別添資料1

1 質点減衰付きロッキング系モデル

1 質点減衰付きロッキング系モデルの概念図を付図 1.1 に示す。

付図1.1 1質点減衰付きロッキング系モデルの概念図

ラグランジュの方程式を用いて、1 質点減衰付きロッキング系モデルの運動方程式は次式 で求められる。

$$\begin{bmatrix} m_1 & m_1 h_1 \\ m_1 h_1 & m_1 h_1^2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{\theta}_B \end{bmatrix} + \begin{bmatrix} C_1 & 0 \\ 0 & C_\theta \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{\theta}_B \end{bmatrix} + \begin{bmatrix} k_1 & 0 \\ 0 & k_\theta \end{bmatrix} \begin{bmatrix} x_1 \\ \theta_B \end{bmatrix} = -\begin{bmatrix} m_1 \\ m_1 h_1 \end{bmatrix} \ddot{x}_g$$
(1.1)

一方、ベースシアQ及び転倒モーメントMEBPは、次式で表される。

$$Q(t) = m_1(\ddot{x}_1 + \ddot{x}_g + \ddot{\theta}_B \cdot h_1) + C_1 \dot{x}_1$$
(1.2)

$$M_{EBP}(t) = m_1(\ddot{x}_1 + \ddot{x}_g + \ddot{\theta}_B \cdot h_1)h_1 + \dot{C}_{\theta}\theta_B \qquad (1.3)$$

ここで、 m₁:バルジング振動有効液質量(kg) h₁:バルジング有効液質量高さ(cm) C₁:バルジング振動減衰係数(N.s/cm) C_{θ} : タンク基部のロッキング減衰係数(N.s.cm/rad) k₁: バルジング振動ばね定数(N/mm) k_{θ}: タンク基部のロッキングばね定数(N.cm/rad) $x_1, \dot{x}_1, \ddot{x}_1$: 質点の変位(cm)、速度(cm/s)、及び加速度(cm/s²) $\theta_B, \dot{\theta}_B, \ddot{\theta}_B$: タンク基部のロッキング角変位(rad)、角速度(rad/s)、及び角加速度(rad/s²) $x_g, \dot{x}_g, \ddot{x}_g$: タンク基礎の変位(cm)、速度(cm/s)、及び加速度(cm/s²)

また、
$$u_1 = x_1 + h_1 \theta_B$$
 とおくと、式(1)は次式のように表される。

$$m_1 \ddot{u}_1 + C_e \dot{u}_1 + k_e u_1 = -m_1 \ddot{x}_g \qquad (1.4)$$

ただし、

$\frac{1}{k_e} = [\frac{1}{k_1} + \frac{h_1^2}{k_{\theta}}]$	(1.5)
$\frac{1}{C_{e}} = \left[\frac{1}{C_{1}} + \frac{h_{1}^{2}}{C_{\theta}}\right]$	(1.6)

以下、式の誘導過程を示す。 [運動方程式の誘導] ラグランジュの方程式は、

$$\frac{\partial}{\partial t}\left(\frac{\partial T}{\partial \dot{x}_{1}}\right) - \frac{\partial T}{\partial x_{1}} + \frac{\partial F}{\partial \dot{x}_{1}} + \frac{\partial V}{\partial x_{1}} = 0 \qquad (1.7)$$

$$\frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \dot{\theta}_B} \right) - \frac{\partial T}{\partial \theta_B} + \frac{\partial F}{\partial \dot{\theta}_B} + \frac{\partial V}{\partial \theta_B} = 0$$
(1.8)

運動エネルギーとポテンシャルエネルギー及び粘性減衰エネルギーは、

$$T = \frac{1}{2}m_1(\dot{x}_1 + \dot{x}_g + \dot{\theta}_B \cdot h_1)^2$$
(1.9)

$$V = \frac{1}{2}k_1x_1^2 + \frac{1}{2}k_\theta\theta_B^2$$
(1.10)

$$F = \frac{1}{2}C_1 \dot{x}_1^2 + \frac{1}{2}C_\theta \dot{\theta}_B^2$$
(1.11)

そして、

$$\frac{\partial}{\partial t}\left(\frac{\partial T}{\partial \dot{x}_{1}}\right) = m_{1}\left(\ddot{x}_{1} + \ddot{x}_{g} + \ddot{\theta}_{B} \cdot h_{1}\right)$$
(1.12)

マトリックス表示すれば、

$$\begin{bmatrix} m_1 & m_1h_1 \\ m_1h_1 & m_1h_1^2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{\theta}_B \end{bmatrix} + \begin{bmatrix} C_1 & 0 \\ 0 & C_\theta \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{\theta}_B \end{bmatrix} + \begin{bmatrix} k_1 & 0 \\ 0 & k_\theta \end{bmatrix} \begin{bmatrix} x_1 \\ \theta_B \end{bmatrix} = -\begin{bmatrix} m_1 \\ m_1h_1 \end{bmatrix} \ddot{x}_g$$
(1.22)

(1.20)

(1.21)

また、質点の絶対変位を用いた表示形式は以下のように求められる。 $u_1 = x_1 + h_1 \theta_B$ とおくと、運動方程式は、

$$m_1(\ddot{u}_1 + \ddot{x}_g) + C_1\dot{x}_1 + k_1x_1 = 0$$
(1.23)

$$m_{1}h_{1}(\ddot{u}_{1}+\ddot{x}_{g})+C_{\theta}\dot{\theta}_{B}+k_{\theta}\theta_{B}=0$$
(1.24)
上式 (1.24) を書き直して、

$$m_1(\ddot{u}_1 + \ddot{x}_g) + \frac{C_\theta}{h_1^2}(\dot{u}_1 - \dot{x}_1) + \frac{k_\theta}{h_1^2}(u_1 - x_1) = 0$$
(1.25)

式 (1.23)、(1.2.6) 及び (1.25) を比較して、

$$C_1 \dot{x}_1 = (\frac{C_{\theta}}{h_1^2}) h_1 \dot{\theta}_B$$
 (1.26)

$$k_1 x_1 = \left(\frac{k_\theta}{h_1^2}\right) h_1 \theta_B \tag{1.27}$$

ここで、 u_1 に関する運動方程式を導入する。この場合、減衰係数を C_e 及びばね係数を k_e とする。

$$m_1(\ddot{u}_1 + \ddot{x}_g) + C_e \dot{u}_1 + k_e u_1 = 0 \tag{1.28}$$

これより、式 (3.26) 及び式 (1..27) の関係を用いて、

$$C_e \dot{u}_1 = C_e (\dot{x}_1 + h_1 \dot{\theta}_B) = C_e [\frac{1}{C_1} + \frac{h_1^2}{C_{\theta}}] C_1 \dot{x}_1$$
 (1.29)

$$k_e u_1 = k_e (x_1 + h_1 \theta_B) = k_e \left[\frac{1}{k_1} + \frac{h_1^2}{k_\theta}\right] k_1 x_1$$
(1.30)

これより、 1

$$\dot{x}_{1} = \frac{1}{C_{1}\left[\frac{1}{C_{1}} + \frac{h_{1}^{2}}{C_{\theta}}\right]} \dot{u}_{1}$$
(1.31)
$$x_{1} = \frac{1}{k_{1}\left[\frac{1}{k_{1}} + \frac{h_{1}^{2}}{k_{\theta}}\right]} u_{1}$$
(1.32)

上式の関係を用い、式(1..23)と式(1..28)比較すれば、次式が得られる。

$$\frac{1}{C_e} = \left[\frac{1}{C_1} + \frac{h_1^2}{C_{\theta}}\right]$$
(1.31)

$$\frac{1}{k_e} = \left[\frac{1}{k_1} + \frac{h_1^2}{k_\theta}\right]$$
(1.32)

算式の一覧表を以下に示す。

ロッキングばねが非線形の場合には、復元力特性を以下のように置き換えることになる。

1) 2 元連立微分方程式表示 (x_1, θ_B) 運動方程式: $k_{\theta} \theta_B \rightarrow M(\theta_B)$

2) 1 元微分方程式表示 (x_1) 運動方程式: $k_e u_1 \rightarrow Q(u_1)$

	9 二速立洲八古田丰丰三	1 三洲八古田書手
	2 几座立做刀刀柱式衣小	1 几做万刀桂氏衣小
	(x_1, θ_B)	$u_1 = x_1 + h_1 \theta_B$
運動 方程式	$\begin{bmatrix} m_1 & m_1h_1 \\ m_1h_1 & m_1h_1^2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{\theta}_B \end{bmatrix} + \begin{bmatrix} C_1 & 0 \\ 0 & C_{\theta} \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{\theta}_B \end{bmatrix} + \begin{bmatrix} k_1 & 0 \\ 0 & k_{\theta} \end{bmatrix} \begin{bmatrix} x_1 \\ \theta_B \end{bmatrix} = -\begin{bmatrix} m_1 \\ m_1h_1 \end{bmatrix} \ddot{x}_g$	$m_1 \ddot{u}_1 + C_e \dot{u}_1 + k_e u_1 = -m_1 \ddot{x}_g$
ばね	1	1 1 h_1^2
定数	k_1 , k_{θ}	$\overline{k_e} = \overline{k_1} + \frac{1}{k_{\theta}}$
減衰係数	C_1 , $C_{ heta}$	$\frac{1}{C_e} = \frac{1}{C_1} + \frac{h_1^2}{C_\theta}$
相対変位	x_1	$x_1 = \frac{k_e}{k_1} u_1$
回転変位	$h_1 heta_B$	$h_1 \theta_B = \frac{k_e h_1^2}{k_\theta} u_1$
地動変位	X _g	X _g
絶対 変位	$x_1 + h_1 \theta_B + x_g$	$u_1 + x_g$

付表 1.1 1 質点減衰付き R モデルー覧表 [線形ロッキングばね k_aの場合]

別添資料2

動液圧の影響を考慮したタンク全体の浮き上がりロッキング特性 「Wozniak モデル」に基づく方法

2.1 計算手順

動液圧の影響を考慮したタンク全体の浮き上がりロッキング特性計算手順は、以下の 5 段階に分かれる(付図 2.1 参照)。

第1段階:隅角部浮き上がり特性計算 第2段階:全体タンク基部の非線形ロッキング特性計算 第3段階:1質点モデルの非線形ロッキング等価復元力特性計算 第4段階:1質点非線形ばね系モデルの復元力特性計算 第5段階:具体的復元力特性計算

ただし、タンク自重の影響及び、水平地震動によるタンク転倒モーメントに係る動液圧の 影響は無視する。

付図 2.1 動液圧の影響を考慮したタンク全体の浮き上がりロッキング特性計算手順

2.2 隅角部浮き上がり特性計算

Wozniak モデルを用いて計算する。この場合の主な仮定条件は下記のとおりである。 なお、側板下端に作用する自重の影響は別途取り扱うこととする。

- 1) タンク基礎は剛基礎とする。
- 2) タンク隅角部に作用する内圧は(静液圧+動液圧)とする。
- 3) 隅角部アニュラ板の曲げ剛性 D_sは∞とする。隅角部浮き上がり位置のアニュラ板端部 は回転拘束(固定)で浮き上がりは可能な境界条件とする。
- 4) アニュラ板は微小変形弾性理論に立脚する単位幅のはりとする。

隅角部浮き上がりモデルは、付図 2.2 に示す通りで、隅角部浮き上がり特性計算手順は付図 2.3 のとおりである。隅角部アニュラ板の曲げモーメント muを設定した場合、浮き上がり抵抗力と浮き上がり変位の関係は、次式で表される。

付図 2.2 隅角部浮き上がり・Wozniak モデル

$$q_{u} = \sqrt[4]{\frac{128}{9}D_{a}} \sqrt[4]{p_{u}^{3}} \sqrt[4]{\delta_{u}}$$
(2.1)

ただし、

$$p_u = p_0(1 - \alpha) \tag{2.2}$$

$$\alpha = \frac{p_{h1}}{p_0} \tag{2.3}$$

$$\delta_u = \frac{1}{2D_a} \left(\frac{m_u^2}{p_u}\right) \tag{2.4}$$

$$m_u = \sigma_u t_a^2 / 6 \tag{2.5}$$

隅角部アニュラ板が降伏モーメント my に達するとき、 Gu=Gv として、降伏浮き上がり抵

抗力 q_y と降伏変位 δ_y の関係が得られる。

また、隅角部アニュラ板に全塑性モーメント m_p に達するとき、 σ_u =1.5 σ_y として、全塑性 降伏浮き上がり抵抗力 q_p と降伏変位 δ_p の関係が得られる。

付図 2.3 隅角部浮き上がり特性計算手順(第1段階)

2.3 全体タンク基部の非線形ロッキング特性計算

主な仮定条件は下記のとおりである。

なお、側板下端に作用する自重の影響は別途取り扱うこととする。

1) 隅角部内圧は、円周にわたって余弦分布し次式で与える(付図 2.4 参照)。

 $p(\varphi) = p_0(1 - \alpha \cos \varphi)$

2) 隅角部浮き上がり変位は、円周にわたって一様傾斜分布し次式で与える(付図2.5参照)。

$$\delta(\varphi) = \frac{1}{2}(1 + \cos\varphi)\delta_u$$

3) 円周任意点の隅角部の抵抗力は、次式で与える(付図 2.6 参照)。

$$q(\phi) = \sqrt[4]{\frac{(1 + \cos \phi)}{2} \{\frac{(1 - \alpha \cos \phi)}{(1 - \alpha)}\}^3} \cdot q_u$$

付図 2.5 側板下端の片浮き上がり抵抗力分布と転倒抵抗モーメント

付図 2.6 側板下端の片浮き上がり抵抗力分布と転倒抵抗モーメント

片浮き上がり状態におけるタンク全体基部の非線形ロッキング特性計算手順は付図 2.7 のとおりである。

抵抗転倒モーメント・回転角の関係は次式で表される(付図 2.4 及び付図 2.6 参照)。

$$M_{R} = C_{M}(\alpha) R^{2} \sqrt[4]{R} D_{a} p_{0}^{3} \sqrt[4]{\theta_{t}}$$

$$\tag{2.6}$$

ただし、

 $C_M(\alpha) = -5.9588\alpha + 13.381 \tag{2.7}$

上式は、以下のように求められる。

抵抗転倒モーメント MRと隅角部浮き上がり抵抗力 quの関係式は、

$$M_{R} = 2\int_{0}^{\pi} q(\varphi) \cdot (1 + \cos\varphi) R^{2} d\varphi = 2q_{u}R^{2} \int_{0}^{\pi} \sqrt[4]{\frac{(1 + \cos\varphi)}{2} \{\frac{(1 - \alpha\cos\varphi)}{(1 - \alpha)}\}^{3}} (1 + \cos\varphi) d\varphi$$
$$= 2q_{u}R^{2} \int_{0}^{\pi} \sqrt[4]{\frac{(1 + \cos\varphi)^{5}}{2} \{\frac{(1 - \alpha\cos\varphi)}{(1 - \alpha)}\}^{3}} d\varphi$$
(2.8)

これより、積分を実行して二次曲線近似すれば、

$$M_R = 2q_u R^2 f_\varphi(\alpha) \tag{2.9}$$

 $f_{\varphi}(\alpha) = 2.0571\alpha^2 + 0.7074\alpha + 2.8963 \tag{2.10}$

一方、片浮き上がりしたタンクの傾斜角 θ_tと隅角部の最大浮き上がり変位 δ_uの関係式は、

$$\theta_t = \frac{\delta_u}{2R} \tag{2.11}$$

これより、隅角部の最大浮き上がり点の抵抗力は、

$$q_{u} = \sqrt[4]{\frac{128}{9}} D_{a} p_{u}^{3} \cdot \sqrt[4]{\delta_{u}} = \sqrt[4]{\frac{256}{9}} R D_{a} p_{u}^{3} \cdot \sqrt[4]{\theta_{t}}$$

$$= \sqrt[4]{\frac{256}{9}} R D_{a} p_{0}^{3} (1-\alpha)^{3} \cdot \sqrt[4]{\theta_{t}}$$
(2.12)

したがって、

$$M_{R} = 2q_{u}R^{2}f_{\varphi}(\alpha) = \left[2\sqrt[4]{\frac{256}{9}}f_{\varphi}(\alpha)\sqrt[4]{(1-\alpha)^{3}}\right] \times R^{2}\sqrt[4]{RD_{a}p_{0}^{3}} \cdot \sqrt[4]{\theta_{t}}$$

$$= C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}p_{0}^{3}} \cdot \sqrt[4]{\theta_{t}}$$

$$\subset \subset \subset ,$$

$$C_{M}(\alpha) = -5.9588\alpha + 13.381 \qquad (2.14)$$

$$(2.14)$$

2.4 1 質点モデルにおける非線形ロッキング等価復元力特性計算

片浮き上がり状態におけるタンク全体基部の非線形ロッキング等価復元力特性計算手順 は次のとおりである。

付図 2.9 質点ばね系モデルにおける非線形ロッキング復元力特性計算手順(第3段階)

非線形ロッキング復元力特性は、次式で表される(付図 2.10 参照)。

$$Q_{R} = \frac{C_{M}(\alpha)R^{2}}{H_{1}} \sqrt[4]{RD_{a}p_{0}^{3}} \sqrt[4]{\frac{\Delta_{R}}{H_{1}}}$$
(2.15)

上式は、式(2.15)に、以下に示す式(2.16)と式(2.17)を代入して求められる。 抵抗転倒モーメント MRと抵抗水平力 QRの関係式は、

$$M_{R} = Q_{R} \cdot H_{1}$$
 (2.16)
片浮き上がりしたタンクの傾斜角 θ_{t} と水平変位 Δ_{R} の関係式は

$$\theta_t = \frac{\Delta_R}{H_1} \tag{2.17}$$

付図 2.10 1 質点モデルにおけるロッキングに関する 抵抗水平力と水平変位

2.5 1 質点モデルにおける非線形復元力特性計算

1 質点非線形ばね系モデル (SDOF-Ke モデル)の運動方程式は、

$$(\frac{W_1}{g})\ddot{\Delta} + C_1\dot{\Delta} + K_e\Delta = -(\frac{W_1}{g})\ddot{z}_0$$
(2.18)

非線形復元力は、次式で表される(付図 2.11 参照)。 $Q(\Delta) = K_e \Delta$ (2.19) この場合、水平変位は

$$\Delta = \Delta_b + \Delta_R = \frac{Q(\Delta)}{K_b} + \Delta_R = \frac{Q_R(\Delta_R)}{K_b} + \Delta_R$$
(2.20)

