資料 2-3

首都直下地震に対する屋外貯蔵タンクの耐震安全性の解析

1. 首都直下地震に対する屋外貯蔵タンクの耐震安全性の解析の概要

東北地方太平洋沖地震の再現波形で検証(平成 26 年度実施)された解析手法及び平成 27 年度 に検討されたマルチリニア型非線形ばね特性を使用する質点系モデルを用い、首都直下地震 (短周期地震動の水平成分)に対する屋外貯蔵タンクの耐震安全性を解析にて確認する。

1.1 解析の流れ

本調査は図1.1に示す手順により、以下の3種類の解析を実施した。

(1) 質点系モデルによる代表タンクの側板下端部の浮き上がり解析

(2) 2 次元軸対称モデルによる浮き上がりの繰返し挙動を考慮した隅角部の疲労損傷度評価解析 (3) 3 次元シェルモデルによる底板浮き上がり時の側板の座屈強度評価解析

図1.1 首都直下地震に対する屋外貯蔵タンク耐震安全性確認解析の流れ

2. 代表タンク

2.1 検討対象とするタンク容量

首都直下地震の想定地震動の作成対象(資料 2-2 参照)の3つの特防地区(A地区、B地区、C地区)に設置された屋外タンク貯蔵所のタンクを容量別に整理し、1000 KL、5000 KL~6000 KL、10000 KL、30000 KL、50000 KL、70000 KL~77000 KL、100000 KLの容量のものを検討対象とした。これらの容量をもつ各地区の代表タンクの板厚、材質等は入手データに基づき、表 2.1.1 のとおりとした。

地区	タンク番号	許可容量	内容物	比重	内径	高さ	許可液面	側板板	厚(mm)	アニュラ板厚	材	質
		(KL)			(m)	(m)	(m)	最下段	液高1/3	(mm)	側板	アニュラ板
	1	1000	ヘキサン	0.67	11.60	12.19	10.88	6.0	4.9	10.0	SS41	SM400C
A	2	5000	軽油	0.83	23.24	12.24	11.79	12.0	9.2	9.0	SS41	SS41
(6基)	3	10000	ナフサ	0.74	32.93	15.20	11.70	19.0	14.1	12.0	SM41A	SM400C
	4	30000	原油	0.89	53.60	16.46	12.88	35.0	26.9	12.0	SM41W	SS41
	5	50000	原油	0.89	61.00	20.10	16.16	21.0	17.3	15.0	WELCON2H	SM490C
	6	75000	軽油	0.88	70.00	21.96	19.62	30.0	23.9	18.0	HW50	SPV490Q
	1	1000	潤滑油	1.00	11.63	10.72	9.42	6.0	4.1	6.0	SS41	SS41
В	2	6000	重油	1.00	29.07	10.76	9.07	14.0	8.4	9.0	SS41	SS400
(7基)	3	10000	重油材	1.00	32.94	13.80	11.63	18.0	12.8	8.0	SS41	SS41
	4	30000	重油	1.00	52.33	16.75	13.16	17.0	13.8	12.0	HT60	SPV490Q
	5	50000	原油	0.87	69.77	15.29	12.61	22.1	18.1	11.4	HT60	HT60
	6	77000	原油	0.86	77.27	19.49	16.36	30.0	22.8	12.0	HT60	SM58Q
	7	100000	原油	1.00	81.48	22.57	19.06	36.0	28.0	12.0	HT60	HT60
	1	1000	DIB	0.72	11.62	12.16	10.85	6.0	4.4	9.0	SS41	SS41
С	2	5000	ジェット	0.76	23.25	13.76	12.38	13.0	9.9	12.0	SS41	SM41C
(7基)	3	10000	重油	0.86	32.93	13.76	11.89	18.0	13.5	12.0	SS41	SM400C
	4	30000	ガソリン	0.80	45.76	20.14	16.48	18.0	12.2	12.0	SPV50	SPV50
	5	50000	ナフサ	0.75	67.80	18.28	14.41	26.0	20.9	12.0	2H	2H
	6	70000	原油	0.89	67.80	21.96	19.83	30.0	22.3	12.0	HT60	HT60
	7	100000	原油	1.00	81.60	21.88	18.63	30.0	23.0	12.0	HW50	HW50

表 2.1.1 3 つの地区の代表タンクモデル (合計 20 基)の諸元

2.2 内容液の貯蔵率及び比重

内容液の貯蔵率

安全側の評価となるよう、質点系解析においては、内容液の貯蔵率を100%として解析を 実施した。

(2) 内容液の比重

今回の検討においては、各検討タンクの実内容液の比重を使用して解析を行った。

3. 質点系モデルによる側板下端部の浮き上がり解析

首都直下地震の検討地域として選択した A 地区、B 地区及び C 地区での代表タンク 20 基について非線形ばね特性を有する質点系モデルを作成し、それぞれの地区のタンクに設 置された地区での想定地震動を作用させる地震応答解析を実施した。

