00735	0.01973	1397.49	9.3719E+08	1.4205E+06
17109.82	0.01139	0.00671	0.01810	1282.40	6.9380E+08	1.1685E+06
17297.84	0.01036	0.00605	0.01642	1163.05	4.9570E+08	9.3862E+05
17485.86	0.00929	0.00538	0.01467	1039.24	3.3869E+08	7.3159E+05
17673.88	0.00817	0.00468	0.01286	910.74	2.1837E+08	5.4827E+05
17861.90	0.00700	0.00397	0.01097	777.34	1.3020E+08	3.8957E+05
18049.92	0.00578	0.00323	0.00902	638.81	6.9470E+07	2.5644E+05
18237.94	0.00451	0.00248	0.00699	494.90	3.1274E+07	1.4986E+05
18425.96	0.00318	0.00170	0.00488	345.38	1.0523E+07	7.0866E+04
18613.98	0.00178	0.00090	0.00268	189.99	1.9305E+06	2.0535E+04
18802.00	0.00033	0.00007	0.00040	28.45	0.0000E+00	0.0000E+00

付表 2-3 新法タンク No.3 の動液圧計算用入力データ

D	45900 mm
Н	19240 mm
Kh1	0.5037
ν3	1.679
ρ	9.50E-07 kg/mm2

H/D	0.419172
分割	100
∠H	192.4 mm
g	9.8 m/sec2
Z	9.49E+12 mm3

C00	C01	C02	C03	C04	C05
0.78058	-0.12958	0.726131	-4.13109	5.56109	-2.8015
C10	C12	C12	C13	C14	C15
0.71432	0.231797	-0.3307	-1.55307	1.958823	-1.01887

付図 2-2 側板の高さにおける動液圧の分布(新法タンク No.3)