ただし、

$$K_b = (\frac{2\pi}{T_b})^2 (\frac{W_1}{g})$$

ここで、

Ke:非線形ばね係数、Tb:バルジング固有周期、W1:有効液重量、C1:減衰係数

付図 2.11 1 質点モデル(SDOF-NR モデル) 抵抗水平力と水平変位

自重の影響を考慮した場合の算式のついては、次表にまとめて示す。

	白重無視	白臿老膚
動液圧比	$\alpha = p_{h1} / p_0$	$\alpha = p_{h1} / p_0$
最大浮き上が り点の内圧	$p_u = p_0(1-\alpha)$	$p_u = p_0(1-\alpha)$
qu-δu 関係式	$q_u = \sqrt[4]{\frac{128}{9}D_a} \sqrt[4]{p_u^3} \sqrt[4]{\delta_u}$	$q_{u} = \sqrt[4]{\frac{128}{9}D_{a}} \sqrt[4]{p_{u}^{3}} \sqrt[4]{\delta_{u}} + q_{t}$
M _R -θ _t 関係式	$M_{R} = C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{t}}$ $C_{M}(\alpha) = -5.9588\alpha + 13.381$	$M_{R} = C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{t}} + 2\pi R^{2}q_{t}$ $C_{M}(\alpha) = -5.9588\alpha + 13.381$
Q _R -∆ _R 関係式	$Q_{R} = \frac{C_{M}(\alpha)R^{2}}{H_{1}} \sqrt[4]{RD_{a}p_{0}^{3}} \sqrt[4]{\frac{\Delta_{R}}{H_{1}}}$	$Q_{R} = \frac{C_{M}(\alpha)R^{2}}{H_{1}} \sqrt[4]{RD_{a}p_{0}^{3}} \sqrt[4]{\frac{\Delta_{R}}{H_{1}}} + \frac{2\pi R^{2}q_{t}}{H_{1}}$
Q-Δ	$Q = Q_R$	$Q = Q_R$
関係式	$\Delta = \Delta_b + \Delta_R = \frac{Q_R}{K_b} + \Delta_R$	$\Delta = \Delta_b + \Delta_R = \frac{Q_R}{K_b} + \Delta_R$

付表 2.5.1 動液圧の影響を考慮した場合の算式(自重の影響を考慮した場合の算式等)

比較のため、動液圧の影響を無視した場合の算式について、次表に示す。

	自重無視	自重考慮
動液圧比	$\alpha = 0$	$\alpha = 0$
最大浮き上が り点の内圧	$p_u = p_0$	$p_u = p_0$
q _u -δ _u 関係式	$q_{u} = \sqrt[4]{\frac{128}{9}} D_{a} \sqrt[4]{p_{0}^{3}} \sqrt[4]{\delta_{u}}$	$q_{u} = \sqrt[4]{\frac{128}{9}D_{a}} \sqrt[4]{p_{0}^{3}} \sqrt[4]{\delta_{u}} + q_{t}$
M _R -θ _t 関係式	$M_{R} = 2\pi R^{2} \sqrt[4]{\frac{256RD_{a}}{9} p_{0}^{3}} \sqrt[4]{\theta_{t}}$	$M_{R} = 2\pi R^{2} \sqrt[4]{\frac{256RD_{a}}{9} p_{0}^{3}} \sqrt[4]{\theta_{t}} + 2\pi R^{2} q_{t}$
Q _R -∆ _R 関係式	$Q_{R} = \frac{2\pi R^{2}}{H_{1}} \sqrt[4]{\frac{256RD_{a}}{9} p_{0}^{3}} \sqrt[4]{\frac{\Delta_{R}}{H_{1}}}$	$Q_{R} = \frac{2\pi R^{2}}{H_{1}} \sqrt[4]{\frac{256RD_{a}}{9} p_{0}^{3}} \sqrt[4]{\frac{\Delta_{R}}{H_{1}}} + \frac{2\pi R^{2}q_{t}}{H_{1}}$
Q-Δ	$Q = Q_R$	$Q = Q_R$
関係式	$\Delta = \Delta_b + \Delta_R = \frac{Q_R}{K_b} + \Delta_R$	$\Delta = \Delta_b + \Delta_R = \frac{Q_R}{K_b} + \Delta_R$

付表 2.5.2 動液圧の影響を無視した場合の算式(自重の影響を考慮した場合の算式等)

(注)消防法の保有水平耐力計算においては、自重無視の算式が用いられている。

2.6 具体的復元力特性計算

(1) 動液圧比とベースシア・転倒モーメントの関係 地震動により発生する動液圧、ベースシア、及び転倒モーメントは以下のよう表される。

$$p_{h1} = [K_{h1}\{(C_{00} - C_{10})\frac{1}{\nu_3} + C_{10}\}]p_0 \approx K_{h1}C_{10}p_0 \qquad (2.21)$$

$$Q = K_{h1} \{ (W_0 - W_1) \frac{1}{\nu_3} + W_1 \} \approx K_{h1} W_1$$
(2.22)

$$M = K_{h1} \{ (W_0 H_0 - W_1 H_1) \frac{1}{\nu_3} + W_1 H_1 \} \approx K_{h1} W_1 H_1$$
(2.23)

$$\alpha = \frac{p_{h1}}{p_0} \tag{2.24}$$

したがって、上式と式(2.21)より、

$$\alpha = K_{h1}C_{10} \qquad (2.25)$$

これより、ベースシア、及び転倒モーメントと動液圧比の関係式は、次式で表される。

$$Q = \frac{\alpha}{C_{10}} W_1 \tag{2.26}$$

$$M = \frac{\alpha}{C_{10}} W_1 H_1$$
 (2.27)

(2) 全体タンク基部の非線形ロッキング特性計算 具体的計算手順は、以下のとおりである。

- 1) M_Rを設定する。
- 2) $M=M_R$ とおいて、 α を計算する。

$$\alpha = \frac{M_R}{W_1 H_1} C_{10}$$

3) $M=M_R$ より、 $\theta=\theta_t$ を計算する。

$$\theta_{t} = \left[\frac{\{\frac{\alpha}{C_{10}}W_{1}H_{1}\}}{\{C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\}}\right]^{4}$$

4) ステップ1)~3)を繰返して、非線形ロッキングばね特性 [M-0]線図を求める。

別添資料4参照

(3) 1 質点モデルにおける非線形ばねの復元力特性 具体的計算手順は、以下のとおりである。

- 1) Q_Rを設定する。
- 2) $Q=Q_R$ とおいて、 α を計算する。

$$\alpha = \frac{Q_R}{W_1} C_{10}$$

3) $[Q_R-\Delta_R]$ 関係式より、 Δ_R を計算する。

$$\Delta_{R} = \left[\frac{\{\frac{\alpha}{C_{10}}W_{1}\}}{\frac{C_{M}(\alpha)R^{2}}{H_{1}}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\frac{1}{H_{1}}}\right]^{4}$$

4) 質点の水平変位 Δ を計算する。

$$\Delta == \frac{Q_R}{K_b} + \Delta_R$$

5)ステップ1)~4)を繰返して、1 **質点モデルにおける非線形水平ばねの復元力特性** [Q-Δ] 線図を求める。

別添資料3参照

非線形水平ばね特性を表現する Q-△線図の整理と定式化

剛基部上に置かれている満液円筒形貯槽を1質点でモデル化し、非線形水平ばねにより 質点に作用する水平力と水平変位の復元力特性線図を付図3.1に示す。

付図 3.1 水平力と水平変位の復元力特性線図

各点における浮き上がり状態及び各点の水平変位と水平抵抗力の計算手順は以下に示す。

1)	Point T(${ extsf{Q}}_{ extsf{Rt}}$, $\Delta extsf{et}$)	浮き上がり開始点
2)	Point Y($Q_{\mathrm{Ry}+}$ Q_{Rt} , $\Delta\mathrm{ey}$)	弾性限界浮き上がり点
3)	Point P(Q_{Rp+} Q_{Rt} , $\Delta {\rm ep}$)	塑性関節発生浮き上がり点
4)	Point 4(${\rm Q_{R4+}}~{\rm Q_{Rt}}$, $\Delta{\rm e4})$	想定される最大浮き上がり変位における点

必要に応じて、Point 4の算定式を用いて、線図上に任意点の追加も可能となる。

Point T-----(Q_{Rt}, Δet) の計算手順

1) 側板下端に作用する自重抵抗力 qt に対応するタンク水平抵抗力 QRt を計算する。

$$Q_{Rt} = \frac{2\pi R^2 q_t}{H_1} \qquad (3.1)$$

(注) QRt は、自重による抵抗転倒モーメント MRt を H1 で除して求める。

$$Q_{Rt} = M_{Rt} / H_1 = \frac{2\pi R^2 q_t}{H_1}$$
(3.2)

2) Q_{Rt} と短周期水平地震動による作用水平力 $Q_{\alpha t}$ を等しいとおいて、 α_t を計算する。

$$Q_{Rt} = Q_{\alpha t} = \frac{\alpha_t}{C_{10}} \times (\pi f_{W1} p_0 R^2) \qquad (3.3)$$

これより、

$$\alpha_t = \frac{Q_t C_{10}}{(\pi f_{w1} p_0 R^2)}$$
(3.4)

(注) Q_{at}は、有効液重量 W₁による作用水平力(ベースシア)として近似的に求めている。

$$Q_{at} = K_{h1} W f_{W1} = \frac{\alpha_t}{C_{10}} \times (\pi f_{W1} p_0 R^2)$$
(3.5)

関係式は以下の通りである。

水平抵抗力:
$$Q = K_{h1}W\{(f_{W0} - f_{W1})\frac{1}{\nu_3} + f_{W1}\} \approx K_{h1}Wf_{W1}$$
 (3.6)

動液圧:
$$p_h = [K_{h1}\{(C_{00} - C_{10})\frac{1}{\nu_3} + C_{10}\}]p_0 \approx K_{h1}C_{10}p_0$$
 (3.7)

動液圧と静液圧との比:
$$\alpha = \frac{p_h}{p_0} = K_{h1}C_{10}$$
 (3.8)

ここに、

R:タンクの半径₩:内溶液重量

有効液重量: $W_1 = f_{W1}W$ (3.9) 有効液重量係数:

$$f_{W1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$$
(3.10)

質点重心高さ:
$$H_1 = f_{H1}H$$
 (3.11)
重心高さ係数: $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$
(3.12)

 C_{00} と C_{10} は、特定屋外貯蔵タンクの最高液面高さHと直径Dとの比により求めた係数である。ここでは、 C_{10} =0.8とした(屋外貯蔵所のタンクの基準参照)。

3) α= α_t に対応する Δ_t を求める。

$$Q_{t} = \frac{\alpha_{t}}{C_{10}} \times (\pi f_{W1} p_{0} R^{2}) = Q_{Rt} = C_{M} (\alpha_{t}) \frac{R^{2}}{H_{1}} \sqrt[4]{RD_{a} p_{0}^{3}} \sqrt[4]{\frac{\Delta_{t}}{H_{1}}} + \frac{2\pi R^{2} q_{t}}{H_{1}}$$
(3.13)

これより、

$$C_{M}(\alpha_{t})\frac{R^{2}}{H_{1}}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\frac{\Delta_{t}}{H_{1}}}=0$$

これより、

 $\Delta_t = 0$ -----浮き上がりは生じない。

(注) タンク側板下端が片浮き上がり状態にある水平抵抗力と水平変位の関係は、次式で 表される。この場合、浮き上がり傾斜 θ_t は最大浮き上がり変位 $\delta_u \ge 2R$ で除した値($\theta_t=\delta_u/2R$) として、円周方向単位幅当りの浮き上がり抵抗力 $q(\phi)$ は、当該円周角位置の動液圧の影響 を考慮して求める。そして、浮き上がり抵抗力 $q(\phi)$ によるタンク側板下端の浮き上がり抵 抗モーメント MRを計算し、これを H1で除して水平抵抗力 QRを求め、その時の水平変位 Δ = $\theta_t \times H_1$ と関係づけている。

$$Q_{R} = C_{M}(\alpha) \frac{R^{2}}{H_{1}} \sqrt[4]{RD_{a}p_{0}^{3}} \sqrt[4]{\frac{\Delta}{H_{1}}} + \frac{2\pi R^{2}q_{t}}{H_{1}}$$
(3.14)

関係式は、

$$M_{R} = C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{t}} + 2\pi R^{2}q_{t} \qquad (3.15)$$
$$C_{M}(\alpha) = -5.9588\alpha + 13.381(1.1) \qquad (3.16)$$

4) 1 質点の水平変位 Δ et は、次式により求める。この場合、質点には、 水平力 Q_{α} = Q_{Rt} が作用しているので、基礎固定の弾性有効重量 W_1 の一次固有周期 T_b から定まるばね係数 Kbに関する変形 Qt/Kbを考慮する。

$$\Delta_{et} = \Delta_t + \frac{Q_{Rt}}{K_b} = \frac{Q_{Rt}}{K_b}$$
(3.17)

ただし、

$$K_{b} = (\frac{2\pi}{T_{b}})^{2} (\frac{W_{1}}{g}) = (\frac{2\pi}{T_{b}})^{2} (\frac{f_{W1}W}{g}) \qquad (3.18)$$

5) Point T は 次の座標となる。 $Q_{Rt} = \frac{2\pi R^2 q_t}{H_1}$ (3.19) $\Delta_{et} = \frac{Q_{Rt}}{K_b}$ (3.20)

<u>Point Y-----(Q_{Ry} + Q_{Rt}, Δ_{ey})</u>の計算手順

1) 弾性限界水平耐力 Q_{Ry} を設定する。 $Q_{Ry} = \frac{2\pi R^2 q_y}{H_1}$ (3.21.) ただし、

 $q_y = \frac{4}{\sqrt{6}}\sqrt{m_y p_0}$ (3.22) (Wozniak モデルにおける弾性限界 (降伏) 抵抗力)

 [Q_{Ry}+Q_{Rt}]と短周期水平地震動による作用水平力Q_(ay+at)を等しいとおいて、a_y+a_tを計算 する。

$$Q_{Ry} + Q_{Rt} = Q_{(\alpha_y + \alpha_t)} = \frac{(\alpha_y + \alpha_t)}{C_{10}} \times (\pi f_{W1} p_0 R^2)$$
(3.23)

これより、

$$\alpha_{y} + \alpha_{t} = \frac{[Q_{Ry} + Q_{Ry}]C_{10}}{(\pi f_{W1} p_{0} R^{2})}$$
(3.24)

 α_y +α_t に対応する、Δy を計算する。この場合、質点に作用する応答加速度に対応する α は αy+α_t である。

$$Q_{(\alpha_{y}+\alpha_{t})} = \frac{(\alpha_{y}+\alpha_{t})}{C_{10}} \times (\pi f_{W1}p_{0}R^{2})$$
$$= Q_{Ry} + Q_{Rt} = C_{M}(\alpha_{y}+\alpha_{t})\frac{R^{2}}{H_{1}}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\frac{\Delta_{y}}{H_{1}}} + \frac{2\pi R^{2}q_{t}}{H_{1}}$$

これより、

$$\Delta_{y} = \frac{H_{1}[Q_{Ry}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$$
(3.25)

4) 1 質点の Δ_{ey} は、次式により求める。 $\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rt}]}{K_b}$ (3.26)

5) Point Y は 次の座標となる。

$$Q_{Ry} + Q_{Rt} = \frac{2\pi R^2 q_y}{H_1} + \frac{2\pi R^2 q_t}{H_1}$$

 $\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rt}]}{K_b}$

<u>Point P-----(Q_{Rp} + Q_{Rt}, Δ_{ep})</u>の計算手順

1) 第1塑性関節発生時水平耐力 QRp を設定する。

$$Q_{Rp} = \frac{2\pi R^2 q_p}{H_1} \qquad (3.27)$$

totic U,

$$q_p = \frac{4}{\sqrt{6}}\sqrt{m_p p_0}$$
 (3.28) (Wozniak モデルにおける第 1 塑性関節発生時の抵抗

2) $[Q_{Rp}+Q_{Rt}]$ と短周期水平地震動による作用水平力 $Q_{(\alpha p+\alpha t)}$ を等しいとおいて、 $\alpha_{p}+\alpha_{t}$

$$Q_{Rp} + Q_{Rt} = Q_{(\alpha p + \alpha t)} = \frac{(\alpha_p + \alpha_t)}{C_{10}} \times (\pi f_{W1} p_0 R^2) \quad (3.29)$$

$$\alpha_{p} + \alpha_{t} = \frac{[Q_{Rp} + Q_{Rt}]C_{10}}{(\pi f_{W1} p_{0} R^{2})}$$
(3.30)

 α_p+α_tに対応する、Δ_pを計算する。この場合、質点に作用する応答加速度に対応する α は α_p+α_t である。

$$Q_{(\alpha p + \alpha t)} = \frac{\alpha_{p} + \alpha_{t}}{C_{10}} \times (\pi f_{W1} p_{0} R^{2})$$

$$Q_{Rp} + Q_{Rt} = C_{M} (\alpha_{p} + \alpha_{t}) \frac{R^{2}}{H_{1}} \sqrt[4]{RD_{a} p_{0}^{3}} \sqrt[4]{\frac{\Delta_{p}}{H_{1}}} + \frac{2\pi R^{2} q_{t}}{H_{1}}$$

これより、

$$\Delta_{p} = \frac{H_{1}[Q_{Rp}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{p} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$$
(3.31)

1 質点系の Δ_{ep} は、次式により求める。

$$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b} \qquad (3.32)$$

5) Point P は 次の座標となる。

$$Q_{Rp} = \frac{2\pi R^2 q_p}{H_1} + \frac{2\pi R^2 q_t}{H_1}$$
$$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$$

<u>Point 4-----(Q_{R4}+ Q_{Rt}, Δe4)</u>の計算手順

1)水平耐力
$$Q_{R4}$$
を設定する。 $Q_{R4} = \frac{2\pi R^2 q_4}{H_1}$ (3.33)
ただし、

$$q_4 = \frac{4}{\sqrt{6}}\sqrt{m_4 p_0}$$
 (3.34)(Wozniak モデルにおけるモーメントm4発生時抵抗力)

 Q_{R4}+ Q_{Rt}と短周期水平地震動による作用水平力 Q_(α4+αt)を等しいとおいて、α₄₊α_tを計算 する。

$$Q_{R4} + Q_{Rt} = Q_{(\alpha 4 + \alpha t)} = \frac{\alpha_4 + \alpha_t}{C_{10}} \times (\pi f_{W1} p_0 R^2)$$
(3.35)

これより、

$$\alpha_4 + \alpha_t = \frac{[Q_{R4} + Q_{Rt}]C_{10}}{(\pi f_{W1} p_0 R^2)} \qquad (3.36)$$

 α₄₊α_t に対応する、Δ₄ を計算する。この場合、質点に作用する応答加速度に対応する α は α₄₊α_t である。

$$\begin{split} Q_{(\alpha^{4}+\alpha t)} &= \frac{(\alpha_{4}+\alpha_{t})}{C_{10}} \times (\pi f_{W1} p_{0} R^{2}) \\ &= Q_{R4} + Q_{Rt} = C_{M} (\alpha_{4}+\alpha_{t}) \frac{R^{2}}{H_{1}} \sqrt[4]{RD_{a} p_{0}^{3}} \sqrt[4]{\frac{\Delta_{4}}{H_{1}}} + \frac{2\pi R^{2} q_{t}}{H_{1}} \\ &\simeq \ln \sharp 0 \ , \end{split}$$

$$\Delta_{4} = \frac{H_{1}[Q_{R4}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{4} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$$
(3.37)