解析には有限要素法非線形構造解析プログラム Abaqus 2016 を用いた。

3.1 解析モデル・条件

(1) 解析モデルの設定

浮き上がり解析は図 3.1.1 に示す質点系非線形水平ばねモデルを用い、ばねの復元力特性 は図 3.1.2 に示すような屋外貯蔵タンクの浮き上がり挙動を模擬するマルチリニア型非線 形水平ばね特性(Q-Δ 線図)を使用した。このモデルは平成 27 年度に検討した質点系モデル として定式化したものである。

図 3.1.1 質点系非線形水平ばねモデル

図 3.1.2 水平抵抗力 Qと水平変位 △ の線図(一例)

代表タンク 20 基の質点系モデルの諸元を表 3.1.1 から表 3.1.3 に示す(詳細は添付資料 1の諸元計算シート参照)。解析条件は、平成27年度南海トラフ想定地震動に対する屋外貯 蔵タンクの浮き上がり解析と同様(減衰比一律 0.15、側板重量等(側板、側板の付属品及び 固定屋根の重量を含む)を考慮)とした。

諸元	単位	A-1	A-2	A-3	A-4	A-5	A-6
許可容量	KL	1,000	5,000	10,000	30,000	50,000	75,000
バルジング振動の固有周期 T。	sec	0.145	0.179	0.172	0.216	0.349	0.378
バルジング振動の初期剛性 K _b	N/cm	1.03E+07	2.85E+07	4.29E+07	6.31E+07	4.26E+07	6.13E+07
有効液重量 W1		5.33E+06	2.27E+07	3.16E+07	7.30E+07	1.29E+08	2.18E+08
減衰係数 C _e	N/cm/sec	7.09E+04	2.44E+05	3.53E+05	6.50E+05	7.10E+05	1.11E+06
最大静液圧 P ₀	MPa	7.00E-02	1.00E-01	8.00E-02	1.10E-01	1.40E-01	1.70E-01
タンク直径と重心高さとの比 D/H1	_	2.22	4.76	7.16	10.96	9.86	9.29

4

D/H1

表 3.1.1 A 地区の代表タンクの主な諸元

諸元	単位	A-1	A-2	A-3	A-4	A-5	A-6
許可容量	KL	1,000	5,000	10,000	30,000	50,000	75,000
バルジング振動の固有周期 T。	s	0.145	0.179	0.172	0.216	0.349	0.378
補正係数 j *1	-	1.1	1.1	1.1	1.1	1.1	1.1
バルジング振動の初期剛性 K _b	N/cm	1.03E+07	2.85E+07	4.29E+07	6.31E+07	4.26E+07	6.13E+07
有効液重量 W ₁	Ν	5.33E+06	2.27E+07	3.16E+07	7.30E+07	1.29E+08	2.18E+08
減衰係数 C。	N/cm/s	7.09E+04	2.44E+05	3.53E+05	6.50E+05	7.10E+05	1.11E+06
側板自重による鉛直抵抗力 qt	N/cm	7.02E+01	1.25E+02	2.26E+02	2.80E+02	2.34E+02	3.49E+02
最大静液圧 P ₀	N/mm2	7.00E-02	1.00E-01	8.00E-02	1.10E-01	1.40E-01	1.70E-01
タンク直径と重心高さとの比 D/H1	-	2.22	4.76	7.16	10.96	9.86	9.29
*1: jは、基礎及び地盤とタンク本体の	D連成の影響	いに基づく補	正係数であ	る			

諸元	単位	B-1	B-2	B-3	B-4	B-5	B-6	B-7
許可容量	KL	1,000	6,000	10,000	30,000	50,000	77,000	100,000
バルジング振動の固有周期 T。	sec	0.149	0.179	0.191	0.29	0.293	0.334	0.377
バルジング振動の初期剛性 K _b	N/cm	1.21E+07	2.85E+07	4.58E+07	4.02E+07	3.74E+07	5.64E+07	7.56E+07
有効液重量 ₩1	Ň	0.08E+00	2.25E+07	4.14E+08	8.37E+07	7.95E+07	1.50E+08	2.00E+08
減衰係数 C _e	N/cm/sec	8.62E+04	2.43E+05	4.17E+05	5.55E+05	5.22E+05	8.95E+05	1.36E+06
最大静液圧 P ₀	MPa	9.00E-02	9.00E-02	1.10E-01	1.30E-01	1.10E-01	1.40E-01	1.90E-01
タンク直径と重心高さとの比 D/H1	-	2.68	8.26	7.21	10.43	14.78	12.53	11.27