付表 2-4 新法タンク No.3 の動液圧計算結果

				P = 2D*Ph(z)*π/4より			
Z	Ph0(Z)	Ph1(Z)	Ph(Z)	P	M	Q	
(mm)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm)	(N.mm)	(N)	
192.40	0.04195	0.02000	0.00801	4903.50	5.4473ET11	7.0539E+07	
384.80	0.04182	0.02013	0.06805	4906.28	5.1795E+11	6.8651E+07	
577.20	0.04177	0.02620	0.06807	4907.96	5.0483E+11	6 7707E+07	
769.60	0.04172	0.02638	0.06810	4909.70	4.9189F+11	6.6763F+07	
962.00	0.04167	0 0 2 6 4 5	0.06812	491140	4 7914F+11	6 5818F+07	
1154.40	0.04162	0.02652	0.06814	4912.96	4.6657E+11	6.4873E+07	
1346.80	0.04158	0.02658	0.06816	4914.29	4.5418E+11	6.3928E+07	
1539.20	0.04154	0.02664	0.06817	4915.32	4.4197E+11	6.2982E+07	
1731.60	0.04149	0.02669	0.06818	4915.96	4.2994E+11	6.2036E+07	
1924.00	0.04145	0.02674	0.06819	4916.15	4.1810E+11	6.1090E+07	
2116.40	0.04140	0.02678	0.06818	4915.82	4.0643E+11	6.0145E+07	
2308.80	0.04135	0.02682	0.06817	4914.90	3.9495E+11	5.9199E+07	
2501.20	0.04129	0.02685	0.06815	4913.33	3.8365E+11	5.8253E+07	
2693.60	0.04123	0.02688	0.06812	4911.07	3./254E+11	5./308E+0/	
2880.00	0.04117	0.02690	0.06807	4908.07	3.0100E+11 2.5005E+11	5.0304E+07	
3078.40	0.04110	0.02092	0.00802	4904.28	3.3083E+11	5.0420E+07	
3463.20	0.04105	0.02093	0.06788	489416	3 2989E+11	5 3534F+07	
3655.60	0.04086	0.02693	0.06779	4887.77	3 1968E+11	5 2593E+07	
3848.00	0.04077	0.02692	0.06769	4880.44	3.0965E+11	5.1654E+07	
4040.40	0.04067	0.02691	0.06758	4872.16	2.9980E+11	5.0715E+07	
4232.80	0.04056	0.02689	0.06745	4862.90	2.9013E+11	4.9779E+07	
4425.20	0.04045	0.02686	0.06730	4852.64	2.8064E+11	4.8844E+07	
4617.60	0.04033	0.02682	0.06715	4841.36	2.7134E+11	4.7912E+07	
4810.00	0.04020	0.02678	0.06698	4829.05	2.6221E+11	4.6981E+07	
5002.40	0.04006	0.02673	0.06679	4815.69	2.5326E+11	4.6054E+07	
5194.80	0.03991	0.02668	0.06659	4801.28	2.4449E+11	4.5128E+07	
5387.20	0.03976	0.02662	0.06638	4/85.80	2.3589E+11	4.4206E+07	
5579.00	0.03960	0.02000	0.00015	4/09.20	2.2/48E+11 21022E+11	4.328/E+0/ 4.2371E+07	
5964.40	0.03945	0.02047	0.06564	4732.95	2.1923L+11 2.1117F+11	4.2371E+07	
6156.80	0.03907	0.02630	0.06537	4713.18	2.0328F+11	4.0550F+07	
6349.20	0.03887	0.02621	0.06508	4692.33	1.9557E+11	3.9645E+07	
6541.60	0.03867	0.02610	0.06478	4670.42	1.8803E+11	3.8744E+07	
6734.00	0.03846	0.02599	0.06446	4647.43	1.8066E+11	3.7848E+07	
6926.40	0.03825	0.02588	0.06412	4623.38	1.7346E+11	3.6956E+07	
7118.80	0.03802	0.02575	0.06378	4598.26	1.6644E+11	3.6069E+07	
7311.20	0.03779	0.02562	0.06341	4572.09	1.5958E+11	3.5187E+07	
7503.60	0.03755	0.02548	0.06304	4544.87	1.5290E+11	3.4310E+07	
7696.00	0.03/31	0.02534	0.06264	4516.60	1.4638E+11	3.3438E+07	
2020 20	0.03703	0.02519	0.00224	4407.29	1.4003E+11	3.2372E+07 3.1712E+07	
8273.20	0.03652	0.02300	0.06138	4425 58	1.0004E+11	3.0857E+07	
8465.60	0.03624	0.02469	0.06093	4393.19	1,2197F+11	3 0009E+07	
8658.00	0.03596	0.02451	0.06047	4359.78	1.1628E+11	2.9167E+07	
8850.40	0.03567	0.02432	0.05999	4325.36	1.1075E+11	2.8331E+07	
9042.80	0.03537	0.02413	0.05950	4289.92	1.0537E+11	2.7502E+07	
9235.20	0.03507	0.02392	0.05899	4253.47	1.0016E+11	2.6680E+07	
9427.60	0.03476	0.02371	0.05847	4216.01	9.5107E+10	2.5866E+07	
9620.00	0.03444	0.02350	0.05794	4177.55	9.0208E+10	2.5058E+07	
9812.40	0.03412	0.0232/	0.05/39	4138.0/	8.0404E+10	2.4258E+U/	
10107.00	0.03379	0.02304	0.05003	4097.07	7.6433E+10	2.34000000	
10389.60	0.03345	0.02261	0.05020	4013 50	7.0433E+10	2.2002E+07	
10582.00	0.03275	0.02231	0.05506	3969.91	6 8003F+10	2.1137F+07	
10774.40	0.03240	0.02205	0.05444	3925.26	6.4010E+10	2.0378E+07	
10966.80	0.03203	0.02178	0.05381	3879.55	6.0161E+10	1.9627E+07	
11159.20	0.03166	0.02150	0.05316	3832.75	5.6456E+10	1.8885E+07	
11351.60	0.03128	0.02122	0.05249	3784.84	5.2893E+10	1.8152E+07	
11544.00	0.03089	0.02093	0.05181	3735.80	4.9470E+10	1.7429E+07	
11736.40	0.03049	0.02063	0.05112	3685.61	4.6186E+10	1.6715E+07	
11928.80	0.03009	0.02032	0.05041	3634.22	4.3038E+10	1.6011E+07	
12121.20	0.02967	0.02000	0.04968	3581.62	4.0024E+10	1.5317E+07	
12313.00	0.02925	0.01968	0.04893	3527.76	3./143E+10	1.4033E+U/	
12000.00	0.02882	0.01935	0.04810	34/2.00	3.4392E+10 3.1770E+10	1.39395+07	
12098.40	0.02838	0.01900	0.04/38	3410.09	3.1770E+10	1.3290E+0/	