4) 1 質点の Δ_{e4} は、次式により求める。

$$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{K_b}$$
(3.38)

5) Point 4 は 次の座標となる。 $Q_{R4} + Q_{Rt} = \frac{2\pi R^2 q_4}{H_1} + \frac{2\pi R^2 q_t}{H_1}$ $\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{K_b}$

基部に回転ばねありの質点系モデル用の非線形回転ばね特性 (M-θ線図)の整理と定式化

非線形回転ばねの抵抗モーメントと回転角度の復元モーメント特性線図を付図 4.1 に示 す。

付図 4.1 抵抗モーメントと回転角度の復元モーメント特性線図

上図における各 Point は下記するとおりであり、計算方法は以下に続いて記述する。

1)	Point T(M_{Rt} , 0)	浮き上がり開始点
2)	Point Y($M_{\rm Ry+}$ $M_{\rm Rt}$, $ heta$ _{ty})	弾性限界浮き上がり点
3)	Point P($M_{\rm Rp}+M_{\rm Rt}$, $ heta$ the set of	塑性関節発生浮き上がり点
4)	Point 4($\mathrm{M_{R4}+}~\mathrm{M_{Rt}}$, θ _{t4})	想定される最大浮き上がり変位における点

必要に応じて、Point 4の算定式を用いて、線図上に任意点の追加も可能となる。

動液圧の変動を考慮した転倒抵抗モーメント M_R と動液圧変動係数 $C_M(\alpha)$ の関係式は、以下に示す;

$$M_{R} = C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{t}} + 2\pi R^{2}q_{t} \qquad (4.1)$$
$$C_{M}(\alpha) = -5.9588\alpha + 13.381 \qquad (4.2)$$

Point T-----(M_{Rt},θt-t) 計算手順

1) 側板下端に作用する自重抵抗力 qt に対応するタンク転倒抵抗モーメント M_Rt を計算する。

$$M_{Rt} = 2\pi R^2 q_t \tag{4.3}$$

2) M_{Rt} と短周期水平地震動による転倒モーメント $M_{\alpha t}$ を等しいとおいて、 α_t を計算する。

$$M_{Rt} = Q_{\alpha t} H_1 = \frac{\alpha_t}{C_{10}} \times (\pi f_{W1} p_0 R^2) H_1$$
(4.4)

これより、

$$\alpha_{t} = \frac{M_{Rt}C_{10}}{H_{1}(\pi f_{W1}p_{0}R^{2})}$$
(4.5)

注) Q_{at}は、有効液重量 W₁による作用水平力(ベースシア)として近似的に求めている。

$$Q_{at} = K_{h1} W f_{W1} = \frac{\alpha_t}{C_{10}} \times (\pi f_{W1} p_0 R^2)$$
(4.6)

関係式は以下の通りである。

$$Q = K_{h1}W\{(f_{W0} - f_{W1})\frac{1}{\nu_3} + f_{W1}\} \approx K_{h1}Wf_{W1}$$
(4.7)

$$p_{h} = [K_{h1}\{(C_{00} - C_{10})\frac{1}{\nu_{3}} + C_{10}\}]p_{0} \approx K_{h1}C_{10}p_{0}$$
(4.8)

$$\alpha = \frac{p_h}{p_0} = K_{h1} C_{10} \tag{4.9}$$

3) $\alpha = \alpha_t$ に対応する θ t-t を求める。

$$\begin{split} M_{\alpha t} &= \frac{\alpha_{t}}{C_{10}} \times (\pi f_{W1} p_{0} R^{2}) H_{1} = M_{Rt} = C_{M} (\alpha_{t}) R^{2} \sqrt[4]{RD_{a} p_{0}^{3}} \sqrt[4]{\theta_{t-t}} + 2\pi R^{2} q_{t} \quad (4.10) \\ \\ & = \hbar \downarrow \vartheta \,, \\ C_{M} (\alpha_{t}) R^{2} \sqrt[4]{RD_{a} p_{0}^{3}} \sqrt[4]{\theta_{t-t}} = 0 \\ \\ & = \hbar \downarrow \vartheta \,, \\ \theta_{t-t} &= 0 - --- 浮き \bot \beta \vartheta \, \natural \pm \vartheta \, \natural \pm \vartheta \, \natural \pm \vartheta \, \natural$$

4) Point T は 次の座標となる。

$$M_{Rt} = 2\pi R^2 q_t$$

$$\theta_{t-t} = 0$$

<u>Point Y-----(M_{Ry} + M_{Rt} , θty) 計算手順</u>

1) 弾性限界タンク転倒抵抗モーメント M_Ry を設定する。

$$M_{Ry} = 2\pi R^2 q_y \qquad (4.11)$$

ただし、

$$q_y = \frac{4}{\sqrt{6}}\sqrt{m_y p_0}$$
 (Wozniak モデルにおける弾性限界(降伏)抵抗力) (4.12)

 [M_{Ry}+ M_{Rt}]と短周期水平地震動による作用水平力 M_(αy+αt)を等しいとおいて、α_y+α_tを計 算する。

$$M_{Ry} + M_{Rt} = M_{(\alpha_y + \alpha_t)} = \frac{(\alpha_y + \alpha_t)}{C_{10}} \times (\pi f_{W1} p_0 R^2) H_1$$
(4.13)

これより、

$$\alpha_{y} + \alpha_{t} = \frac{[M_{Ry} + M_{Rt}]C_{10}}{H_{1}(\pi f_{W1} p_{0} R^{2})}$$
(4.14)

3) $\alpha_y + \alpha_t$ に対応する、 θ ty を計算する。この場合、質点に作用する応答加速度に対応する α は $\alpha y + \alpha_t$ である。

$$M_{(\alpha_{y}+\alpha_{t})} = \frac{(\alpha_{y}+\alpha_{t})}{C_{10}} \times (\pi f_{W1}p_{0}R^{2})H_{1}$$

$$= M_{Ry} + M_{Rt} = C_{M}(\alpha_{y}+\alpha_{t})R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{ty}} + 2\pi R^{2}q_{t}$$

$$= M_{Ry} + M_{Rt} = C_{M}(\alpha_{y}+\alpha_{t})R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{ty}} + 2\pi R^{2}q_{t}$$

$$= M_{Ry} + M_{Rt} = C_{M}(\alpha_{y}+\alpha_{t})R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{ty}} + 2\pi R^{2}q_{t}$$

$$= M_{Ry} + M_{Rt} = C_{M}(\alpha_{y}+\alpha_{t})R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{ty}} + 2\pi R^{2}q_{t}$$

$$= M_{Ry} + M_{Rt} = C_{M}(\alpha_{y}+\alpha_{t})R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{ty}} + 2\pi R^{2}q_{t}$$

$$\theta_{ty} = \frac{[M_{Ry}]^4}{RD_a p_0^3 [C_M (\alpha_y + \alpha_t) R^2]^4}$$
(4.16)

4) Point Y は 次の座標となる。

$$M_{Ry} + M_{Rt} = 2\pi R^2 q_y + 2\pi R^2 q_t$$

$$\theta_{ty} = \frac{[M_{Ry}]^4}{RD_a p_0^3 [C_M (\alpha_y + \alpha_t) R^2]^4}$$

<u>Point P-----(M_{Rp} + M_{Rt} , θ tp) 計算手順</u> 1) 塑性関節発生時タンク転倒抵抗モーメント M_{Rp}を設定する。

$$M_{Rp} = 2\pi R^2 q_p \qquad (4.17)$$

ただし、

$$q_p = \frac{4}{\sqrt{6}} \sqrt{m_p p_0}$$
 (Wozniak モデルにおける塑性関節発生時抵抗力) (4.18)

 [M_{Rp}+ M_{Rt}]と短周期水平地震動による作用水平力 M_(αp+αt)を等しいとおいて、α_p+α_tを計 算する。

$$M_{Rp} + M_{Rt} = M_{(\alpha_p + \alpha_t)} = \frac{(\alpha_p + \alpha_t)}{C_{10}} \times (\pi f_{W1} p_0 R^2) H_1$$
(4.19)

これより、

$$\alpha_{y} + \alpha_{t} = \frac{[M_{Rp} + M_{Rt}]C_{10}}{H_{1}(\pi f_{W1} p_{0} R^{2})}$$
(4.20)

3) $\alpha_{p}+\alpha_{t}$ に対応する、 θ_{tp} を計算する。この場合、質点に作用する応答加速度に対応する α は $\alpha_{p}+\alpha_{t}$ である。

$$M_{(\alpha_{p}+\alpha_{t})} = \frac{(\alpha_{p}+\alpha_{t})}{C_{10}} \times (\pi f_{W1} p_{0} R^{2}) H_{1}$$

$$= M_{Ry} + M_{Rt} = C_{M} (\alpha_{y}+\alpha_{t}) R^{2} \sqrt[4]{RD_{a} p_{0}^{3}} \sqrt[4]{\theta_{tp}} + 2\pi R^{2} q_{t}$$
(4.21)

これより、

$$\theta_{tp} = \frac{[M_{Rp}]^4}{RD_a p_0^3 [C_M (\alpha_p + \alpha_t) R^2]^4}$$
(4.22)

Point P は 次の座標となる。

$$M_{Rp} + M_{Rt} = 2\pi R^2 q_p + 2\pi R^2 q_t \qquad (4.23)$$

$$\theta_{tp} = \frac{[M_{Rp}]^4}{RD_a p_0^3 [C_M (\alpha_p + \alpha_t) R^2]^4}$$
(4.24)

<u>Point 4-----(M_{R4}+ M_{Rt}, θt4)</u>計算手順 1) 転倒抵抗モーメント M_{R4}を設定する。

 $M_{R4} = 2\pi R^2 q_4 \tag{4.25}$

ただし、

$$q_4 = \frac{4}{\sqrt{6}}\sqrt{m_4 p_0}$$
 (Wozniak モデルにおけるモーメント m₄発生時抵抗力) (4.26)

 [M_{R4}+ M_{Rt}]と短周期水平地震動による作用水平力 M_(α4+αt)を等しいとおいて、α₄+α_tを計 算する。

$$M_{R4} + M_{Rt} = M_{(\alpha_4 + \alpha_t)} = \frac{(\alpha_4 + \alpha_t)}{C_{10}} \times (\pi f_{W1} p_0 R^2) H_1$$
(4.27)

これより、

$$\alpha_4 + \alpha_t = \frac{[M_{R4} + M_{Rt}]C_{10}}{H_1(\pi f_{W1} p_0 R^2)}$$
(4.28)

3) $\alpha_4 + \alpha_t$ に対応する、 θ_{t4} を計算する。この場合、質点に作用する応答加速度に対応する α は $\alpha_4 + \alpha_t$ である。

$$M_{(\alpha_{4}+\alpha_{t})} = \frac{(\alpha_{4}+\alpha_{t})}{C_{10}} \times (\pi f_{W1}p_{0}R^{2})H_{1}$$

$$= M_{R4} + M_{Rt} = C_{M}(\alpha_{4}+\alpha_{t})R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{t4}} + 2\pi R^{2}q_{t}$$

$$= \lambda_{L} \downarrow \emptyset,$$
(4.29)

$$\theta_{t4} = \frac{[M_{R4}]^4}{RD_a p_0^3 [C_M (\alpha_4 + \alpha_t) R^2]^4}$$

(4.30)

Point 4 は 次の座標となる。

$$M_{R4} + M_{Rt} = 2\pi R^2 q_4 + 2\pi R^2 q_t$$
$$\theta_{t4} = \frac{[M_{R4}]^4}{R D_a p_0^3 [C_M (\alpha_p + \alpha_t) R^2]^4}$$

質点系モデルの入力諸元の計算シート

付表 5.1 質点系モデルの諸元計算シート(No.1計算シート)

質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)				
公称容量	VOL (KL)	30000	(KL)	
貯槽内径	D	45100	(mm)	
側板高さ	Hmax	21270	(mm)	
最下段側板厚	t _s	18	(mm)	
1/3の最高液高さにおける側板厚	t _{1/3}	13	(mm)	
アニュラ板厚	t _a	12	(mm)	
鋼材のヤング率(SM400C)	E	205939.7	(N/mm2)	
鋼材のポアソン比	v	0.3	(-)	
降伏応力	σу	245	(N/mm2)	
最高液高さ	Н	18802	(mm)	
液密度	Y	9.50E-07	(kg/mm3)	
直径/液高さ比	D/H	2.40	(-)	
液高さ/直径比	H/D	0.42	(-)	
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916$	$(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$	0.48	(-)	
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.280^2$	0.47	(-)		
スロッシング振動/有効液重量率 fw2 $f_{W2} = \frac{0.837 \tanh(3.68H/D)}{3.68(H/D)}$				
5.08(117D)		0.50	(-)	
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 (\frac{H}{D})^4 - 0.1493 (\frac{H}{D})^3 + 0.204$	0.402	(-)		
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216$	0.401	(-)		
スロッシング振動/有効液の重心高さ係数 $f_{H2} = 1 - \frac{\cosh(3.68H/D) - 1}{3.68(H/D)\sinh(3.68H/D)}$	0.58	(-)		
底板に作用する最大静液圧				
P ₀ =gγ H		0.18	(N/mm2)	
 タンク本体重量(赤字・入 カ値)				
個板重量	Ws0	2.41E+03	(KN)	
<u>间板付属品重量</u>	Ws1	3.50F+02	(KN)	
22き屋根重量 22き屋根重量	Wr0	1 43F+03	(KN)	
浮き屋根付属品重量	Wr1	3.51F+02	(KN)	
側板十付属品 重量合計	Mt	2.82E+05	(kg)	

付表 5.2 質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]		紫字:モデルの入	力值
貯槽の固有周期(バルジング振動)			
$T = \frac{2}{W}$			
$\Gamma_b = \lambda \sqrt{\pi g E t_{1/3}}$	Tb	0.336	(sec)
$\lambda = 0.067(H/D)^2 - 0.30(H/D) + 0.46$	λ	0.347	(-)
固有周期(スロッシング振動)			
$T = 2\pi \left[\frac{D}{2\pi (3.68H)} \right]$			
$\sqrt{3.68g}$ D	Ts	7.359	(sec)
	-		
有効液重量			
固定液重量 M ₀ = f _{w0} *M	MO	1.37E+07	(kg)
自由液重量 M ₁ = f _{w1} *M	M1	1.33E+07	(kg)
スロッシング液重量 M2 = fw2*M	M2	1.42E+07	(kg)
側板重量 Mt	Mt	2.82E+05	(kg)
底板重量 Mb	Mb	1.05E+05	(kg)
自由液+側板 M11=M1+Mt	M11	1.36E+07	(kg)
			(kg)
有効液の重心局さ			
$H_0 = f_{h0} * H$	Ho	7.55E+02	(cm)
$H_1 = f_{h1} * H$	Hı	7.55E+02	(cm)
$H_2 = f_{h2} * H$	H2	1.09E+03	(cm)
ばね係数			
バルジング振動 ばね係数	K1	4.74E+07	(N/cm)
スロッシング振動 ばね係数	K2	1.03E+05	(N/cm)
減衰係数			
バルジング振動 減衰係数 $C_1 = 2\xi_1 \sqrt{M_{11}k_1}$	C1	7.61E+05	(N/(cm/s))
スロッシング振動 減衰係数 $C_2 = 2\xi_2 \sqrt{M_2 k_2}$	C2	2.42E+03	(N/(cm/s))

Point T $Q_{\rm p}^2$ $Q_{\rm p} C_{\rm re}$	QRt	8.26E+06	<u>N</u>
$O_{p_t} = \frac{2\pi R q_t}{Q_t} \qquad \alpha_t = \frac{2\pi R q_t}{Q_t}$	C10	0.71	-
$\sim_{\mathcal{M}} H_1 \qquad (\pi f_{W1} p_0 R^2)$	αt	0.04	-
$\Delta_{et} = \frac{\mathcal{Q}_{Rt}}{K_{h}}$	Δ et	0.17	cm
Point Y σ	my	5.88E+03	N
$a = \frac{4}{m} \sqrt{m p_0}$ $m_{\mu} = \frac{\sigma_y}{m} t_0^2$	qv	5.24E+02	N/cm
$\sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} $	QRy	2.22E+07	N
$2\pi R^2 a$ Et_a^3	αν	0.12	-
$Q_{Ry} = \frac{2\pi R^2 q_y}{R} D_a (= \frac{12(1-v^2)}{12(1-v^2)})$	СМ	12.39	_
H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.10	cm
$(\pi f_{W1} p_0 R^2)$	Δev	0.74	cm
$H_1[O_n]^4$			
$\Delta_y = \frac{M_1(\underline{v}_y)}{RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{R^2}{H_1}]^4}$ $\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rt}]}{K_b}$	QRy+Qt	3.05E+07	Ν
Point P σ 4 $-$	mp	8.82E+03	N
$m_{p} = \frac{a_{y}}{A} t_{a}^{2} q_{p} = \frac{1}{\sqrt{6}} \sqrt{m_{p}} p_{0}$	ap	6.42E+02	N/cm
	QRp	2.72E+07	N
$2\pi R^2 q_p = \alpha = \frac{[Q_{R_p}]C_{10}}{[Q_{R_p}]C_{10}}$	αρ	0.15	-
$Q_{Rp} = \frac{1}{H} \qquad \qquad$	CM	12.23	_
$H_{1}[O_{r}]^{4}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{2} \frac{1}{2$	Δρ	0.23	cm
$RD_{\alpha}p_{0}^{3}[C_{M}(\alpha_{n}+\alpha_{t})]^{4}$	Δe^{p}	0.97	cm
$u r o c M$			
$\Delta_{ep} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{K_{b}}$	QRp+Qt	3.54E+07	N
Point 4	m4	2.94E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.17E+03	N/cm
$2\pi R^2 a_1 \qquad Q_{R4} C_{10}$	QR4	4.96E+07	Ν
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{\pi (q_4)}{(\pi (p_4)^2)}$	α4	0.27	_
H_1 (9) $W_1 P_0 H$	СМ	11.50	_
$\Lambda_{\star} = \frac{H_1[Q_{R4}]^4}{1}$	Da	3.26E+06	N.cm
$=\frac{1}{4}$ $RD_{1}n^{3}[C_{1}(\alpha + \alpha)]R^{2}$	Δ4	3.21	cm
$\frac{KD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{Q_1 + Q_2} \frac{H_1}{H_1}$	Δ e4	4.43	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{K_b}$	OB4+OB+	5 79E+07	N
Point 5 1	m5	5 41F+04	N
$q_{\varepsilon} = \frac{4}{\sqrt{m_{\varepsilon} p_{o}}}$	a5	1 59F+03	N/cm
$\sqrt{6}$	QR5	6 73F+07	N
	α 5	0.37	_
	CM	10.93	_
	Da	326F+06	Ncm
	Λ 5	13.32	cm
	<u>∧ e5</u>	14 918	cm
	QR5+QRt	7.56E+07	N