表 3.1.2 B 地区の代表タンクの主な諸元

諸元	単位	B-1	B-2	B-3	B-4	B-5	B-6	B-7
許可容量	KL	1,000	6,000	10,000	30,000	50,000	77,000	100,000
バルジング振動の固有周期 T _b	s	0.149	0.179	0.191	0.29	0.293	0.334	0.377
補正係数 j *1	-	1	1	1	1	1	1	1
バルジング振動の初期剛性 K _b	N/cm	1.21E+07	2.85E+07	4.58E+07	4.02E+07	3.74E+07	5.64E+07	7.56E+07
有効液重量 W1	Ν	6.68E+06	2.25E+07	4.14E+08	8.37E+07	7.95E+07	1.56E+08	2.66E+08
減衰係数 C。	N/cm/s	8.62E+04	2.43E+05	4.17E+05	5.55E+05	5.22E+05	8.95E+05	1.36E+06
側板自重による鉛直抵抗力 qt	N/cm	6.57E+01	1.35E+02	1.99E+02	2.64E+02	1.97E+02	3.22E+02	4.10E+02
最大静液圧 P₀	N/mm2	9.00E-02	9.00E-02	1.10E-01	1.30E-01	1.10E-01	1.40E-01	1.90E-01
タンク直径と重心高さとの比 D/H1	-	2.68	8.26	7.21	10.43	14.78	12.53	11.27

表 3.1.3	C地区の代表タンクの主な諸元

諸元	単位	C-1	C-2	C-3	C-4	C-5	C-6	C-7
許可容量	KL	1,000	5,000	10,000	30,000	50,000	77,000	100,000
バルジング振動の固有周期 T。	sec	0.143	0.156	0.175	0.32	0.269	0.352	0.41
バルジング振動の初期剛性 K _b	N/cm	1.13E+07	3.68E+07	4.87E+07	3.56E+07	5.24E+07	7.11E+07	6.04E+07
有効液重量 W₁	Ň	5.74E+06	2.23E+07	3.71E+08	9.05E+07	9.39E+07	2.19E+08	2.52E+08
減衰係数 C _e	N/cm/sec	7.70E+04	2.74E+05	4.07E+05	5.44E+05	6.72E+05	1.20E+06	1.18E+06
最大静液圧 P ₀	MPa	8.00E-02	9.00E-02	1.00E-01	1.30E-01	1.10E-01	1.70E-01	1.80E-01
タンク直径と重心高さとの比 D/H1	-	2.24	4.49	7.03	7.05	12.47	8.86	11.56
諸元	単位	C-1	C-2	C-3	C-4	C-5	C-6	C-7
諸元 許 可容 量	単位 KL	C-1	C-2	C-3	C-4 30.000	C-5	C-6	C-7 100.000
 諸元 許可容量 バルジング振動の固有周期 T。 	単位 KL s	C-1 1,000 0.143	C-2 5,000 0.156	C-3 10,000 0.175	C-4 30,000 0.32	C-5 50,000 0.269	C-6 77,000 0.352	C-7 100,000 0.41
諸元 許可容量 バルジング振動の固有周期 T。 補正係数j*1	単位 KL s 一	C-1 1,000 0.143 1	C-2 5,000 0.156 1	C-3 10,000 0.175 1	C-4 30,000 0.32 1	C-5 50,000 0.269 1	C-6 77,000 0.352 1	C-7 100,000 0.41 1
諸元 許可容量 バルジング振動の固有周期 T。 補正係数 j *1 バルジング振動の初期剛性 K。	単位 KL s - N/cm	C-1 1,000 0.143 1 1.13E+07	C-2 5,000 0.156 1 3.68E+07	C-3 10,000 0.175 1 4.87E+07	C-4 30,000 0.32 1 3.56E+07	C-5 50,000 0.269 1 5.24E+07	C-6 77,000 0.352 1 7.11E+07	C-7 100,000 0.41 1 6.04E+07
 諸元 許可容量 バルジング振動の固有周期 T。 補正係数」*1 バルジング振動の初期剛性 K。 有効液重量 W1 	単位 KL s - N/cm N	C-1 1,000 0.143 1 1.13E+07 5.74E+06	C-2 5,000 0.156 1 3.68E+07 2.23E+07	C-3 10,000 0.175 1 4.87E+07 3.71E+08	C-4 30,000 0.32 1 3.56E+07 9.05E+07	C-5 50,000 0.269 1 5.24E+07 9.39E+07	C-6 77,000 0.352 1 7.11E+07 2.19E+08	C-7 100,000 0.41 1 6.04E+07 2.52E+08
 諸元 許可容量 バルジング振動の固有周期 T。 補正係数j+1 バルジング振動の初期剛性 K。 有効液重量 W1 減衰係数 C。 	単位 KL s - N/cm N N/cm/s	C-1 1,000 0.143 1 1.13E+07 5.74E+06 7.70E+04	C-2 5,000 0.156 1 3.68E+07 2.23E+07 2.74E+05	C-3 10,000 0.175 1 4.87E+07 3.71E+08 4.07E+05	C-4 30,000 0.32 1 3.56E+07 9.05E+07 5.44E+05	C-5 50,000 0.269 1 5.24E+07 9.39E+07 6.72E+05	C-6 77,000 0.352 1 7.11E+07 2.19E+08 1.20E+06	C-7 100,000 0.41 1 6.04E+07 2.52E+08 1.18E+06
 諸元 許可容量 パルジング振動の固有周期 T。 補正係数j*1 パルジング振動の初期剛性 K。 有効液重量 W₁ 減衰係数 C。 側板自重による鉛直抵抗力 qt 	単位 KL s - N/cm N/cm/s N/cm/s	C-1 1,000 0.143 1 1.13E+07 5.74E+06 7.70E+04 7.10E+01	C-2 5,000 0.156 1 3.68E+07 2.23E+07 2.74E+05 1.02E+02	C-3 10,000 0.175 1 4.87E+07 3.71E+08 4.07E+05 1.76E+02	C-4 30,000 0.32 1 3.56E+07 9.05E+07 5.44E+05 1.95E+02	C-5 50,000 0.269 1 5.24E+07 9.39E+07 6.72E+05 2.60E+02	C-6 77,000 0.352 1 7.11E+07 2.19E+08 1.20E+06 3.38E+02	C-7 100,000 0.41 1 6.04E+07 2.52E+08 1.18E+06 3.54E+02
 諸元 許可容量 パルジング振動の固有周期 T。 補正係数 i=1 パルジング振動の初期剛性 K。 有効液重量 W1 減衰係数 C。 側板自重による鉛直抵抗力 qt 最大静液圧 P。 	単位 KL s - N/cm N/cm/s N/cm/s N/cm2	C-1 1,000 0.143 1 1.13E+07 5.74E+06 7.70E+04 7.10E+01 8.00E-02	C-2 5,000 0.156 1 3.68E+07 2.23E+07 2.74E+05 1.02E+02 9.00E-02	C-3 10,000 0.175 1 4.87E+07 3.71E+08 4.07E+05 1.76E+02 1.00E-01	C-4 30,000 0.32 1 3.56E+07 9.05E+07 5.44E+05 1.95E+02 1.30E-01	C-5 50,000 0.269 1 5.24E+07 9.39E+07 6.72E+05 2.60E+02 1.10E-01	C-6 77,000 0.352 1 7.11E+07 2.19E+08 1.20E+06 3.38E+02 1.70E-01	C-7 100,000 0.41 1 6.04E+07 2.52E+08 1.18E+06 3.54E+02 1.80E-01