12890.80	0.02792	0.01865	0.04658	3358.19	2.9275E+10	1.2645E+07
13083.20	0.02746	0.01829	0.04575	3298.84	2.6904E+10	1.2004E+07
13275.60	0.02698	0.01793	0.04491	3237.99	2.4654E+10	1.1376E+07
13468.00	0.02650	0.01755	0.04404	3175.57	2.2525E+10	1.0759E+07
13660.40	0.02600	0.01716	0.04316	3111.51	2.0513E+10	1.0154E+07
13852.80	0.02548	0.01676	0.04224	3045.74	1.8617E+10	9.5614E+06
14045.20	0.02495	0.01635	0.04131	2978.19	1.6833E+10	8.9819E+06
14237.60	0.02441	0.01593	0.04034	2908.77	1.5159E+10	8.4156E+06
14430.00	0.02385	0.01551	0.03935	2837.39	1.3593E+10	7.8628E+06
14622.40	0.02327	0.01507	0.03834	2763.97	1.2132E+10	7.3239E+06
14814.80	0.02267	0.01461	0.03729	2688.39	1.0774E+10	6.7994E+06
15007.20	0.02206	0.01415	0.03621	2610.55	9.5145E+09	6.2897E+06
15199.60	0.02142	0.01367	0.03510	2530.35	8.3519E+09	5.7951E+06
15392.00	0.02076	0.01319	0.03395	2447.66	7.2830E+09	5.3162E+06
15584.40	0.02008	0.01269	0.03277	2362.37	6.3047E+09	4.8535E+06
15776.80	0.01937	0.01217	0.03154	2274.33	5.4138E+09	4.4075E+06
15969.20	0.01864	0.01165	0.03028	2183.41	4.6070E+09	3.9786E+06
16161.60	0.01788	0.01110	0.02898	2089.47	3.8811E+09	3.5676E+06
16354.00	0.01709	0.01055	0.02763	1992.35	3.2325E+09	3.1749E+06
16546.40	0.01626	0.00998	0.02624	1891.90	2.6576E+09	2.8012E+06
16738.80	0.01541	0.00939	0.02480	1787.95	2.1526E+09	2.4472E+06
16931.20	0.01452	0.00879	0.02331	1680.32	1.7139E+09	2.1136E+06
17123.60	0.01359	0.00817	0.02176	1568.84	1.3373E+09	1.8010E+06
17316.00	0.01262	0.00753	0.02016	1453.31	1.0188E+09	1.5103E+06
17508.40	0.01162	0.00688	0.01850	1333.54	7.5398E+08	1.2422E+06
17700.80	0.01057	0.00621	0.01677	1209.32	5.3851E+08	9.9757E+05
17893.20	0.00947	0.00551	0.01499	1080.44	3.6777E+08	7.7729E+05
18085.60	0.00833	0.00480	0.01313	946.67	2.3698E+08	5.8228E+05
18278.00	0.00713	0.00407	0.01120	807.79	1.4119E+08	4.1350E+05
18470.40	0.00588	0.00332	0.00920	663.54	7.5247E+07	2.7196E+05
18662.80	0.00458	0.00255	0.00712	513.69	3.3816E+07	1.5871E+05
18855.20	0.00322	0.00175	0.00497	357.98	1.1347E+07	7.4855E+04
19047.60	0.00179	0.00093	0.00272	196.13	2.0731E+06	2.1549E+04
19240.00	0.00030	0.00008	0.00039	27.87	0.0000E+00	0.0000E+00