付表 5.3 質点系モデルの諸元計算シート(No.3計算シート)

Point T	QRt	8.26E+06	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.71	–
$Q_{Rt} = \frac{1}{H_1} - \frac{1}{(\pi f_{W1} p_0 R^2)}$	αt	0.04	-
$M = 2\pi R^2 a = 0 H a = 0$	MRt	6.23E+09	N.cm
$m_{Rt} = 2/\pi q_t - Q_{Rt}m_1 \qquad \theta_{t-t} = 0$	θ t0	0.00	rad
Point Y d σ	my	5.88E+03	Ν
$q_y = \frac{4}{\sqrt{m_y p_0}}$ $m_y = \frac{y_y}{\sqrt{m_y p_0}} t_a^2$	qy	5.24E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	2.22E+07	Ν
$2\pi R^2 q_{\rm r}$ D (- Et_a^3)	αу	0.12	_
$Q_{Ry} = \frac{1}{12} D_a (-\frac{1}{12(1-v^2)})$	СМ	12.39	-
$\begin{bmatrix} 0 & 1C \end{bmatrix}$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{1Q_{Ry} Q_{10}}{10} \qquad M_{Ry} = Q_{Ry} H_{1}$	MRy	1.67E+10	N.cm
$(\pi f_{W1} p_0 R^2)$	θty	1.26E-04	rad
$\theta_{ty} = \frac{[M_{Ry}]^4}{RD_a p_0^3 [C_M(\alpha_y + \alpha_z)R^2]^4}$	MRy+MRt	2.30E+10	N.cm
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mn	0 02⊑ ⊤ ∪3	N
$m_{p} = \frac{\sigma_{y}}{16} t_{a}^{2} q_{p} = \frac{\tau}{16} \sqrt{m_{p} p_{0}}$	an	6.02E+03	N/cm
p 4 u $\sqrt{0}$	qp OBn	0.42E+02	N
$2\pi R^2 q_{p} = (Q_{Rp})C_{10}$	anp an	0.15	_
$Q_{Rp} = \frac{1}{\mu} a_{p} - \frac{1}{(\pi f_{W1} p_{0} R^{2})}$	CM	12.23	
\boldsymbol{H}_{1}		3.26E+06	Nom
$M_{Rp} = Q_{Rp}H_1$	MRn	2.05E+10	N.cm
$[M_{-}]^4$	A to	2.03E+10	rad
$\theta_{tp} = \frac{1}{RD_a p_0^3 [C_M (\alpha_p + \alpha_t) R^2]^4}$	MRp+MRt	2.67E+10	N.cm
Point 4 4	m4	2 94F+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	a4	1 17E+03	N/cm
$2\pi R^2 a \qquad O C$	QR4	4 96F+07	N
$Q_{R4} = \frac{2\pi R q_4}{M} \qquad \alpha_4 = \frac{Q_{R4} C_{10}}{(C_{R4} C_{10})^2}$	α 4	0.27	_
$H_1 \qquad (\pi f_{W1} p_0 R^2)$	CM	11.50	_
$M_{R4} = Q_{R4} H_1$	Da	3.26E+06	N.cm
$\begin{bmatrix} M_{n_i} \end{bmatrix}^4$	MR4	3.74E+10	N.cm
$\theta_{t4} = \frac{1}{RD n^3 [C (\alpha + \alpha) R^2]^4}$	θ t4	4.25E-03	rad
$AD_a P_0 [C_M (\alpha_p + \alpha_t) R_j]$	MR4+MRt	4.37E+10	N.cm
Point 5	m5	5.41E+04	N
$q_{z} = \frac{4}{\sqrt{m_z n_z}}$	q5	1.59.E+03	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QR5	6.73.E+07	Ν
	α 5	0.366	-
	СМ	10.93	-
	Da	3.26E+06	N.cm
	MR5	5.08.E+10	N.cm
	θ t5	1.766.E-02	rad
	MR5+MRt	5.70E+10	N.cm

付表 5.4 質点系モデルの諸元計算シート(No.4計算シート)

別添資料6

FEM モデルによる抵抗モーメントと回転角度の関係に関する検討

6.1 3D シェルモデルによる解析結果から求めた抵抗モーメントと回転角度の関係

付図 6.1 に示す 3D シェルモデル(平成 26 年度作成したモデル使用)を使用することに より、抵抗モーメントと回転角度の関係を調査するために、以下の FEM 解析を実施した。

(1) 弾塑性、大変形の静解析

荷重は静液圧と動液圧(平成26年度で算定した動液圧使用)の両方の分布を考慮した。材料には弾塑性特性を使用した(付図6.2参照)。

解析結果から求めた抵抗モーメントと回転角度の関係線図(M-θ線図)を付図 6.3 に示す。

付図 6.1 3D シェルモデルの変形図

付図 6.2 モデルに使用した応力-ひずみ特性

付図 6.3 3D シェルモデルの M-θ線図

6.2 各 M- *θ* 線図の比較

以上の 3D シェルモデルの M- θ 線図と定式化による M- θ 線図との比較図は以下の付図 6.4 に示す。算定された M- θ 線図は FEM 解析から求めた線図より低めの線図であることが確認 されたため、この線図を使用して計算される質点系の応答はより厳しい側の結果になると 考えられる。

付図 6.4 各 M-*θ*線図の比較

これらの M- θ 線図の算出において、タンク基礎条件や材料物性などの条件はそれぞれ異なる。以下表にその条件一覧を記載する。

		タンク 其礎 タンク		大大米1.45-64	幾何学的な	液圧の
		クマク室姫	側板	初科村庄	条件など	変動
	マルチリニア型ばね	ばね支持	側板の剛性	255 共日74-※1	3D の形状	4 N
Û	3D シェルモデルより算出	(249N/mm^2)	を考慮	理型注	(大変形も考慮)	0.5
0	マルチリニア型ばね	岡山	剛(モーメン	超今今前州※2	721	たり
2	式より算出	Li (m)	トは考慮) 「岸元王堂住	なし	ריכש	
0	バイリニア型ばね	岡山	岡山	淄今 今前州※2	721	721
9	式より算出(昨年度使用)	լայ	[ri[m]	伸元主型住"	120	なし

※1 弾塑性特性は付図 6.2 に示すとおり (10%ひずみ時の硬化率 d σ /d ϵ :約 900N/mm²/-)。

※2 アニュラ板、底板の材料(SM400C, SS41)の降伏強度は245N/mm²を使用。

別添資料7

減衰係数の設定に関する検討

付図 7.1 に示す基部に回転ばねありの 1 質点モデルの水平ばね k_1 と基部の回転ばね k_θ は 線形ばねである場合、系全体の等価的なばね定数 k_e と等価的減衰係数 C_e が以下の関係式か ら求められる。

付図 7.1 減衰係数設定用の1質点系モデル

$$\frac{1}{k_e} = \frac{1}{k_1} + \frac{H_1^2}{k_{\theta}}$$
(7.1)
$$\frac{1}{C_e} = \frac{1}{C_1} + \frac{H_1^2}{C_{\theta}}$$
(7.2)

ここで、

 $C_e = 2\varsigma_e \sqrt{M_1 k_e} \tag{7.3}$

$$C_1 = 2\varsigma_1 \sqrt{M_1 k_1}$$
(7.4)

$$C_{\theta} = 2\varsigma_{\theta} \sqrt{M_1 H_1^2 k_{\theta}} \tag{7.5}$$

以上の線形関係式を整理して、等価的な減衰比 ζ_e が設定された場合、系の減衰比 ζ_1 と ζ_θ は次式より算定できる。

$$\varsigma_1 = \varsigma_e \, \frac{1}{\sqrt{1 - \alpha}} \tag{7.6}$$

$$\varsigma_{\theta} = \varsigma_e \frac{1}{\sqrt{\alpha}} \tag{7.7}$$

ここで、αは以下の式となる。

$$\alpha = 1 - \frac{1}{k_1 (\frac{1}{k_1} + \frac{H_1^2}{k_{\theta}})}$$
(7.8)

回転ばねが非線形の場合、すなわち \mathbf{M} ・ θ 線図を使う場合、 \mathbf{k}_{θ} が時時刻に変化されるため、 以上の関係は成り立っていないことが分かった。

ここで、一つの近似的なやり方としては、M- θ 線図上の各点(4点の平均)の k_{θ} の平均 値を求め、それを用いて、線形関係の式(7.1)によって、系の等価的なばね定数 k_{e} を求める。 $k_{1} \ge k_{e}$ が既知であれば、 C_{1} を変数として、以下の 1997 年 Malhotra(文献[1])に提案された 関係式によって C_{θ} を概算することができる。

$$C_e = C_1(\frac{k_e}{k_1}) + C_\theta \frac{1}{H_1^2} (1 - \frac{k_e}{k_1})$$
(7.9)

線形関係式の式(7.3)、式(7.4)と式(7.5)を式(7.9)に代入して、整理すると、回転ばねの減 衰比のζθの計算式が以下の式(7.10)に書き換えられる。

$$\varsigma_{\theta} = \frac{\left[\varsigma_{e} - \varsigma_{1}\left(\beta / \sqrt{\beta}\right)\right]H_{1}}{\sqrt{\frac{k_{\theta}}{k_{e}}}(1 - \beta)}$$
(7.10)

 $zz \sigma k_{e}/k_{1}$ $b t t_{o}$

旧法タンク No.3 の M- θ 線図は以下の付図 7.1 に示します。線図から各点の回転ばね剛 性 \mathbf{k}_{θ_i} 及び計算した 4 点の平均値 \mathbf{k}_{θ^*} を付表 7.1 に示す。

付図 7.2 旧法タンク No.3の定式化による M-θ線図

	記号	θ	М	Κθ ί
		(rad)	(N.cm)	(N.cm/rad)
		0.00E+00	0.00E+00	—
Point 1		0.00E+00	6.23E+09	—
Point 2	θty	1.26E-04	2.30E+10	1.82E+14
Point 3	θtp	2.99E-04	2.67E+10	8.94E+13
Point 4	θ t4	4.25E-03	4.37E+10	1.03E+13
Point 5	θ t5	1.77E-02	5.70E+10	3.23E+12
平均值 K _θ *				7.12E+13

付表 7.1 旧法タンク No.3の M- θ 線図の数値と k_{θ}の平均値

付表 7.2 平均値の K_{θ} *を用いて算定された各パラメータの数値

k_{θ}^{*}	k _e	$\beta = k_e/k_1$	k_{θ}^*/k_{e}
N.cm/rad	N/cm	-	cm²/rad
7.12E+13	3.44E+07	7.25E-01	2.07E+06

基部固定の1質点モデルの減衰係数 C_1 を系全体の等価減衰係数 C_e (すなわち、 ζ_e =0.15) とする。基部固定の1質点モデルの応答に対する減衰効果に合わせるため、基部に回転ば ねありの1質点モデルの ζ_1 を変数とする場合、 ζ_e の計算値は付表7.3に示す数値となる。

	1112(110) 3				
H ₁	ζ _e	ζı	$\xi_{ heta}$		
(cm)	-	_	-		
755	0.15	0.05	0.21		[
		0.1	0.124	—	採用
	•	0.15	0		

付表 7.3 *ζ*_θの計算値

算定された減衰比 ζ_1 =0.1、 ζ_{θ} =0.124 を採用し、これらの結果を用いて算定した1 質点 モデル、2 質点モデル及び3 質点モデルの減衰係数 $C_1 \ge C_{\theta}$ を付表 7.4 に示す。

モデル	回転慣性モーメント	減衰係数	減衰係数		
基部に回転ばねあり	I_0 (kg.cm ²)	C₁(N.s∕cm)	$C_{ heta}(N.s. cm/rad)$		
1 質点	7.72E+12	5.07E+05	5.81E+11		
2 質点	1.55E+13	5.07E+05	8.25E+11		
3 質点	3.24E+13	5.07E+05	1.19E+12		

付表 7.4 減衰係数 $C_1 \geq C_\theta$ の算定値

各質点系の回転慣性モーメント I_0 及び回転に対する減衰係数 C_θ は以下の式より算定される。

1 質点モデル: $I_0 = M_1 H_1^2$ $C_\theta = 2\xi_\theta \sqrt{(M_1 H_1^2)k_\theta^*}$

2 質点モデル: $I_0 = M_1 H_1^2 + M_0 H_0^2$ $C_\theta = 2\xi_\theta \sqrt{(M_1 H_1^2 + M_\theta H_\theta^2)k_\theta^*}$

3 質点モデル: $I_0 = M_1 H_1^2 + M_0 H_0^2 + M_2 H_2^2$ $C_\theta = 2\xi_\theta \sqrt{(M_1 H_1^2 + M_o H_o^2 + M_2 H_2^2)k_\theta^*}$

減衰の効果を検証するため、付図 7.3 に示す基部固定(定式化による Q-Δ線図使用)、と 基部に回転ばねありの 2 つの 1 質点モデル(定式化による M-θ線図使用)を作成した。以 下の 2 ケースの解析を実施し、結果の比較と検証を行った。

ケース1:等価減衰係数 C_e =7.61E+5N.s/cm (モデル上 C_1)(相当減衰比: ζ_e =0.15)を使用 ケース2:付表 7.4 に示す1 質点の減衰係数 C_1 と減衰係数 C_6 を使用

両モデルの質点 M₁に 20cm の水平方向強制変位を与えて、求めた質点 M₁の応答変位の比較 図を付図 7.4 示す。両モデルの結果はよく合っていることが確認された。

付図 7.3 検証用の 2 つの 1 質点非線形ばね系モデルの概念図

 付図 7.4 質点 M₁の応答変位の時刻歴(荷重:水平方向強制変位 20cm)
 (赤色破線:算定された減衰比ζ_θ=0.124、ζ₁=0.1を使用 黒色実線:等価減衰比ζ_e=0.15を使用)

3 質点非線形ロッキングばね系モデルによる時刻歴地震応答解析

8.1 3 質点非線形ロッキングばね系モデル

タンクのバルジング振動有効固定液質量 M₀、バルジング振動有効液質量 M₁及びスロッシング振動有効液質量 M₂の3 質点**ロッキングばね**付きモデルを付図 8.1.1 に示す。この場合、 運動方程式は次式で表される。

$$\begin{bmatrix} m_{2} & 0 & m_{2}h_{2} \\ 0 & m_{1} & m_{1}h_{1} \\ m_{2}h_{2} & m_{1}h_{1} & m_{2}h_{2}^{2} + m_{1}h_{1}^{2} + m_{0}h_{0}^{2} \end{bmatrix} \begin{bmatrix} \ddot{x}_{2} \\ \ddot{x}_{1} \\ \ddot{\theta}_{B} \end{bmatrix} + \begin{bmatrix} C_{2} & 0 & 0 \\ 0 & C_{1} & 0 \\ 0 & 0 & C_{\theta} \end{bmatrix} \begin{bmatrix} \dot{x}_{2} \\ \dot{x}_{1} \\ \dot{\theta}_{B} \end{bmatrix} + \begin{bmatrix} k_{2} & 0 & 0 \\ 0 & k_{1} & 0 \\ 0 & 0 & k_{\theta} \end{bmatrix} \begin{bmatrix} x_{2} \\ x_{1} \\ \theta_{B} \end{bmatrix} = -\begin{bmatrix} m_{2} \\ m_{1} \\ m_{2}h_{2} + m_{1}h_{1} + m_{0}h_{0} \end{bmatrix} \ddot{x}_{g}$$

$$(8.1)$$

付図 8.1.1 3 質点非線形ロッキングばね系モデル

ここで、

- m₀:バルジング振動有効固定液質量(kg)
- m₁:バルジング振動有効液質量(kg)

m₂:スロッシング振動有効液質量(kg)

- h₀(=H₀):バルジング有効固定液質量高さ(cm)
- h₁(=H₁): バルジング有効液質量高さ(cm)
- h₂(=H₂): スロッシング有効液質量高さ(cm)
- C₁:バルジング振動減衰係数(N.s/cm)
- C₂: スロッシング振動減衰係数(N. s/cm)
- C_H: タンク基部のスウェイ減衰係数(N. s/cm)
- C_{θ} : タンク基部のロッキング減衰係数(N. s. cm/rad)
- k₁:バルジング振動ばね定数(N/cm)
- k₂:スロッシング振動ばね定数(N/cm)
- k_H: タンク基部のスウェイばね定数(N/cm)
- k_{θ} : タンク基部のロッキングばね定数 (N. cm/rad)
- $x_1, \dot{x}_1, \ddot{x}_1$: バルジング質点の変位(cm)、速度(cm/s)、及び加速度(cm/s²)
- $x_2, \dot{x}_2, \ddot{x}_2$:スロッシング質点の変位(cm)、速度(cm/s)、及び加速度(cm/s²)
- $x_{B}, \dot{x}_{B}, \ddot{x}_{B}$: タンク基部のスウェイ変位(cm)、速度(cm/s)、及び加速度(cm/s²)
- θ_{μ} , $\dot{\theta}_{\nu}$, $\ddot{\theta}_{\nu}$: タンク基部のロッキング角変位(rad)、角速度(rad/s)、及び角加速度(rad/s²)
- $x_s, \dot{x}_s, \ddot{x}_s$: タンク基部の変位(cm)、速度(cm/s)、及び加速度(cm/s²)
- k₁は、基部固定のタンクのバルジング振動の固有周期から求められる K_bである。
- K₂は、基部固定のタンクスロッシングの固有周期から求められるK_sである。
- 上式の基部のロッキングばね k_{θ} は非線形ロッキングばね特性 M- θ 線図による変数である。 すなわち、ある回転角度 θ と抵抗モーメント M における k_{θ} =M/ θ と計算される。
- 本検討においては、地盤の弾性ロッキングばね及び地盤の弾性スウェイばねは考慮しない。
- ロッキングばねが非線形の場合、解析用の3質点モデルは付図8.1.2のように現せるこの場合、タンク基部の復元モーメント特性($M=k_{\theta} \theta_{B}$)を付図8.1.3に示す非線形回転ばね特性を表現する $M-\theta$ 線図に置換することとなる。

付図 8.1.2 3 質点非線形ロッキングばね系モデルの概念図

付図 8.1.3 定式化による M-θ線図

8.2 解析対象タンク及び解析条件

8.2.1 解析対象タンクの主な諸元

本文に示す表 2.4.1.1 と同じである。

8.2.2 3 質点非線形ロッキングばね系モデルの諸元

消防法の算式を用いて計算した3 質点系非線形ロッキングばねモデルの諸元を付表 8.2.2.1 に示す(別添資料5に示す諸元計算シート参照)。

バルジング振動減衰係数 C_1 とタンク基部のロッキング減衰係数 C_θ は別添資料 7 に示す 1997 年 Praveen K. Malhotra (文献[1]を参照) に提案された計算方法で算定したものであ る。