地震の揺れによるタンク隅角部が片浮き上がりを生じたことと想定し、各時刻 t に発生し た浮き上がり変位 δu(t)は近似的に次式で表される。

$$\delta_{u}(t) = \frac{D}{H_{1}} [\Delta(t) - \frac{Q(t)}{K_{b}}]$$
(3.1.1)

ここで、

Δ(t):質点の水平相対変位(応答変位)(cm)
 Q(t):非線形ばねに発生した水平抵抗力(N)
 D: タンクの直径(cm)
 D/H₁: タンクの直径と質点重心高さとの比
 K_b(=K_e):バルジング振動における等価ばね定数(N/cm)

図 3.1.3 に示すように、最大応答変位 Δ_{max} と最大応答変位になる時刻における水平抵抗力 Q_{max} を用いて、最大浮き上がり変位 δ_{umax} は以下の式で求められる。

図 3.1.3 浮き上がり変位算出の概念図

最大浮き上がり変位発生時の最大応答水平震度Kh1、動液EPh1及び動液圧比aは、浮き 上がり解析から求めたその時刻における水平抵抗力Q、有効液重量W1及び静液EP0を用い て、以下の式で算定する。

$K_{h1} \approx Q/W_1$	(3.1.3)
$p_{h1} \approx K_{h1} C_{10} p_0$	(3.1.4)
$\alpha = p_{h1} / p_0$	(3.1.5)

C₁₀は、特定屋外貯蔵タンクの最高液面高さHと直径Dとの比により求めた係数である。 (屋外貯蔵所のタンクの基準による算定、それぞれのタンクの算定値は添付資料1参照)。

(2) 入力地震波

入力に使用した A 地区、B 地区、C 地区の<u>首都直下地震の都心南部直下</u>想定地震動(2 方 向、合計 6 本)の最大加速度とその発生時刻を表 3.1.4 に、各想定地震動の加速度応答スペ クトルを図 3.1.4 から図 3.1.6 に示す。また、対象タンクの固有周期近傍の加速度応答スペ クトルのピーク周期及びその値も同図に記す。

ᆂ	地震動の	最大加速度(正)	時刻	最大加速度(負)	時刻
市区	方向	(cm/s/s)	(s)	(cm/s/s)	(s)
Α	EW	342.3	24.9	-276.7	25.5
	NS	122.9	25.6	-130.9	24.8
В	EW	568.5	22.0	-527.2	22.9
	NS	237.0	22.0	-242.9	22.8
С	EW	86.1	26.9	-85.5	28.2
	NS	301.3	28.3	-265.0	27.9

表 3.1.4 想定地震動の最大加速度と発生時刻

図 3.1.5 B 地区の想定地震動の加速度応答スペクトル(減衰比:0.15)

図 3.1.6 C地区の想定地震動の加速度応答スペクトル(減衰比:0.15)

3.2 解析結果

各地区の代表タンクの浮き上がり変位と浮き上がり回数の解析結果一覧を表 3.2.1 から 表 3.2.3 に示す。各地区の最大浮き上がり変位発生タンクの解析結果の比較を表 3.2.4 に示 す。また、解析結果を用いて、式(3.2.3)~式(3.2.5)より算定した最大浮き上がり変位発生時 の最大応答水平震度及び動液圧比を表 3.2.5 に示す。

代表タンク 20 基の浮き上がり変位の時刻歴詳細結果は添付資料 2 に示す。

タンク	内容物	貯蔵内径	許可容量	A地区	EW	A地区 NS		
番号		(m)	(KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数	
				(cm)	正負合計	(cm)	正負合計	
1	ヘキサン	11.6	1000	2.3	72	0.5	46	
2	軽油	23.2	5000	2.5	66	0.4	17	
3	ナフサ	32.9	10000	1	11	0	0	
4	原油	53.6	30000	1	5	0	0	
5	原油	61.0	50000	2.8	42	0.5	10	
6	軽油	70.0	75000	6.6	42	0.9	8	

表3.2.1 A地区想定地震動による浮き上がり解析結果

タンク	内容物	貯蔵内径	許可容量	B地区	EW	B地区 NS		
番号		(m)	(KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数	
				(cm)	正負合計	(cm)	正負合計	
1	潤滑油	11.6	1000	5.6	109	1.2	63	
2	重油	29.1	6000	6.7	79	0.9	18	
3	重油材	32.9	10000	8.8	81	0.9	24	
4	重油	52.3	30000	8.6	48	1.4	6	
5	原油	69.8	50000	14.2	32	0	0	
6	原油	77.3	77000	7.3	37	0.9	3	
7	原油	81.5	100000	6.3	39	0.4	6	

表 3.2.2 B 地区想定地震動による浮き上がり解析結果

タンク	内容物	貯蔵内径	許可容量	C地区 EW		C地区 NS		
番号		(m)	(KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数	
				(cm)	正負合計	(cm)	正負合計	
1	DIB	11.6	1000	0.2	15	2.3	101	
2	ジェット	23.3	5000	0.2	4	2.3	113	
3	重油	32.9	10000	0	0	1.6	66	
4	ガソリン	45.8	30000	0.6	10	7.8	72	
5	ナフサ	67.8	50000	0	0	6	11	
6	原油	67.8	70000	0.4	4	8.1	58	
7	原油	81.6	100000	0	0	4.1	43	

表3.2.3 C地区想定地震動による浮き上がり解析結果

表 3.2.4 各地区の最大浮き上がり変位発生タンクの解析結果の比較

地区 番号 の方向 最大加速度 応答加速度 応答変位 浮き上がり変付 応答倍率	
	lb
(容量) (cm/s/s) (cm/s/s) (cm) (cm)	(s)
A 6 EW 342.3 578.4 2.8 6.6 1.7	0.3792
(75000KL)	
B 5 EW 568.5 739.2 2.4 14.2 1.3	0.3156
(50000KL)	
C 6 NS 301.3 570.3 2.5 8.1 1.9	0.3509
(70000KL)	

表3.2.5 最大浮き上がり変位発生時の最大応答水平震度及び動液圧比

地区	タンク 番号 (容量)	地震動 の方向	水平抵抗力 Q (N)	最大応答 水平震度 Kh1	静液圧 Po (N/mm2)	動液圧 Ph1 (N/mm2)	動液圧比 α=Ph1/P0
A	6 (75000KL)	EW	1.25E+08	0.573	0.169	0.078	0.462
В	5 (50000KL)	EW	5.16E+07	0.649	0.107	0.056	0.523
С	6 (70000KL)	NS	1.15E+08	0.525	0.174	0.072	0.414

代表的な解析結果の一例として、B 地区の最大浮き上がり変位発生タンク(B-5 タンク、 容量:50000 KL)の解析結果の出力線図を図 3.2.1 から図 3.2.3 に示す。サイクルごとの浮 き上がり変位結果を表 3.2.6 に示す。この代表タンクの最大浮き上がり変位は 14.2 cm とな った。