固有周期(バルジング振動)	T _b	3. 36E-01	S
固有周期(スロッシング振動)	T _s	7. 36E+00	S
固定液有効質量	Mo	1. 37E+07	kg
自由液有効質量	$M_1 (+M_t)$	1. 36E+07	kg
スロッシング液有効質量	M ₂	1. 42E+07	kg
固定液の重心高さ	H _o	7. 55E+02	cm
自由液の重心高さ	H ₁	7. 55E+02	cm
スロッシング液の重心高さ	H ₂	1. 09E+03	cm
バルジング振動 ばね係数	K ₁	4. 74E+07	N/cm
スロッシング振動 ばね係数	K ₂	1. 03E+05	N/cm
スロッシング振動 減衰係数	C ₂	2. 42E+03	N.s/cm
バルジング振動 減衰係数	C ₁	5. 07E+05	N. s/cm
ロッキング・減衰係数	С _{<i>θ</i>}	1.19E+12	N.cm.s/rad
復元モーメント特性	図 3.1.3 に示す M- θ線図使用		

付表 8.2.2.1 3 質点非線形ロッキングばね系モデルの諸元

注:M_tは側板の重量分

8.2.3 入力地震波の諸元

本文 2.4.3 節に示す A 地区 EW 波を使用した。

8.2.4 浮き上がり変位の計算方法

基部に回転ばねありの 3 質点モデルの場合、時刻歴応答解析から求めた基部の最大回転 角度を用いて、最大浮き上がり変位δ_{u-max}は近似的に次式より計算される。

$$\delta_{u-\max} = \theta_{\max} D$$

(8.2)

8.3 時刻歴地震応答解析結果

付表 8.2.2.1 に示す 3 質点モデルの諸元を使用して、A 地区の想定地震動の EW 波を作用 した場合の以下の 2 ケースの解析を実施した。

ケース1:定式化によるM-θ線図使用(付図8.1.3参照) ケース2:3DシェルモデルのM-θ線図使用(別添資料6参照)

8.3.1 定式による M-θ線図を使用した3質点モデルの時刻歴地震応答解析結果

解析対象タンクとする旧法タンク No.3 について、定式化による M-θ線図を3 質点モデル の非線形回転ばね特性として使用し、A地区の想定地震動の EW 波に対して、時刻歴地震応 答解析を実施した。得られた当該タンク基部の回転ばねの回転角度、浮き上がり変位及び 回数を付表 8.3.1.1、応答解析結果を付図 8.3.1.1 から付図 8.3.1.4 に示す。

付表 8.3.1.1 定式による M-θ線図を使用した3質点モデルの解析結果のまとめ (想定地震動: A地区 EW 波)

最大/最小	最大/最小	最大	
地震加速度	回転角度	浮き上がり変位	浮き上がり回数
(cm/s2)	(rad)	(cm)	
672.2/-767.1	0.010/-0.018	81.2	35

付図 8.3.1.1 回転角度の時刻歴(定式化による № θ線図使用)

付図 8.3.1.2 浮き上がり変位の時刻歴(定式化による M-θ線図使用)

付図 8.3.1.3 回転ばねに発生した回転モーメントの時刻歴(定式化による M-θ線図使用)

付図 8.3.1.4 非線形回転ばねの復元モーメント特性線図(定式化による M-θ線図使用)

最大浮き上がり変位(81.2cm)発生時(78.8 秒における)の回転モーメント、本文に示 す式(2.4)~式(2-7)よって算定された最大応答水平震度及び動液圧比を次表に示す。

回転モーメント	応答水平震度	動液圧	動液圧比
М	K _{h1}	P _{h1}	α
(N. cm)		(N/mm²)	
5.36E+10	0.533	0.067	0.38

付表 8.3.1.2 最大浮き上がり変位発生時(78.8秒)の最大応答水平震度及び動液圧比

8.3.2 3D シェルモデルの M-θ線図を使用した 3 質点非線形ばね系モデルの時刻歴地震応答 解析結果

解析対象タンクとする旧法タンク No.3 について、3D シェルモデルの M-θ線図を3 質点 モデルの非線形回転ばねの復元モーメント特性として使用し、A地区の想定地震動の EW 波 に対して、時刻歴地震応答解析を実施した。得られた当該タンク基部の回転ばねの回転角 度、浮き上がり変位及び回数を付表 8.3.2.1、結果の時刻歴出力を付図 8.3.2.1 から付図 8.3.2.4 に示す。

付表 8.3.2.1 3D シェルモデルの M-θ線図を使用した 3 質点モデルの解析結果のまとめ (想定地震動: A 地区 EW 波)

最大/最小	最大/最小	最大	
地震加速度	回転角度	浮き上がり変位	浮き上がり回数
(cm/s2)	(rad)	(cm)	
672.2/-767.1	0.012/-0.017	76.7	40

付図 8.3.2.1 回転角度の時刻歴 (3D シェルモデルの M-θ線図使用)

付図 8.3.2.2 浮き上がり変位の時刻歴(3D シェルモデルの M-θ線図使用)

付図 8.2.3 回転ばねに発生した回転モーメントの時刻歴(3D シェルモデルの M-θ線図使用)

付図 8.3.2.4 非線形回転ばねの復元モーメント特性線図 (3D シェルモデルの M-θ線図使用)

最大浮き上がり変位(76.7cm)発生時(78.7 秒における)の回転モーメントを用いて、 本文に示す式(2.4)~式(2-7)よって算定された最大応答水平震度及び動液圧比を次表に示 す。

付表 8.3.2.2 最大浮き上がり変位発生時(78.7秒)の最大応答水平震度及び動液圧比

回転モーメント	応答水平震度	動液圧	動液圧比
М	K _{h1}	P _{h1}	α
(N. cm)		(N/mm²)	
7. 83E+10	0.78	0.097	0.55

8.3.3 3質点非線形ばね系モデルの解析結果の比較

2 ケースの3 質点非線形ばね系モデルの時刻歴地震応答解析結果の比較を付表 8.3.3.1 と 付表 8.3.3.2 に示す。

付表 8.3.3.1 3 質点非線形ばね系モデルの地震応答解析結果の比較

M-θ 線図	解析結果	回転	角度	質点M₀(;	相対変位)	質点M₁(相		質点M2(相対変位)
		角度 (rad)	時間(秒)	<u>変</u> 位 (cm)	時間(秒)	変位 (cm)	時間(秒)	<u>変</u> 位 (cm)	時間(秒)
定式化	最大値	0.010	80.2	13.8	78.8	14.6	78.8	37.4	77.8
	最小値	-0.018	78.8	-7.8	80.2	-9.1	80.2	-32.6	72.4
3Dシェル	最大値	0.012	79.1	12.6	78.7	13.6	78.7	37.3	77.8
モデル	最小値	-0.017	78.7	-9.1	79.1	-11.0	79.1	-32.5	72.4

M- <i>θ</i> 線図	最大回転角度	最大浮き上り変位
	(rad)	(cm)
定式化	0. 018	81.2
3D シェルモデル	0. 017	76. 7

付表 8.3.3.2 浮き上がり変位の算定結果の比較

8.4 照査比較検討

定式化による Q-Δ線図及び定式化による M-θ線図を使用した1質点非線形水平ばね系モ デルと3質点非線形ロッキングばね系モデルの解析結果の比較を付表 8.4.1 に示す。

付表 8.4.1 定式化による復元力・復元モーメント特性を用いた

1 質点と3 質点モデルの解析結	果の比較
------------------	------

	1 質点非線形	3 質点非線形
水平ばね系モデル		ロッキングばね系モデル
	(定式化による Q−Δ線図使用)	(定式化による M-θ線図使用)
最大浮き上がり変位	75 1	Q1 Q
δ_{u-max} (cm)	75. 1	01. 2
最大浮き上がり変位発	0.25	0.20
生時の動液圧比 $lpha^{*1}$	0. 55	0. 30

***1**:消防法式で計算した**動液圧比α=0.38**

タンク全体の 3Dシェルの M- θ線図を用いた 1 質点非線形水平ばね系モデルと 3 質点非 線形ロッキングばね系モデルの解析結果の比較を付表 8.4.2 に示す。

付表 8.4.2 3D シェルモデルの M-θ線図を用いた

	1 質点非線形	3 質点非線形	
	水平ばね系モデル	ロッキングばね系モデル	
最大浮き上がり変位	45.0	76 7	
δ _{u-max} (cm)	40. 0	/0. /	
最大浮き上がり変位発	0 55	0 55	
生時の動液圧比 $lpha^{*1}$	0.00	0. 55	

1 質点と3 質点モデルの解析結果の比較

A1

Ey

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2 の算定式による応力ーひずみ線図

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2の算定式で計算し た旧法タンク No.3の側板(材料:HW50)及びアニュラ板(SS41)と底板(材料:SM400C)の 応力一ひずみ線図の数値を付表 9.1 と付表 9.2 及び図 9.1 に示す。

Stress Stra	ain Curve		
σys	490	MPa	
σ uts	610	MPa	
R	0.803279		
К	0.32621		
m2	0.118033		
A2	883.334		
εр	2.00E-05		
εys	2.00E-03		
M1	4.80E-02		

6.62E+02

205939.7 MPa

付表 9.1 側板	〔(材料:HW50)	の応力―ひずみ線図の計算値

σt	Н	ε 1	ε 2	γ 1	γ 2	ε ts
490	-2	1.92E-03	6.79E-03	0.001882083	0.000122083	0.004383503
500	-1.48908	2.92E-03	8.05E-03	0.002777976	0.000390025	0.005595896
520	-0.46725	6.61E-03	1.12E-02	0.004744693	0.003166872	0.010436576
550	1.06551	2.13E-02	1.81E-02	0.002255762	0.016144203	0.021070651
600	3.620102	1.30E-01	3.77E-02	9.33161E-05	0.037720572	0.040727362
650	6.174693	6.90E-01	7.44E-02	2.98867E-06	0.074370384	0.077529636
700	8.729285	3.23E+00	1.39E-01	8.45288E-08	0.139340602	0.14273974
750	11.28388	1.36E+01	2.50E-01	2.1491E-09	0.249995839	0.253637684
800	13.83847	5.21E+01	4.32E-01	4.97979E-11	0.431915069	0.435799701
850	16.39306	1.84E+02	7.22E-01	1.07438E-12	0.721876619	0.726004041
900	18.94765	6.06E+02	1.17E+00	0	1.171585245	1.175955456

付表 9.2 アニュラ板(材料: SS41)と底板(材料: SM400B)の応力—ひずみ線図の計算値

Stress Stra		
σys	245	MPa
σ uts	400	MPa
R	0.6125	
К	0.392399	
m2	0.2325	
A2	708.5004	
εр	2.00E-05	
εys	2.00E-03	
M1	1.07E-01	
A1	4.77E+02	
Ey	205939.7	

σt	Н	ε 1	ε 2	γ1	γ2	ε ts
245	-2	1.96E-03	1.04E-02	0.001925735	0.000186808	0.003302212
270	-1.17793	4.87E-03	1.58E-02	0.004445078	0.001366084	0.007122226
300	-0.19144	1.30E-02	2.48E-02	0.007752831	0.010061834	0.019271402
350	1.452709	5.51E-02	4.82E-02	0.002861343	0.045662654	0.050223523
400	3.096857	1.92E-01	8.55E-02	0.000391944	0.08535765	0.08769191
450	4.741004	5.79E-01	1.42E-01	4.41059E-05	0.141940466	0.144169678
500	6.385152	1.55E+00	2.23E-01	4.41043E-06	0.223328681	0.225760986
550	8.029299	3.78E+00	3.36E-01	4.01425E-07	0.3364951	0.339166186
600	9.673446	8.54E+00	4.89E-01	3.38073E-08	0.489226792	0.4921403
650	11.31759	1.80E+01	6.90E-01	2.66751E-09	0.690279014	0.69343528
700	12.96174	3.61E+01	9.49E-01	1.99111E-10	0.949409156	0.95280821
800	16.25004	1.26E+02	1.69E+00	9.64416E-13	1.686091523	1.689976155
900	19.53833	3.79E+02	2.80E+00	0	2.79828532	2.802655531

付図 9.1 応力-ひずみ特性

別添資料 10

旧法タンク No.3の動液圧の計算結果

付表 10.1 旧法タンク No.3 の動液圧計算用入力データ

D	45100 mm
Н	18802 mm
Kh1	0.504
v 3	1.68
ρ	9.50E-07 kg/mm2

H/D	0.416896
分割	100
⊿н	188.02 mm
g	9.8 m/sec2
Z	9.01E+12 mm3

C00	C01	C02	C03	C04	C05
0.782173	-0.12951	0.723741	-4.12859	5.558585	-2.80014
C10	C12	C12	C13	C14	C15
0.716301	0.23289	-0.34748	-1.52302	1.928093	-1.00475

付図 10.1 側板の高さにおける動液圧の分布(旧法タンク No.3)

竹衣 0.2 口広ブノブ 0.3 07助液圧計昇和	寸表 10.2	2 旧法タンク	No.3の動液圧計算	結果
-------------------------------	---------	---------	------------	----