図 3.2.1 応答変位の時刻歴(B地区想定地震動 EW、B-5 タンク)

図 3.2.2 浮き上がり変位の時刻歴(B地区想定地震動 EW、B-5 タンク)

図 3.2.3 復元力の履歴線図(B地区想定地震動 EW、B-5 タンク)

表 3.2.6 浮き上がり変位結果 (B 地区想定地震動 EW、B-5 タンク)

サイクル	浮き上た	がり変位 (cm)
No.	0度側	180度側
1	9.4	1.2
2	2.7	7.3
3	12.2	4.5
4	7.1	13.4
5	0.7	3.8
6	14.2	9.9
7	5.7	10.4
8	9.0	14.2
9	5.1	7.1
10	7.8	13.4
11	7.1	6.7
12	10.5	3.8
13	2.3	0.5
14	4.3	0.5
15	3.2	0.5
16	-	0.6
17	-	2.9

3.3 解析結果まとめ及び詳細検討タンクの選定

検討した3地区において、想定地震動を受ける代表タンク20基の浮き上がり解析結果から以下のことが確認された。

- (1) 今回検討した想定地震動のうち、B地区 EW 方向の地震動は加速度応答スペクトルの応答加速度(特に 0.15~0.4 秒あたりのタンク周期近傍)が最も大きく、この地震動によるB-5 タンク(50,000KL)の最大浮き上がり変位14.2 cm が最も大きな浮き上がり変位であった。次に大きいのは C地区の NS 方向の地震動による C-6 タンク(70,000 KL)の8.1 cm、A地区の EW 方向の地震動による A-6 タンク(75,000 KL)の6.6 cm という順である。
- (2) A 地区 EW 方向の想定地震動では、A-6 タンク(75,000 KL)の浮き上がり変位が最も大きく、6.6 cm と算定された。

A 地区 NS 方向の地震動の加速度応答スペクトルは EW 方向の地震動の半分以下であ るため、この NS 方向の地震動による代表タンク 6 基の浮き上がり変位は EW 方向の 地震動による値より小さく、浮き上がりなしあるいは 1.0 cm 以下という結果となった。

(3) B 地区 EW 方向の想定地震動では、代表タンクの7基はすべて 5 cm 以上の浮き上がる という結果となった。その中でも B-5 タンク(50,000 KL)の浮き上がり変位は最も大 きく、14.2 cm と算定された。また、同タンクの挙動は片側(180 度側)に 10 cm 以上 の浮き上がり回数が4回となることが確認された(表 3.2.5 参照)。

B 地区 NS 方向の地震動の加速度応答スペクトルは EW 方向の地震動の半分以下であ るため、この NS 方向の地震動による代表タンク 7 基の浮き上がり変位は EW 方向の 地震動による値より小さく、全ての応答値が 1.5 cm 以下という結果となった。

(4) C 地区 NS 方向の想定地震動では、C-6 タンク(70,000 KL)の浮き上がり変位が最も大きく、約 8.1 cm と算定された。

C 地区 EW 方向の想定地震動の加速度応答スペクトルは NS 方向の地震動の半分以下 であるため、この EW 方向の地震動による代表タンク 7 基の浮き上がり変位は NS 方 向の地震動による値より小さく、全ての応答値が 1.0 cm 以下という結果となった。

3地区 20 基の代表タンクの中で、最も浮き上がり応答変位が大きいのは B地区の B-5 タンクという結果から、本タンクを FEM 詳細解析による隅角部の疲労損傷評価及び側板下端 部の座屈強度評価の対象として選定する。

選定タンク: <u>B地区の B-5 タンク(50,000 KL)</u> 最大浮き上がり応答変位 14.2 cm

4. 2次元軸対称ソリッド要素モデルによる隅角部の疲労損傷度評価

選定したタンク(B·5 タンク)の質点系モデルによる浮き上がり変位と回数の解析結果より、隅角部に発生するひずみ量及び疲労損傷に対する強度を確認するため、非線形構造解析 プログラム Abaqus 2016 による有限要素法を用いた静的弾塑性大たわみ解析を行った。

4.1 解析モデル

B-5タンク(公称容量50000 KL)の隅角部を対象として解析モデルを作成した。タンクの主な寸法と諸元を表4.1.1に示す。表に示した側板とアニュラ板の板厚は実測板厚である。

B地区 B-5 タンク						
許可容量	50000 KL					
タンク内径	(69765 mm				
タンク高さ		15290 mm				
液面高さ		12608 mm				
液比重		0.866				
側板の板厚と材料						
1段	22.1 mm	HT60				
2段	19.9 mm	HT60				
3段	18.1 mm	HT60				
4段	15.6 mm	HT60				
5段	13.8 mm	HT60				
6段	10.5 mm	HT60				
7段	9.5 mm	HT60				
8段	9.7 mm	HT60				
9段	9.3 mm	SS41				
10段	9.8 mm	SS41				
アニュラ板厚と材料	11.4 mm	HT60				
底板の板厚	8 mm	SS41				
隅角部隅肉溶接部脚長	W1&W2	12 mm				

表4.1.1 解析対象タンクの主な寸法と諸元

最大浮き上がり点の隅角部の挙動は、2次元軸対称ソリッド要素を用いた静的弾塑性大たわみFEM解析法を用いて解析し、変形とひずみ等を算定する。

隅角部モデル化の範囲を図4.1.1(a)、隅角部の一部の要素分割を図4.1.1(b)に示す。図 4.1.1(a)の左端A端部の半径方向変位を拘束し、同図上端B端部は強制変位を与える位置と した。隅角部溶接部近傍はメッシュ分割を約2mmとした。なお、図に示した寸法はモデ ル上のA端部とB端部までの長さである。地盤との接触部には、圧縮ばね294 N/cm³の力を 有するノンテンションばねを設置した。

図4.1.1 B-5タンクのFEM解析モデル

(1) 解析条件

以下の条件で解析を行った。

ア 荷重

B端部(円周上)に側板重量等(合計4320kN)を負荷する。

イ 強制変位

質点系モデルの片側の浮き上がり変位をB端部に強制的に付与する。

強制的に付与する浮き上がり変位と回数を表4.1.2に示す。

ウ 浮き上がり回数及び浮き上がり変位 質点系モデルの片側の浮き上がり変位が1cm以上となるサイクルを選択して、その サイクルでの最大浮き上がり変位を求め、表 4.1.2 にまとめた。

ц	
サイクル	浮き上がり変位
No.	δu
	(mm)
1	11.7
2	73.3
3	44.6
4	134.5
5	38.1
6	98.6
7	103.8
8	142.4
9	70.8
10	134.2
11	67.0
12	38.1
13	29.0

表4.1.2 各サイクルにおける浮き上がり変位

エ 液圧

アニュラ板と側板に作用する液圧の組合せは表4.1.3に示すとおりである。アニュラ 板に作用する液圧は一様分布で一定とし、側板に作用する液圧は高さに応じて変化さ せた。

最大応答水平震度Kh1、動液圧Ph1及び動液圧比αは、浮き上がり解析から求めた水 平抵抗力Qを用いて式(3.1.3)~式(3.1.5)により算定した。算定結果を表4.1.4に示す。

	アニュラ板上面に作用する液圧 Pu	側板内面に作用する
強制変位作用方向	静液圧:Po=0.107 N/mm ²	液圧
	動液圧:P _{h1}	
浮き上がり方向	$P = (P_{a} - P_{b}) - P_{a}(1 - \alpha)$	热 液压公布
(+)	$\Gamma_{\mu} = \langle \Gamma_{0} \Gamma_{h1} \rangle = \Gamma_{0} \langle \Gamma_{\mu} \alpha \rangle$	
沈み込み方向(一)	P _u =P ₀	静液圧分布

表4.1.3 アニュラ板と側板に作用する液圧の組合せ

表4.1.4 最大応答水平震度Kh1、動液圧Ph1及び動液圧比αの計算結果

タンク No.	最大浮き上がり変位	最大応答水平震度 K _{h1}	動液圧 P _{h1} (N/mm²)	動液圧比 <i>α</i> (=P _{h1} /P₀)
B-5	14.2	0.649	0.056	0.523

注:消防法式で計算した水平震度Kh1=0.448、動液圧Ph1=0.039N/mm2(添付資料3参照)

(2) 材料の物性値

1段から8段までの側板の材料はHT60、9段と10段の側板の材料はSS41、アニュラ板の 材料はHT60、底板の材料はSS41であり、それぞれの材料の物性値を表4.1.5に示す。ま た、塑性後の応カーひずみ線図は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用した(図4.1.2及び添付資料4参照)。硬化 則には移動硬化則を使用した。

材料特性		HT60	SS41				
降伏強度(N/mm ²)	Sy	450	245				
引張強度(N/mm ²)	Su	570	400				
ポアソン比	ν	0.3	0.3				
縦弾性係数(N/mm ²)	E	205939.7	205939.7				

表4.1.5 材料の物性値

4.2 弾塑性ひずみ解析結果

(1) 浮き上がり変位と抵抗力の関係

各サイクルの参照点とB端の浮き上がり変位及びB端部に強制変位をかけた時の算定された軸方向の抵抗力(単位長さあたりの抵抗力)の数値を表4.2.1に示す。また、その関係を 線図で表示すると図4.2.1のとおりである。(変位出力参照点の位置:図4.1.1(b)参照)