Z PH(Z) PH(Z) P M Q (mm) 0.00 0.04108 0.02558 0.06665 472195 5.0051E+11 6.542E=07 19602 0.04108 0.02558 0.06666 472195 5.0051E+11 6.544E=07 19602 0.04000 0.02582 0.06674 4727.98 4.5195E+11 6.2342E=07 752.06 0.04085 0.02599 0.06674 4727.98 4.5195E+11 6.2362E=07 1128.12 0.04076 0.02502 0.06678 4731.09 4.286E+11 6.100E=07 1136.14 0.04077 0.02262 0.06681 4732.33 4.0607E+11 5.567E=07 1504.16 0.04069 0.02232 0.06682 4734.03 3.341E=11 5.567E=07 2266.24 0.04049 0.02233 0.066674 4721.95 3.322E=11 5.308E=07 2363.22 0.04043 0.02233 0.066674 4722.97 3.323E=11 5.308E=07 2266.24 0.04049 0.02233 0.06					P = 2D*Ph(z)*π /4 より		
Unit Unit <thunit< th=""> Unit Unit <thu< th=""><th>Z</th><th>Ph0(Z)</th><th>Ph1(Z)</th><th>Ph(Z)</th><th>P</th><th>M (N mm)</th><th>Q</th></thu<></thunit<>	Z	Ph0(Z)	Ph1(Z)	Ph(Z)	P	M (N mm)	Q
1000 000000 00000000 000000000000000000000000000000000000	(mm)	(N/mm2)	(N/mm2)		(IN/ mm) 4701.05	(N.MM)	
378:04 0.04095 0.02578 0.06672 4728:30 4758:05 <th< td=""><td>100.00</td><td>0.04108</td><td>0.02558</td><td>0.06667</td><td>4/21.90</td><td>5.0051E+11</td><td>0.0342E+07</td></th<>	100.00	0.04108	0.02558	0.06667	4/21.90	5.0051E+11	0.0342E+07
544.06 0.04090 0.02552 0.06674 4728.30 4.6334E+11 6.3736E+07 940.10 0.04080 0.02596 0.06674 4729.38 4.6334E+11 6.100E+07 1128.12 0.04076 0.02602 0.06678 4731.09 4.2636E+11 6.100E+07 1504.16 0.04063 0.02614 0.06681 4733.31 4.0077+11 5.9231E+07 1602.18 0.04063 0.02614 0.06682 4733.03 4.0077+11 5.9231E+07 288.22 0.04063 0.02635 0.06682 4733.03 4.0077+11 5.9231E+07 284.2 0.04034 0.02635 0.06675 4731.16 3.7241E+11 5.7341E+07 2802.20 0.04031 0.02642 0.06667 4728.92 3.221E+11 5.3032E+07 3003.32 0.04025 0.02642 0.06663 4722.57 3.2233E+11 5.213E+07 3166.34 0.04010 0.02642 0.06663 4706.13 2.9369E+11 4.9456E+07 33760.40 0.03982 </td <td>376.04</td> <td>0.04101</td> <td>0.02500</td> <td>0.00007</td> <td>4723.10</td> <td>4.0012E+11</td> <td>0.3434E+07</td>	376.04	0.04101	0.02500	0.00007	4723.10	4.0012E+11	0.3434E+07
752.08 0.04085 0.02589 0.06676 4727.98 4.5195E-111 62.798E-60 1128.12 0.04076 0.02602 0.06676 4731.09 4.2685E-111 6.100E+07 1316.14 0.04077 0.02602 0.06680 4733.35 4.4023E+11 6.100E+07 1682.18 0.04063 0.02614 0.06682 4733.49 3.8413E+11 5.7451E+07 2266.22 0.04049 0.02622 0.06682 4733.68 3.741E+11 5.661E+07 2235.24 0.04049 0.02642 0.06681 4732.57 3.3221E+11 5.3471E+01 2236.24 0.04043 0.02643 0.06671 4723.57 3.3221E+11 5.3032E+01 2332.2 0.04031 0.02642 0.06651 4717.32 3.2233E+11 5.215E+07 3186.34 0.04017 0.02642 0.06652 4717.23 3.232E+11 5.316E+07 3760.40 0.03922 0.02644 0.06632 4706.13 2.9305E+11 5.4357E+07 3780.40 0.039	564.06	0.04090	0.02582	0.06672	4726.30	4.6384E+11	6.3678E+07
940.10 0.04080 0.022566 0.06678 472830 44023E+11 6.100E+07 1138.14 0.04072 0.02600 0.06608 4733.31 4.0027E+11 6.021E+07 1504.16 0.04063 0.02614 0.06681 4733.31 4.0027E+11 5.9231E+07 1802.00 0.04054 0.02624 0.06682 4733.68 3.9502E+11 5.8341E+07 2444.24 0.04043 0.02628 0.06682 4733.68 3.741E+11 5.7651E+07 2444.20 0.04038 0.02638 0.06677 4731.16 3.224E+11 5.3892E+07 2820.20 0.04038 0.02641 0.06666 4722.57 3.223321E+11 5.303E+07 3008.32 0.04017 0.02642 0.06659 4717.22 3.232E+11 5.2127E+07 3186.34 0.04010 0.02642 0.06622 4708.36 3.0307E+11 4.9455E+07 3780.40 0.03982 0.02631 0.06579 44704.11 4.768E+07 3784.44 0.03980 0.02641	752.08	0.04085	0.02589	0.06674	4727.98	4.5195E+11	6 2789E+07
1128.12 0.04076 0.02602 0.06678 4732109 422868+11 6.1012+07 1504.16 0.04067 0.02614 0.06681 473233 4.0672+11 5.9231E+07 1682.18 0.04063 0.02614 0.06682 4733.43 3.8412+11 5.4341E+07 2066.22 0.04054 0.02624 0.06682 4733.43 3.8412+11 5.451E+07 2244.26 0.04049 0.02623 0.06681 4732.13 3.2248E+11 5.5671E+07 2362.20 0.04043 0.02635 0.06678 4731.16 3.2248E+11 5.306E+07 3196.34 0.04017 0.02642 0.06659 4712.35 3.30307E+11 5.1227E+07 3186.36 0.04010 0.02642 0.06659 4717.72 3.1262E+11 5.1227E+07 3760.00 0.3992 0.02637 0.06633 4706.13 2.936E+11 4.4557E+07 3760.44 0.03972 0.02637 0.06653 471.238 0.3307E+11 5.1227E+07 3760.44 0.03982	940.10	0.04080	0.02596	0.06676	4729.60	4 4023E+11	6 1900E+07
1316.14 0.04072 0.02608 0.06680 4722.35 4172281+11 6.0121E-07 1692.18 0.04063 0.02619 0.06682 4733.38 3.5602E+111 5.8341E+07 2068.22 0.04059 0.02628 0.06682 4733.36 3.34413E+111 5.5671E+07 2266.24 0.04049 0.02632 0.06673 4731.16 3.2428E+111 5.4561E+07 263.28 0.04043 0.02632 0.06677 4728.29 3.222E+111 5.3082E+07 300.33 0.04031 0.02642 0.06671 4727.37 3.223E+11 5.3082E+07 3034.36 0.04010 0.02642 0.06652 4717.23 3.002E+11 5.031E+07 3760.40 0.0392 0.02631 0.06633 469.00 2.447E+11 4.857E+07 4136.44 0.03942 0.02634 0.06652 471.32 3.002E+11 5.034E+07 4324.46 0.03949 0.02631 0.06579 461.05 2.497E+11 4.859E+07 43344 0.039349 <td>1128.12</td> <td>0.04076</td> <td>0.02602</td> <td>0.06678</td> <td>4731.09</td> <td>4.2868E+11</td> <td>6.1010E+07</td>	1128.12	0.04076	0.02602	0.06678	4731.09	4.2868E+11	6.1010E+07
1504.16 0.04067 0.02619 0.06682 4733.81 4.067111 5.9231E-07 1880.20 0.04059 0.02624 0.06682 4733.83 3.9502E+11 5.751E-07 2266.22 0.04049 0.02622 0.06682 4733.86 3.841E+11 5.751E+07 2244.26 0.04049 0.02625 0.06671 4738.92 3.224E+11 5.3002E+07 2802.28 0.04038 0.02635 0.06661 4722.27 3.228E+11 5.3002E+07 3008.32 0.04010 0.02642 0.06665 4772.59 3.222E+11 5.3002E+07 3196.34 0.04010 0.02642 0.06662 4717.23 3.304E+11 5.034E+07 3374.46 0.03912 0.02631 0.06662 4712.36 3.304E+11 4.4680E+07 3374.42 0.03940 0.02631 0.06675 4661.96 2.754E+11 4.768E+07 33744.42 0.03961 0.02631 0.06576 461.91 2.466E+11 4.768E+07 33744 0.03964	1316.14	0.04072	0.02608	0.06680	4732.35	4.1729E+11	6.0121E+07
1692.18 0.04063 0.02619 0.06662 4733.89 3.36712E+11 5.8341E+07 2066.22 0.04054 0.02624 0.06662 4733.66 3.3413E+11 5.5561E+07 2265.24 0.04043 0.02632 0.06667 4731.16 3.2248E+11 5.4561E+07 2632.28 0.04038 0.02632 0.06677 4728.29 3.223E+11 5.3092E+07 3006.34 0.04031 0.02642 0.06667 4772.75 3.223E+11 5.3092E+07 3008.34 0.04010 0.02642 0.06652 4772.35 3.3001E+11 5.301E+07 3760.40 0.03992 0.02631 0.06652 4771.23 3.300E+11 5.301E+07 4136.44 0.03992 0.02631 0.06652 471.93 2.5752E+111 4.505E+07 4700.50 0.03394 0.02631 0.06579 4661.05 2.497E+11 4.505E+07 4700.50 0.03394 0.02621 0.06534 4649.15 2.496E+11 4.505E+07 5264.56 0.03367	1504.16	0.04067	0.02614	0.06681	4733.31	4.0607E+11	5.9231E+07
1880.20 0.04059 0.02628 0.06682 4733.63 3.8413E+11 5.7451E+07 2266.24 0.04049 0.02622 0.06681 4732.72 3.028E+11 5.5561E+07 2244.26 0.04043 0.02635 0.06675 4728.92 3.222E+11 5.3892E+07 3008.32 0.04031 0.02641 0.066675 4728.92 3.222E+11 5.3892E+07 3196.34 0.04017 0.02642 0.06663 4722.27 3.1282E+11 5.112E+07 3364.38 0.04017 0.02642 0.06663 4717.72 3.030E+11 5.041E+07 3364.38 0.04017 0.02642 0.06632 4717.123 3.030E+11 5.041E+07 3364.42 0.0392 0.02631 0.06675 4669.05 2.7542E+11 4.768E+07 4334.46 0.03961 0.02634 0.06675 4661.05 2.447E+11 4.7569E+07 4512.48 0.03964 0.02627 0.06563 4691.11 2.408E+11 4.4175E+07 4525.45 0.03366<	1692.18	0.04063	0.02619	0.06682	4733.89	3.9502E+11	5.8341E+07
2068.22 0.04054 0.02632 0.06682 4733.66 3.733.66 3.733.66 3.733.66 3.733.66 3.733.66 3.733.67 5.5671E+07 2444.26 0.04043 0.02635 0.06673 4731.16 3.5248E+11 5.5671E+07 2820.30 0.04031 0.02640 0.06671 4725.97 3.3223E+11 5.3303E+07 3186.34 0.04017 0.02642 0.06659 4717.72 3.1262E+11 5.13271E+07 3384.36 0.04010 0.02642 0.06659 4717.72 3.1262E+11 5.031E+07 3760.40 0.0392 0.02641 0.06634 4706.13 2.939E+11 4.857E+07 3760.40 0.03962 0.026341 0.06579 4671.63 2.939E+11 4.502E+07 4124.4 0.03961 0.026341 0.06573 4671.05 2.497E+11 4.502E+07 4512.48 0.03936 0.02627 0.06563 4661.05 2.497E+11 4.502E+07 4502.65 0.03936 0.02621 0.06573 466	1880.20	0.04059	0.02624	0.06682	4734.03	3.8413E+11	5.7451E+07
2256.24 0.04049 0.02832 0.06681 4732.72 3.6286E+11 5.6371E+07 2632.28 0.04038 0.02838 0.06675 47728.92 3.4226E+11 5.3392E+07 3008.32 0.04025 0.02640 0.06667 47725.97 3.3221E+11 5.2115E+07 3196.34 0.04017 0.02642 0.06662 4771.72 3.1262E+11 5.0341E+07 3376.38 0.04010 0.02642 0.06652 4771.236 3.0307E+11 5.0341E+07 3760.40 0.03992 0.02641 0.06633 4699.00 2.847E+11 4.8571E+07 3760.40 0.03982 0.02637 0.06609 4681.96 2.654E+11 4.8807E+07 4136.44 0.03948 0.02831 0.06579 4661.05 2.427E+11 4.302E+07 4700.00 0.03938 0.02261 0.06544 4630.17 2.2460E+11 4.302E+07 4700.00 0.03939 0.02616 0.06523 4661.05 2.427E+11 4.302E+07 4700.00 0.	2068.22	0.04054	0.02628	0.06682	4733.66	3.7341E+11	5.6561E+07
2444.26 0.04043 0.02635 0.06678 4721.16 3.2426E+11 5.3802E+07 2820.30 0.04031 0.02640 0.06671 4725.97 3.3221E+11 5.3802E+07 3196.34 0.04015 0.02641 0.06659 4771.72 3.1262E+11 5.2303E+07 3384.36 0.04011 0.02642 0.06659 4771.72 3.1262E+11 5.031E+07 3364.36 0.04010 0.02642 0.06643 4706.13 2.939E+11 4.951E+07 3760.42 0.02631 0.06633 4690.05 2.8547E+11 4.957E+07 3760.44 0.0392 0.02637 0.06607 4661.05 2.497E+11 4.552E+07 4700.50 0.0336 0.02627 0.06553 4661.05 2.497E+11 4.505D+07 4700.56 0.03396 0.02610 0.06503 4661.05 2.497E+11 4.505D+07 4700.56 0.03393 0.02610 0.06503 4607.22 2.2406E+11 4.302E+07 5264.56 0.033841 0.02596 <td>2256.24</td> <td>0.04049</td> <td>0.02632</td> <td>0.06681</td> <td>4732.72</td> <td>3.6286E+11</td> <td>5.5671E+07</td>	2256.24	0.04049	0.02632	0.06681	4732.72	3.6286E+11	5.5671E+07
2 b3 2.28 0.04038 0.02 b40 0.066 75 472 b32 3.322 LET 5.38 92 E-01 3 008.32 0.04025 0.02 b41 0.066 66 4772.25 3.23 3E+11 5.21 15E+07 3 1 96.34 0.04017 0.02 b42 0.066 52 4717.23 3.307E+11 5.303 4E+07 3 572.38 0.04010 0.02 b42 0.066 52 4717.23 3.307E+11 5.334 LE+07 3 943.40 0.03 92 0.02 b41 0.066 33 469 900 2.847E+11 4.358 E+07 4 136.44 0.03 972 0.02 637 0.066 00 468 1.96 2.574 2E+11 4.306 5E+07 4 700.52 0.03 946 0.02 637 0.06 609 468 1.96 2.574 2E+11 4.30 5E+07 4 700.52 0.03 946 0.02 631 0.06 579 466 1.02 2.42 7E+11 4.30 5E+07 4 700.52 0.03 946 0.02 616 0.06 579 466 1.02 2.42 67 6E+11 4.41 75E+07 5 6 0.03 97 0.02 616 0.06 579 466 1.02 2.16 70E+11 4.30 5E+07	2444.26	0.04043	0.02635	0.06678	4/31.16	3.5248E+11	5.4/81E+0/
220.30 0.04401 0.02640 0.06871 4/2377 3.221E+11 5.303E+07 3196.34 0.04017 0.02642 0.06656 4712.25 3.223E+11 5.112E+07 3196.34 0.04010 0.02642 0.06652 4712.36 3.030F+11 5.031E+07 3364.84 0.04001 0.02642 0.06652 4712.36 3.030F+11 5.31E+07 3364.84 0.03992 0.02631 0.06622 4690.95 2.5742E+11 4.7688E+07 4136.44 0.03949 0.02634 0.06595 4671.99 2.5782E+11 4.592E+07 4142.48 0.03949 0.02637 0.06563 4648.11 2.2460E+11 4.352E+07 4700.50 0.03936 0.02616 0.06525 4622.21 2.2460E+11 4.2432E+07 5264.56 0.03893 0.02616 0.06525 4622.21 2.2460E+11 4.2432E+07 5640.60 0.03861 0.02598 0.064457 4574.16 2.0139E+11 3.083E+07 5640.60 0.03861 <td>2632.28</td> <td>0.04038</td> <td>0.02638</td> <td>0.06675</td> <td>4/28.92</td> <td>3.4226E+11</td> <td>5.3892E+07</td>	2632.28	0.04038	0.02638	0.06675	4/28.92	3.4226E+11	5.3892E+07
3006.32 0.04423 0.02441 0.06860 4712.23 3.223511 5.12376+07 3384.38 0.04010 0.02642 0.06652 4717.12 3.1262E+11 5.12376+07 3370.44 0.03992 0.02641 0.06633 4699.00 2.3447E+11 4.8571E+07 3344.42 0.03992 0.02637 0.06609 4681.96 2.6654E+11 4.688E+07 4136.44 0.03972 0.02631 0.06579 4661.05 2.7422E+11 4.5050E+07 4700.50 0.03936 0.02622 0.06554 4621.1 2.4082F+11 4.1564E+07 4700.50 0.03936 0.02610 0.06503 4601.1 2.4080E+11 4.175E+07 4888.52 0.03928 0.02610 0.06503 4607.22 1.2167E+11 4.1564E+07 5264.56 0.03841 0.02596 0.06457 4574.16 2.0139E+11 3.983E+07 5264.66 0.03806 0.02559 0.06346 4495.61 1.7272E+11 3.6426E+07 5264.66 0.038	2820.30	0.04031	0.02640	0.06671	4/25.9/	3.3221E+11	5.3003E+07
338435 0.04011 0.02842 0.00632 4711.26 3.0207E+11 5.0224E-07 3372.38 0.04001 0.02842 0.06633 4690.0 2.8447E+11 4.8571E+07 3364.42 0.03992 0.02841 0.06633 4690.0 2.8447E+11 4.8571E+07 344.42 0.03992 0.02831 0.06603 4680.95 2.5742E+11 4.7688E+07 4136.44 0.03912 0.02834 0.06557 4661.5 2.4927E+11 4.508E+07 4512.46 0.03949 0.02827 0.06563 4601.7 2.2400E+11 4.2432E+07 5076.54 0.03988 0.02616 0.06525 4622.21 2.2400E+11 4.2432E+07 5640.60 0.03861 0.02588 0.06431 4591.20 2.0697E+11 4.069E+07 5640.60 0.03861 0.02598 0.064457 457.46 2.0397E+11 4.069E+07 6304.66 0.03269 0.06376 457.46 2.0397E+11 3.8979E+07 5640.60 0.03864 0.02598<	2106.24	0.04023	0.02041	0.06650	4/22.23	3.2233E+11	5.2113E+07
3572.38 0.04001 0.02842 0.06643 4706.13 2.9369E-11 3.9455E-07 3760.40 0.0392 0.02641 0.06633 4699.00 2.8447E+11 4.8571E-07 3848.42 0.03962 0.02631 0.06622 499.95 2.7542E+11 4.7688E+07 4124.46 0.03961 0.02634 0.0659 4671.99 2.5782E+11 4.5028E+07 4512.48 0.03936 0.02627 0.00563 4461.01 2.4027E+11 4.5028E+07 450.0 0.03936 0.02612 0.00553 4671.99 2.5782E+11 4.5028E+07 450.5 0.03908 0.02616 0.06525 4622.21 2.2460E+111 4.4332E+07 5264.56 0.03847 0.02610 0.06431 4556.07 1.9398E+11 3.9838E+07 5264.60 0.03841 0.02596 0.0637 4574.86 1.9398E+11 3.8397E+07 5264.60 0.03877 0.02559 0.06346 4495.61 1.7272E+11 3.6426E+07 5282.68 0.037	3190.34	0.04017	0.02042	0.06652	4717.72	3.1202E+11 3.0307E+11	5.0341E+07
3760.40 0.03992 0.02841 0.06633 4690.00 2.8447E=111 4.8571E=07 3948.42 0.03982 0.02637 0.06602 4690.95 2.7542E=111 4.768E=07 4136.44 0.03949 0.02634 0.06609 4681.96 2.6654E=111 4.4607E=07 4512.48 0.03949 0.02631 0.06579 4661.05 2.4927E=111 4.5030E=07 4700.50 0.03936 0.02627 0.06563 4649.11 2.408E=111 4.4175E=07 488.52 0.03922 0.02616 0.06525 4622.21 2.2460E=111 4.302E=07 5264.56 0.03861 0.02580 0.06481 4591.20 2.0897E=11 4.6998E=07 5440.60 0.03861 0.02580 0.06457 4574.16 2.0139E=111 3.8938E=07 6204.66 0.03805 0.02569 0.06376 4516.80 1.795E=111 3.5783E=07 6380.70 0.03766 0.02548 0.06151 4473.40 1.5934E=111 3.474E=07 6380.70	3572.38	0.04010	0.02642	0.06643	4706.13	2 9369E+11	4 9455E+07
3948.42 0.03972 0.02639 0.06622 1600.55 2.7642E-11 4.7688E-07 4136.44 0.03972 0.02637 0.06609 4681.96 2.6654E-111 4.7688E-07 4122.446 0.03961 0.02631 0.06579 4661.05 2.4927E+11 4.5028E+07 4700.50 0.03936 0.02627 0.06563 449.11 2.3266E+11 4.302E+07 5076.54 0.03908 0.02610 0.06503 4607.22 2.1670E+111 4.1564E+07 5452.58 0.03841 0.02596 0.06431 4556.07 1.9398E+11 3.9878E+07 5640.60 0.03861 0.02596 0.06431 4556.07 1.9398E+11 3.8172E+07 6204.66 0.03806 0.02559 0.06376 4416.80 1.7955E+111 3.773E+07 6204.66 0.03807 0.02548 0.06315 4473.40 1.695E+111 3.6748E+07 6392.68 0.03745 0.02548 0.0615 4475.40 1.7272E+11 3.6426E+07 6580.70 <t< td=""><td>3760.40</td><td>0 03992</td><td>0 0 2 6 4 1</td><td>0.06633</td><td>4699.00</td><td>2.8447F+11</td><td>4.8571F+07</td></t<>	3760.40	0 03992	0 0 2 6 4 1	0.06633	4699.00	2.8447F+11	4.8571F+07
4136.44 0.03972 0.02637 0.06609 4681.96 2.6654E+11 4.607E+07 4324.46 0.03961 0.02631 0.06595 4661.05 2.4927E+11 4.502E+07 4512.48 0.03936 0.02627 0.06563 4649.11 2.4927E+11 4.502E+07 488.52 0.03922 0.02622 0.06543 4636.17 2.3266E+11 4.432E+07 5264.56 0.03981 0.02610 0.06503 4607.22 2.460E+11 4.2432E+07 5640.60 0.03861 0.02526 0.06431 4556.07 1.3998E+11 3.9838E+07 5828.62 0.03861 0.02559 0.06431 4556.07 1.3998E+11 3.8979E+07 6302.68 0.03766 0.025259 0.06376 4516.80 1.7965E+11 3.582E+07 63580.70 0.03766 0.02527 0.0604.4536.951 1.7272E+11 3.6426E+07 6356.74 0.03706 0.02548 0.06315 4473.40 1.6595E+11 3.583E+07 6356.74 0.03766	3948.42	0.03982	0.02639	0.06622	4690.95	2.7542E+11	4.7688E+07
43224.66 0.03849 0.02634 0.06595 4671.05 2.5782E+11 4.5928E+07 4700.50 0.03949 0.02627 0.06563 4640.11 2.4988E+11 4.4175E+07 488.52 0.03922 0.02622 0.06544 4636.17 2.3266E+11 4.3302E+07 5076.54 0.03893 0.02616 0.06525 4622.21 2.2460E+11 4.1684E+07 5425.56 0.03841 0.02596 0.06457 4567.16 2.0139E+11 3.983E+07 5640.60 0.03861 0.02596 0.06447 4556.07 1.394E+11 3.8125E+07 6204.66 0.03806 0.02559 0.06404 4536.95 1.8674E+11 3.8125E+07 6392.68 0.03767 0.02559 0.06316 4495.1 1.7272E+11 3.6426E+07 6768.72 0.03745 0.02537 0.06247 4425.89 1.5838E+01 3.3910E+07 732.78 0.03677 0.02428 0.06175 4374.02 1.3446E+11 3.205E+07 732.78	4136.44	0.03972	0.02637	0.06609	4681.96	2.6654E+11	4.6807E+07
4512.48 0.03946 0.02631 0.06579 4661.05 2.4927E+11 4.5050E+07 4700.50 0.03936 0.02622 0.06543 4649.11 2.3266E+11 4.3132E+07 5076.54 0.03908 0.02616 0.06525 4622.21 2.2460E+11 4.2432E+07 5264.56 0.03861 0.02602 0.06481 4591.20 2.0897E+11 4.0699E+07 5640.60 0.03861 0.02508 0.06431 4556.07 1.33983E+07 5828.62 0.03844 0.02579 0.06404 4538.95 1.3874E+11 3.8979E+07 6016.64 0.03806 0.02569 0.06376 4451.80 1.7965E+11 3.7273E+07 6380.70 0.03766 0.02548 0.06315 4473.40 1.6595E+11 3.636E+07 6586.74 0.03723 0.02524 0.06217 4425.89 1.528E+11 3.340E+07 7322.78 0.03653 0.02448 0.060175 437.42 1.4404E+11 3.474E+07 7366.84 0.03602 0.02	4324.46	0.03961	0.02634	0.06595	4671.99	2.5782E+11	4.5928E+07
4700.50 0.03936 0.02627 0.06563 4649.11 2.4088E+11 4.4175E+07 5076.54 0.03908 0.02616 0.06525 4622.21 2.2460E+11 4.2432E+07 5264.56 0.03893 0.02610 0.06503 4607.22 2.1670E+111 4.166E+07 5452.58 0.03877 0.02603 0.06457 4574.16 2.0139E+111 3.9838E+07 5640.60 0.03861 0.02568 0.06457 4574.16 2.0139E+111 3.8938E+07 6204.66 0.03825 0.02579 0.06404 4536.95 1.8674E+11 3.8125E+07 6382.68 0.03787 0.02559 0.06376 4495.61 1.7272E+11 3.6426E+07 6580.70 0.03745 0.02537 0.06247 4425.89 1.5288E+11 3.3042E+07 7323.78 0.03673 0.02244 0.06175 4374.32 1.404E+11 3.255E+07 7323.78 0.03673 0.02433 0.06175 4374.32 1.2404E+11 3.262E+07 7368.42 <td< td=""><td>4512.48</td><td>0.03949</td><td>0.02631</td><td>0.06579</td><td>4661.05</td><td>2.4927E+11</td><td>4.5050E+07</td></td<>	4512.48	0.03949	0.02631	0.06579	4661.05	2.4927E+11	4.5050E+07
4888.52 0.03902 0.02622 0.06544 4636.17 2.3266E+11 4.3302E+07 5076.54 0.03903 0.02610 0.06525 4622.21 2.2460E+11 4.4302E+07 5452.58 0.03877 0.02603 0.06481 4591.20 2.2460E+11 4.1564E+07 5640.60 0.03861 0.02596 0.06437 4576.07 1.9398E+11 3.8979E+07 6016.64 0.03806 0.02599 0.06404 4536.95 1.8674E+11 3.8125E+07 6326.80 0.03787 0.02599 0.06336 4495.61 1.7272E+11 3.4626E+07 6380.70 0.03766 0.02548 0.06315 4473.40 1.6595E+11 3.5583E+07 7144.76 0.03707 0.02521 0.06212 4400.61 1.4659E+11 3.3145E+07 7520.80 0.03653 0.02483 0.06175 4374.32 1.3444E+07 70788.2 0.03626 0.02448 0.06055 4289.43 1.2294E+11 3.245E+07 7786.84 0.03602 0.	4700.50	0.03936	0.02627	0.06563	4649.11	2.4088E+11	4.4175E+07
5076.54 0.03908 0.02616 0.06525 4622.21 2.2460E+11 4.2432E+07 5264.56 0.03897 0.02603 0.06481 4591.20 2.0897E+11 4.0699E+07 5640.60 0.03844 0.02588 0.06437 4574.16 2.0139E+111 3.8938E+07 6016.64 0.03825 0.02579 0.06404 4536.95 1.8674E+11 3.8125E+07 6204.66 0.0376 0.02559 0.06376 4516.80 1.795E+11 3.6426E+07 6580.70 0.03766 0.02559 0.06346 4495.61 1.7272E+11 3.6426E+07 6768.72 0.03745 0.02524 0.06247 4425.89 1.5288E+11 3.347E+07 6966.74 0.03700 0.02511 0.06212 4400.61 1.4659E+11 3.3435E+07 7520.8 0.03653 0.02488 0.06175 4374.92 1.3446E+11 3.125E+07 768.4 0.03657 0.02480 0.06136 4347.02 1.3446E+11 3.125E+07 78964.4 0.036	4888.52	0.03922	0.02622	0.06544	4636.17	2.3266E+11	4.3302E+07
5264.56 0.03893 0.02610 0.06503 4691.20 2.0670E+111 4.1564E+07 5640.60 0.03861 0.02596 0.064457 4574.16 2.0897E+111 3.9838E+07 5828.62 0.03861 0.02579 0.06431 4556.07 1.9398E+111 3.8938E+07 6016.64 0.03825 0.02579 0.06346 4495.61 1.7272E+111 3.842E+07 6392.88 0.03766 0.02559 0.063376 4516.80 1.7965E+111 3.5783E+07 6768.72 0.03766 0.02548 0.06247 4425.89 1.5288E+11 3.3910E+07 7144.76 0.03700 0.02511 0.06212 4400.61 1.4659E+111 3.434EE+07 7520.80 0.03653 0.02433 0.06155 4284.31 1.229E+111 3.0400E+07 7708.82 0.03662 0.02433 0.06055 4289.43 1.229E+11 3.0400E+07 7896.84 0.03576 0.02436 0.06055 4289.43 1.2294E+11 2.9811E+07 806.480	5076.54	0.03908	0.02616	0.06525	4622.21	2.2460E+11	4.2432E+07
5452.58 0.038/7 0.02603 0.06487 4574.16 2.0189/E+11 4.0699E+07 5828.62 0.03844 0.02588 0.06431 4556.07 1.3938E+11 3.8979E+07 6016.64 0.03825 0.02579 0.06404 4536.95 1.8874E+11 3.8125E+07 6204.66 0.03866 0.02569 0.06376 4516.80 1.7965E+11 3.7273E+07 6392.68 0.03766 0.02549 0.06346 4495.61 1.7272E+11 3.6426E+07 6768.72 0.03766 0.02547 0.06247 4425.89 1.5288E+11 3.3910E+07 732.78 0.03653 0.02483 0.06175 4374.32 1.4044E+11 3.225E+07 750.80 0.03653 0.02483 0.06175 4374.32 1.4044E+11 3.0420E+07 808.48 0.03576 0.02436 0.60096 4318.72 1.2262E+11 3.0620E+07 808.48 0.03576 0.02436 0.06051 4289.43 1.2294E+11 2.907E+07 8227.88 1.02344	5264.56	0.03893	0.02610	0.06503	4607.22	2.1670E+11	4.1564E+07
5540.60 0.03861 0.02596 0.06437 456.07 1.9398E+11 3.9382E+07 6016.64 0.03825 0.02579 0.06404 4556.07 1.9398E+11 3.8979E+07 6204.66 0.03825 0.02559 0.06376 4516.80 1.796EE+11 3.8172E+07 6392.68 0.03787 0.02559 0.06346 4495.61 1.7272E+11 3.6426E+07 6768.72 0.03746 0.02548 0.06247 4425.89 1.5288E+11 3.910E+07 7144.76 0.03703 0.022524 0.06247 4425.89 1.5288E+11 3.910E+07 7332.78 0.03677 0.02488 0.06175 4374.32 1.4044E+11 3.2255E+07 7508.00 0.03653 0.02468 0.06055 4289.43 1.2294E+11 3.0620E+07 7896.84 0.03602 0.02453 0.06055 4289.43 1.2294E+11 2.9811E+07 8044.86 0.03549 0.02419 0.05968 4227.88 1.1203E+11 2.8210E+07 826.94 0	5452.58	0.03877	0.02603	0.06481	4591.20	2.089/E+11	4.0699E+07
3828.62 0.03844 0.02385 0.06431 4536.07 1.93384±11 3.8379±01 6016.64 0.03806 0.022579 0.06404 4536.95 1.8674±11 3.8125±07 6392.68 0.03766 0.02559 0.06376 4495.61 1.7272±11 3.6426±07 6580.70 0.03766 0.02537 0.06282 4450.15 1.5934±11 3.4744±07 7665.74 0.03700 0.02511 0.06212 4400.61 1.4659±111 3.3910±07 7332.78 0.03677 0.02483 0.06175 4374.32 1.4044±11 3.2255±07 7520.80 0.03653 0.02468 0.06096 4318.72 1.3446±11 3.0420±17 7896.84 0.03654 0.02436 0.6012 4259.14 1.1741±11 2.9007±07 846.99 0.03551 0.02436 0.6012 4259.14 1.1741±11 2.9007±07 8272.88 0.03549 0.02436 0.6012 4259.14 1.1741±11 2.9007±07 826.94 0.03444	5640.60	0.03861	0.02596	0.06457	45/4.16	2.0139E+11	3.9838E+07
0016.3+ 0.03623 0.02579 0.0434+ 4533.35 1.8074±11 3.8122±07 6392.68 0.03377 0.02559 0.06346 4495.61 1.7272±11 3.6426±07 6580.70 0.03766 0.02548 0.06316 4473.40 1.6595±11 3.5585±07 6768.72 0.03745 0.02524 0.06247 4450.15 1.5934±11 3.4744±07 6956.74 0.03700 0.02524 0.06247 4400.61 1.4659±11 3.3910±07 7332.78 0.03677 0.02498 0.06175 4374.32 1.4044±11 3.2255±07 7708.82 0.03628 0.02483 0.06056 4318.72 1.2862±11 3.0620±07 7896.84 0.03602 0.02436 0.06055 4289.43 1.2294±11 2.9811±07 8460.90 0.03549 0.02419 0.05968 4227.88 1.1203±11 2.8210E±07 8468.92 0.03493 0.02344 0.05874 4162.41 1.0172±11 2.6632±07 8464.92 0.03403	5828.02 6016.64	0.03844	0.02588	0.06431	4556.07	1.9398E+11	3.89/9E+0/ 2.9125E+07
0204:00 0.02505 0.03076 4495.61 1.7302111 3.7272E+11 6580.70 0.03766 0.02537 0.06315 4495.61 1.7302E+11 3.6426E+07 6768.72 0.03723 0.02537 0.06242 4450.15 1.5934E+11 3.543E+07 6956.74 0.03723 0.02511 0.06212 4400.61 1.4659E+11 3.3080E+07 7144.76 0.03653 0.02488 0.06136 4347.02 1.3446E+11 3.225E+07 7520.80 0.03653 0.02488 0.0606 4318.72 1.2862E+11 3.0620E+07 7896.84 0.03576 0.02436 0.06012 4259.14 1.1741E+11 2.9007E+07 8460.90 0.03521 0.02401 0.05922 4195.63 1.0680E+11 2.7418E+07 8648.92 0.03493 0.02364 0.05877 402364 1.1741E+11 2.9007E+07 9024.96 0.03434 0.02364 0.05827 412821 9.6789E+10 2.5635E+07 9401.00 0.03372 0.02	6204 66	0.03825	0.02579	0.00404	4530.95	1.0074E+11 1.7065E+11	3.0123E+07
6580.70 0.03766 0.02548 0.06315 4473.40 1.659E+11 3.5583E+07 6768.72 0.03745 0.02537 0.06282 4450.15 1.5934E+11 3.4744E+07 6956.74 0.03700 0.02524 0.06212 4400.61 1.4659E+11 3.3080E+07 7332.78 0.03677 0.02483 0.06136 4347.02 1.3446E+11 3.1435E+07 7708.82 0.03628 0.02483 0.06136 4347.02 1.3446E+11 3.0620E+07 7896.84 0.03602 0.02433 0.06055 4289.43 1.2294E+11 2.9811E+07 884.86 0.03576 0.02419 0.05968 4227.88 1.1032E+11 2.8210E+07 8468.92 0.03464 0.02364 0.05876 4162.41 1.0172E+11 2.6632E+07 9024.96 0.03434 0.02344 0.05778 4093.05 9.201E+10 2.5832E+07 9024.96 0.03444 0.02342 0.05778 4093.05 9.201E+10 2.5083E+07 9401.00 0.03372 <td>6392.68</td> <td>0.03787</td> <td>0.02559</td> <td>0.06346</td> <td>4495.61</td> <td>1 7272F+11</td> <td>3.6426E+07</td>	6392.68	0.03787	0.02559	0.06346	4495.61	1 7272F+11	3.6426E+07
6768.72 0.03745 0.02537 0.06282 4450.15 1.5934E+11 3.4744E+07 6956.74 0.03723 0.02524 0.06247 4425.89 1.5288E+11 3.3910E+07 7332.78 0.03677 0.02498 0.06175 4374.32 1.4659E+11 3.3080E+07 7520.80 0.03653 0.02483 0.06136 4347.02 1.3446E+11 3.145E+07 7788.82 0.03602 0.02483 0.06055 4289.43 1.2294E+11 2.9811E+07 8084.86 0.03576 0.02436 0.06012 4259.14 1.1741E+11 2.907E+07 8460.90 0.03521 0.02401 0.05968 4227.88 1.003E+11 2.8210E+07 8469.90 0.03434 0.02364 0.05827 4128.21 9.6789E+10 2.5853E+07 9024.96 0.03434 0.02364 0.05827 4128.21 9.6789E+10 2.5853E+07 9401.00 0.03372 0.02302 0.05674 4019.80 8.2857E+10 2.3554E+07 9450.60 0	6580.70	0.03766	0.02548	0.06315	4473.40	1.6595E+11	3.5583E+07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	6768.72	0.03745	0.02537	0.06282	4450.15	1.5934E+11	3.4744E+07
7144.76 0.03700 0.02511 0.06212 4400.61 1.4659E+11 3.3080E+07 7332.78 0.03677 0.02498 0.06175 4374.32 1.4044E+11 3.255E+07 7752.80 0.03653 0.02483 0.060136 4347.02 1.3446E+111 3.1435E+07 7708.82 0.03628 0.02453 0.06055 4289.43 1.2294E+11 2.907E+07 8084.86 0.03576 0.02430 0.06055 4289.14 1.1741E+11 2.9007E+07 8460.90 0.03521 0.02401 0.05968 4227.88 1.1203E+11 2.8210E+07 8648.92 0.03493 0.02383 0.05876 4162.41 1.0172E+11 2.6632E+07 9024.96 0.03434 0.02344 0.05727 4056.91 8.7357E+10 2.5853E+07 9401.00 0.03372 0.02302 0.05674 4093.05 9.2001E+10 2.5853E+07 9455.06 0.03241 0.02280 0.05620 3981.72 7.8499E+10 2.3854E+07 9965.06 <t< td=""><td>6956.74</td><td>0.03723</td><td>0.02524</td><td>0.06247</td><td>4425.89</td><td>1.5288E+11</td><td>3.3910E+07</td></t<>	6956.74	0.03723	0.02524	0.06247	4425.89	1.5288E+11	3.3910E+07
7332.78 0.03677 0.02498 0.06175 4374.32 1.4044E+11 3.2255E+07 7520.80 0.03653 0.02483 0.06136 4347.02 1.3446E+11 3.1435E+07 7708.82 0.03628 0.02468 0.06096 4318.72 1.2862E+11 2.9811E+07 8084.86 0.03576 0.02433 0.06012 4259.14 1.1741E+11 2.9007E+07 8460.90 0.03521 0.02401 0.05922 4195.63 1.0680E+11 2.7418E+07 8648.92 0.03493 0.02344 0.05827 4128.21 9.6789E+10 2.5853E+07 9024.96 0.03434 0.02344 0.05778 4093.05 9.2001E+10 2.5853E+07 9401.00 0.03372 0.02302 0.05674 401.80 8.2857E+10 2.4314E+07 9589.02 0.03341 0.02209 0.05674 401.80 8.2857E+10 2.2802E+07 9777.04 0.0308 0.02215 0.05509 3942.66 7.4282E+10 2.2057E+07 10559.12	7144.76	0.03700	0.02511	0.06212	4400.61	1.4659E+11	3.3080E+07
7520.800.036530.024830.061364347.021.3446E+113.1435E+077708.820.036020.024630.060964318.721.2862E+113.0620E+078084.860.035760.024360.060124289.431.2294E+112.9811E+07807.880.035490.024190.059684227.881.1203E+112.8210E+078460.900.035210.024010.059224195.631.0680E+112.7418E+078648.920.034930.023830.058764162.411.0172E+112.6632E+078836.940.034640.023640.058274128.219.6789E+102.5853E+079024.960.034030.023230.057274056.918.7357E+102.4314E+079401.000.033720.023020.056744019.808.2857E+102.23554E+079589.020.034010.022800.056203981.727.8499E+102.2057E+079965.060.032750.022340.055093902.617.0204E+102.1320E+0710153.080.032410.022090.054513861.586.6264E+102.980E+0710529.120.031720.021550.053313776.495.8792E+101.9153E+0710529.120.031720.021550.052053687.305.1855E+101.7750E+0710905.160.031000.021050.052053687.305.1855E+101.6381E+0711093.180.030620.020170.051403641.124.8582E+101.7061E+07 <t< td=""><td>7332.78</td><td>0.03677</td><td>0.02498</td><td>0.06175</td><td>4374.32</td><td>1.4044E+11</td><td>3.2255E+07</td></t<>	7332.78	0.03677	0.02498	0.06175	4374.32	1.4044E+11	3.2255E+07
7708.820.036280.024680.060964318.721.2862E+1113.0620E+077896.840.035760.024360.060124259.141.1741E+112.9811E+078084.860.035760.024360.060124259.141.1741E+112.9007E+078272.880.035490.024190.059684227.881.1203E+112.8210E+078460.900.035210.024010.059224195.631.0680E+112.7418E+078648.920.034930.023830.058764162.411.0172E+112.6632E+079024.960.034340.023440.057784093.059.2001E+102.5853E+079024.960.034310.023020.056744019.808.2857E+102.3554E+079401.000.033720.023020.056203981.727.8499E+102.2802E+079777.040.033080.022570.055653942.667.4282E+102.2057E+079965.060.032750.022340.053923819.546.2461E+101.9868E+0710529.120.031720.021850.052053687.305.1855E+101.755E+071095.160.031000.021050.052053687.305.1855E+101.756+0710905.160.0300240.020770.051403641.124.8582E+101.7661E+071169.220.029850.020170.051403641.124.8582E+101.761E+071169.240.030620.020770.051403641.124.8582E+101.7061E+07 <t< td=""><td>7520.80</td><td>0.03653</td><td>0.02483</td><td>0.06136</td><td>4347.02</td><td>1.3446E+11</td><td>3.1435E+07</td></t<>	7520.80	0.03653	0.02483	0.06136	4347.02	1.3446E+11	3.1435E+07
7896.840.036020.024530.060554289.431.2294E+112.9811E+078084.860.035760.024360.060124259.141.1741E+112.9007E+078272.880.035490.024190.059684227.881.1203E+112.8210E+078460.900.035210.024010.059224195.631.0680E+112.7418E+078636.940.034640.023640.058274162.411.0172E+112.6632E+079024.960.034340.023440.057784093.059.2001E+102.5853E+07901.000.033720.023020.056744019.808.2857E+102.4314E+079401.000.033720.023020.056744019.808.2857E+102.2602E+07977.040.033080.022570.056553942.667.4282E+102.2057E+079965.060.032750.022340.05392381.586.6264E+102.0590E+0710153.080.032410.022090.054513861.586.6264E+102.0590E+0710529.120.031720.021550.053923819.546.2461E+101.9868E+0710529.120.031000.021050.052053687.305.1855E+101.7750E+071095.160.030020.020770.051403641.124.8582E+101.6381E+071169.220.029850.020190.050733593.854.5438E+101.6381E+071169.240.029460.019890.049353495.953.9530E+101.5048E+07 <t< td=""><td>7708.82</td><td>0.03628</td><td>0.02468</td><td>0.06096</td><td>4318.72</td><td>1.2862E+11</td><td>3.0620E+07</td></t<>	7708.82	0.03628	0.02468	0.06096	4318.72	1.2862E+11	3.0620E+07
8084.86 0.03576 0.02436 0.06012 4259.14 1.1741E+11 2.9007E+07 8272.88 0.03549 0.02419 0.05968 4227.88 1.1203E+11 2.8210E+07 8460.90 0.03521 0.02401 0.05922 4195.63 1.0680E+11 2.7418E+07 8648.92 0.03493 0.02364 0.05827 4128.21 9.6789E+10 2.5853E+07 9024.96 0.03403 0.02323 0.05777 4093.05 9.2001E+10 2.5880E+07 9401.00 0.03372 0.02302 0.05674 4019.80 8.2857E+10 2.4314E+07 9401.00 0.03372 0.02302 0.05620 3981.72 7.8499E+10 2.2802E+07 9777.04 0.03308 0.02257 0.05565 3942.66 7.4282E+10 2.2057E+07 9965.06 0.03275 0.02185 0.05392 3819.54 6.2461E+10 2.9808E+07 10529.12 0.03172 0.02185 0.05205 3687.30 5.1855E+10 1.953E+07 10529.12 <	7896.84	0.03602	0.02453	0.06055	4289.43	1.2294E+11	2.9811E+07
8272.88 0.03549 0.02419 0.05968 4227.88 1.1203E+11 2.8210E+07 8460.90 0.03521 0.02401 0.05922 4195.63 1.0680E+11 2.7418E+07 8648.92 0.03493 0.02383 0.05876 4162.41 1.0172E+11 2.6632E+07 9024.96 0.03434 0.02344 0.05778 4093.05 9.2001E+10 2.5853E+07 9212.98 0.03403 0.02323 0.05777 4056.91 8.7357E+10 2.4314E+07 9401.00 0.03372 0.02302 0.05674 4019.80 8.2857E+10 2.3554E+07 9589.02 0.03341 0.02257 0.05565 3942.66 7.4282E+10 2.2057E+07 9965.06 0.03275 0.02132 0.05331 3776.49 5.8792E+10 2.1320E+07 1053.08 0.03241 0.02209 0.05451 3861.58 6.6264E+10 2.0590E+07 10529.12 0.03172 0.02185 0.05331 3776.49 5.8792E+10 1.9868E+07 10905.16	8084.86	0.03576	0.02436	0.06012	4259.14	1.1/41E+11	2.900/E+0/
3400.30 0.0321 0.02401 0.03522 4163.03 1.03680111 2.74782407 8648.92 0.03493 0.02383 0.05876 4162.41 1.0172E+11 2.6632E+07 9024.96 0.03434 0.02364 0.05827 4182.11 9.6789E+10 2.5853E+07 9212.98 0.03403 0.02323 0.05727 4056.91 8.7357E+10 2.4314E+07 9401.00 0.03372 0.02302 0.05674 4019.80 8.2857E+10 2.3554E+07 9589.02 0.03341 0.02280 0.05620 3981.72 7.8499E+10 2.2802E+07 9777.04 0.03308 0.02257 0.05565 3942.66 7.4282E+10 2.057E+07 9965.06 0.03275 0.02234 0.05509 3902.61 7.0204E+10 2.1320E+07 10341.10 0.03207 0.02185 0.05392 3819.54 6.2461E+10 1.9868E+07 10529.12 0.03172 0.02185 0.05205 3687.30 5.1855E+10 1.9750E+07 10905.16 <	8272.88	0.03549	0.02419	0.05968	4227.88	1.1203E+11 1.0690E+11	2.8210E+07
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8648.02	0.03021	0.02401	0.05922	4190.03	10179E+11	2.74100-07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8836.94	0 03464	0.02364	0.05827	4128 21	9.6789F+10	2 5853E+07
9212.980.034030.023230.057274056.918.7357E+102.4314E+079401.000.033720.023020.056744019.808.2857E+102.3554E+079589.020.033410.022800.056203981.727.8499E+102.2802E+079777.040.033080.022570.055653942.667.4282E+102.2057E+079965.060.032750.022340.055093902.617.0204E+102.1320E+0710153.080.032410.022090.054513861.586.6264E+102.0590E+0710341.100.032070.021850.053923819.546.2461E+101.9868E+0710529.120.031720.021590.053313776.495.8792E+101.9153E+0710905.160.031000.021050.052693732.425.5258E+101.7750E+0711093.180.030620.020770.051403641.124.8582E+101.7061E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711657.240.029460.019890.049353495.953.9530E+101.5048E+0712033.280.028640.019260.047903393.353.4116E+101.3752E+0712221.300.028220.018930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	9024.96	0.03434	0.02344	0.05778	4093.05	9.2001E+10	2.5080E+07
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9212.98	0.03403	0.02323	0.05727	4056.91	8.7357E+10	2.4314E+07
9589.020.033410.022800.056203981.727.8499E+102.2802E+079777.040.033080.022570.055653942.667.4282E+102.2057E+079965.060.032750.022340.055093902.617.0204E+102.1320E+0710153.080.032410.022090.054513861.586.6264E+102.0590E+0710341.100.032070.021850.053923819.546.2461E+101.9868E+0710529.120.031720.021590.052693732.425.5258E+101.8447E+0710905.160.031000.021050.052053687.305.1855E+101.7761E+0711093.180.030240.020490.050733593.854.5438E+101.6381E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711657.240.029460.019890.049353495.953.9530E+101.5048E+0711845.260.028640.019260.047903393.353.4116E+101.3752E+0712221.300.028220.18930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	9401.00	0.03372	0.02302	0.05674	4019.80	8.2857E+10	2.3554E+07
9777.040.033080.022570.055653942.667.4282E+102.2057E+079965.060.032750.022340.055093902.617.0204E+102.1320E+0710153.080.032410.022090.054513861.586.6264E+102.0590E+0710341.100.032070.021850.053923819.546.2461E+101.9868E+0710529.120.031720.021590.052693732.425.5258E+101.8447E+0710905.160.031000.021050.052053687.305.1855E+101.7750E+0711093.180.030620.020770.051403641.124.8582E+101.6381E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711657.240.029460.019890.049353495.953.9530E+101.5048E+0711845.260.029050.019580.048633445.253.6762E+101.4395E+0712033.280.028640.019260.047903393.353.4116E+101.3752E+071221.300.028220.018930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	9589.02	0.03341	0.02280	0.05620	3981.72	7.8499E+10	2.2802E+07
9965.060.032750.022340.055093902.617.0204E+102.1320E+0710153.080.032410.022090.054513861.586.6264E+102.0590E+0710341.100.032070.021850.053923819.546.2461E+101.9868E+0710529.120.031720.021590.053313776.495.8792E+101.9153E+0710717.140.031360.021320.052053687.305.1855E+101.7750E+0710905.160.031000.021050.052053687.305.1855E+101.7761E+0711093.180.030620.020770.051403641.124.8582E+101.7061E+0711281.200.030240.020490.050053545.474.2421E+101.5710E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711857.240.029050.019580.048633445.253.6762E+101.4395E+0712033.280.028640.019260.047903393.353.4116E+101.3752E+0712221.300.028220.018930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	9777.04	0.03308	0.02257	0.05565	3942.66	7.4282E+10	2.2057E+07
10153.080.032410.022090.054513861.586.6264E+102.0590E+0710341.100.032070.021850.053923819.546.2461E+101.9868E+0710529.120.031720.021590.053313776.495.8792E+101.9153E+0710717.140.031360.021320.052053687.305.1855E+101.7750E+0710905.160.030020.020770.051403641.124.8582E+101.7061E+0711093.180.030620.020770.051403641.124.8582E+101.7061E+0711281.200.030240.020490.050053545.474.2421E+101.5710E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711857.240.029460.019890.049353495.953.9530E+101.5048E+0712033.280.028640.019260.047903393.353.4116E+101.3752E+0712221.300.028220.018930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	9965.06	0.03275	0.02234	0.05509	3902.61	7.0204E+10	2.1320E+07
10341.100.032070.021850.053923819.546.2461E+101.9868E+0710529.120.031720.021590.053313776.495.8792E+101.9153E+0710717.140.031360.021320.052693732.425.5258E+101.8447E+0710905.160.031000.021050.052053687.305.1855E+101.7750E+0711093.180.030620.020770.051403641.124.8582E+101.7061E+0711281.200.030240.020490.050733593.854.5438E+101.6381E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711657.240.029050.019580.048633445.253.6762E+101.4395E+071203.280.028640.019260.047903393.353.4116E+101.3752E+0712221.300.028220.018930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	10153.08	0.03241	0.02209	0.05451	3861.58	6.6264E+10	2.0590E+07
10529.120.031720.021590.053313776.495.8792E+101.9153E+0710717.140.031360.021320.052693732.425.5258E+101.8447E+0710905.160.031000.021050.052053687.305.1855E+101.7750E+0711093.180.030620.020770.051403641.124.8582E+101.761E+0711281.200.030240.020490.050053545.474.2421E+101.6381E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711657.240.029460.019890.049353495.953.9530E+101.5048E+0712033.280.028640.019260.047903393.353.4116E+101.3752E+0712221.300.028220.018930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	10341.10	0.03207	0.02185	0.05392	3819.54	6.2461E+10	1.9868E+07
10/1/.14 0.03136 0.02132 0.05269 3/32.42 5.5258E+10 1.8447E+07 10905.16 0.03100 0.02105 0.05205 3687.30 5.1855E+10 1.7750E+07 11093.18 0.03062 0.02077 0.05140 3641.12 4.8582E+10 1.7661E+07 11281.20 0.03024 0.02049 0.05073 3593.85 4.5438E+10 1.6381E+07 11469.22 0.02985 0.02019 0.05005 3545.47 4.2421E+10 1.5710E+07 11657.24 0.02905 0.01989 0.04935 3495.95 3.9530E+10 1.5048E+07 12033.28 0.02864 0.01926 0.04790 3393.35 3.4116E+10 1.3752E+07 12221.30 0.02822 0.01893 0.04715 3340.20 3.1590E+10 1.3119E+07 12409.32 0.02778 0.01860 0.04638 3285.76 2.9181E+10 1.2496E+07	10529.12	0.03172	0.02159	0.05331	3776.49	5.8/92E+10	1.9153E+07
10905.160.031000.021050.052053687.305.1855±101.7/50±4011093.180.030620.020770.051403641.124.8582E+101.7061E+0711281.200.030240.020490.050733593.854.5438E+101.6381E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711657.240.029460.019890.049353495.953.9530E+101.5048E+0711845.260.029050.019580.048633445.253.6762E+101.4395E+0712033.280.028640.019260.047903393.353.4116E+101.3752E+0712221.300.028220.018930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	10/1/.14	0.03136	0.02132	0.05269	3/32.42	5.5258E+10	1.844/E+07
11053.160.030620.020770.031403641.124.8382E+101.7061E+0711281.200.030240.020490.050733593.854.5438E+101.6381E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711657.240.029460.019890.049353495.953.9530E+101.5048E+0711845.260.029050.019580.048633445.253.6762E+101.4395E+0712033.280.028640.019260.047903393.353.4116E+101.3752E+0712221.300.028220.018930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	11002.10	0.03100	0.02105	0.05205	3687.30	5.1855E+10	1.//50E+0/
11201200.030240.020490.030733593.854.3436E+101.0381E+0711469.220.029850.020190.050053545.474.2421E+101.5710E+0711657.240.029460.019890.049353495.953.9530E+101.5048E+0711845.260.029050.019580.048633445.253.6762E+101.4395E+0712033.280.028640.019260.047903393.353.4116E+101.3752E+0712221.300.028220.018930.047153340.203.1590E+101.3119E+0712409.320.027780.018600.046383285.762.9181E+101.2496E+07	11093.18	0.03062	0.02077	0.05140	3041.12	4.0002E+10	1./001E+0/
11657.24 0.02946 0.01989 0.04935 3495.95 3.9530E+10 1.5048E+07 11845.26 0.02905 0.01989 0.04863 3445.25 3.6762E+10 1.4395E+07 12033.28 0.02864 0.01926 0.04790 3393.35 3.4116E+10 1.3752E+07 12221.30 0.02822 0.01893 0.04715 3340.20 3.1590E+10 1.3119E+07 12409.32 0.02778 0.01860 0.04638 3285.76 2.9181E+10 1.2496E+07	11/60.20	0.03024	0.02049	0.05073	354547	4.0430ET10	1.0301E+07
11845.26 0.02905 0.01958 0.04863 3445.25 3.6762E+10 1.4395E+07 12033.28 0.02864 0.01926 0.04790 3393.35 3.4116E+10 1.3752E+07 12221.30 0.02822 0.01893 0.04715 3340.20 3.1590E+10 1.3119E+07 12409.32 0.02778 0.01860 0.04638 3285.76 2.9181E+10 1.2496E+07	11657.24	0 02946	0.01989	0.04935	3495.95	3 9530F+10	1 5048F+07
12033.28 0.02864 0.01926 0.04790 3393.35 3.4116E+10 1.3752E+07 12221.30 0.02822 0.01893 0.04715 3340.20 3.1590E+10 1.3119E+07 12409.32 0.02778 0.01860 0.04638 3285.76 2.9181E+10 1.2496E+07	11845.26	0 02905	0.01958	0.04863	3445 25	3.6762F+10	1.4395F+07
12221.30 0.02822 0.01893 0.04715 3340.20 3.1590E+10 1.3119E+07 12409.32 0.02778 0.01860 0.04638 3285.76 2.9181E+10 1.2496E+07	12033.28	0.02864	0.01926	0.04790	3393.35	3.4116E+10	1.3752E+07
12409.32 0.02778 0.01860 0.04638 3285.76 2.9181E+10 1.2496E+07	12221.30	0.02822	0.01893	0.04715	3340.20	3.1590E+10	1.3119E+07
	12409.32	0.02778	0.01860	0.04638	3285.76	2.9181E+10	1.2496E+07

				-		
12597.34	0.02734	0.01825	0.04559	3229.99	2.6889E+10	1.1884E+07
12785.36	0.02689	0.01790	0.04479	3172.82	2.4712E+10	1.1282E+07
12973.38	0.02642	0.01754	0.04396	3114.21	2.2646E+10	1.0691E+07
13161.40	0.02594	0.01717	0.04311	3054.09	2.0690E+10	1.0111E+07
13349.42	0.02545	0.01679	0.04224	2992.41	1.8843E+10	9.5425E+06
13537.44	0.02495	0.01640	0.04135	2929.08	1.7101E+10	8.9858E+06
13725.46	0.02443	0.01599	0.04043	2864.05	1.5463E+10	8.4412E+06
13913.48	0.02390	0.01558	0.03948	2797.22	1.3926E+10	7.9090E+06
14101.50	0.02335	0.01516	0.03851	2728.51	1.2487E+10	7.3895E+06
14289.52	0.02279	0.01473	0.03752	2657.84	1.1146E+10	6.8832E+06
14477.54	0.02220	0.01429	0.03649	2585.11	9.8977E+09	6.3903E+06
14665.56	0.02160	0.01383	0.03543	2510.21	8.7413E+09	5.9113E+06
14853.58	0.02098	0.01337	0.03434	2433.04	7.6735E+09	5.4466E+06
15041.60	0.02033	0.01289	0.03322	2353.49	6.6917E+09	4.9966E+06
15229.62	0.01966	0.01240	0.03206	2271.44	5.7932E+09	4.5618E+06
15417.64	0.01897	0.01190	0.03087	2186.76	4.9749E+09	4.1427E+06
15605.66	0.01825	0.01138	0.02963	2099.32	4.2338E+09	3.7397E+06
15793.68	0.01751	0.01085	0.02836	2008.99	3.5670E+09	3.3535E+06
15981.70	0.01674	0.01030	0.02704	1915.61	2.9712E+09	2.9846E+06
16169.72	0.01593	0.00974	0.02568	1819.03	2.4430E+09	2.6335E+06
16357.74	0.01510	0.00917	0.02427	1719.10	1.9791E+09	2.3009E+06
16545.76	0.01423	0.00858	0.02281	1615.65	1.5760E+09	1.9874E+06
16733.78	0.01332	0.00797	0.02129	1508.51	1.2299E+09	1.6936E+06
16921.80	0.01237	0.00735	0.01973	1397.49	9.3719E+08	1.4205E+06
17109.82	0.01139	0.00671	0.01810	1282.40	6.9380E+08	1.1685E+06
17297.84	0.01036	0.00605	0.01642	1163.05	4.9570E+08	9.3862E+05
17485.86	0.00929	0.00538	0.01467	1039.24	3.3869E+08	7.3159E+05
17673.88	0.00817	0.00468	0.01286	910.74	2.1837E+08	5.4827E+05
17861.90	0.00700	0.00397	0.01097	777.34	1.3020E+08	3.8957E+05
18049.92	0.00578	0.00323	0.00902	638.81	6.9470E+07	2.5644E+05
18237.94	0.00451	0.00248	0.00699	494.90	3.1274E+07	1.4986E+05
18425.96	0.00318	0.00170	0.00488	345.38	1.0523E+07	7.0866E+04
18613.98	0.00178	0.00090	0.00268	189.99	1.9305E+06	2.0535E+04
18802.00	0.00033	0.00007	0.00040	28.45	0.0000E+00	0.0000E+00