サイクル	浮き上がり	抵抗力	浮き上がり	変位 (mm)
No.	位置	(N/mm)	参照点	B端
	開始	0.0E+00	-1.5	-2.1
1	最高	5.8E+01	12.2	12.0
	最低	6.3E+01	0.6	0.0
2	最高	7.6E+01	73.3	73.0
	最低	6.2E+01	0.6	0.0
3	最高	6.9E+01	45.2	45.0
	最低	6.2E+01	0.6	0.0
4	最高	8.4E+01	134.3	134.0
	最低	4.8E+01	0.6	0.0
5	最高	6.5E+01	38.2	38.0
	最低	4.8E+01	0.6	0.0
6	最高	7.8E+01	99.3	99.0
	最低	4.8E+01	0.6	0.0
7	最高	7.9E+01	104.3	104.0
	最低	4.8E+01	0.6	0.0
8	最高	8.5E+01	142.3	142.0
	最低	4.5E+01	0.6	0.0
9	最高	7.3E+01	71.2	71.0
	最低	4.5E+01	0.6	0.0
10	最高	8.4E+01	134.3	134.0
	最低	4.5E+01	0.6	0.0
11	最高	7.2E+01	67.2	67.0
	最低	4.5E+01	0.6	0.0
12	最高	6.4E+01	38.2	38.0
	最低	4.5E+01	0.6	0.0
13	最高	6.1E+01	29.2	29.0
	最低	4.5E+01	0.6	0.0

表4.2.1 浮き上がり変位と抵抗力の関係

図4.2.1 浮き上がり変位(る_u)とB端部の算定された抵抗力(q_u)の関係

(2) 隅角部隅肉溶接部のひずみ両振幅

浮き上がり変位を与えた静的応力解析結果の、隅角部隅肉溶接部近傍の注目点(A点、B 点とC点、3つの点の位置を図4.2.2に示す)に発生した全ひずみ(弾性ひずみ+塑性ひず みの和)とひずみ両振幅(<u>浮き上がり最高位置の全ひずみとその前後の最低位置の全ひず</u> みとの差の最大値サイクルにおける全ひずみの最大値と最小値の差)の計算結果を表4.2.2 に示す。

A点は隅肉溶接部止端部、B点はA点から2mm内側のアニュラ板上の点(実タンクを想 ← 定した場合にひずみ計測が可能な最も側板に近い位置)であり、両点の半径方向全ひずみをεrとする。C点は側板内面の止端部であり、その鉛直方向全ひずみをεzとする。また、ひずみ両振幅はΔer等とする。13サイクルにおける各A~C点の浮き上がり変位と全ひずみとの関係線図を図4.2.3から図4.2.5に示す。

- 書式変更: インデント : 最初の行 : 1 字

表4.2.2 各サイクルにおける隅角部隅肉溶接部の全ひずみとひずみ両振幅

サイクル	浮き上がり		ひずみ(%) ひずみ両振			み両振幅(『	偪(%)	
No.	位置	A点	B点	C点	A点	B点	C点	
		٤r	٤r	εz	Δεr	Δεr	Δεz	
	開始	0.172	0.145	0.071				
1	最高	0.178	0.154	0.062	0.035	0.028	0.010	
	最低	0.207	0.173	0.072				
2	最高	0.436	0.434	0.129	0.265	0.288	0.057	
	最低	0.281	0.282	0.070				
3	最高	0.365	0.369	0.103	0.085	0.087	0.033	
	最低	0.280	0.282	0.070				
4	最高	0.728	1.124	0.159	0.448	0.842	0.116	
	最低	0.427	0.828	0.043				
5	最高	0.514	0.926	0.078	0.087	0.098	0.035	
	最低	0.427	0.828	0.043				
6	最高	0.663	1.066	0.135	0.237	0.239	0.092	
	最低	0.426	0.828	0.043				
7	最高	0.671	1.075	0.139	0.247	0.247	0.095	
	最低	0.424	0.828	0.044				
8	最高	0.767	1.280	0.162	0.342	0.452	0.124	
	最低	0.443	0.962	0.038				
9	最高	0.626	1.153	0.110	0.184	0.191	0.072	
	最低	0.442	0.962	0.038				
10	最高	0.749	1.268	0.158	0.309	0.305	0.119	
	最低	0.440	0.963	0.039				
11	最高	0.614	1.144	0.107	0.174	0.181	0.068	
	最低	0.440	0.963	0.039				
12	最高	0.532	1.068	0.076	0.093	0.105	0.037	
	最低	0.439	0.963	0.039				
13	最高	0.501	1.039	0.065	0.062	0.076	0.026	
	最低	0.439	0.963	0.039				

書式変更:インデント:最初の行: 1.35字,右 -2.13字,日本語と英字の間隔を自動調整しない,日 本語と数字の間隔を自動調整しない

サイクル	浮き上がり		ひずみ (%)		ひす	ずみ両振幅(%)
No.	位置	A点	B点	C点	A点	B点	C点
		٤r	٤r	εz	Δεr	Δεr	Δεz
	開始	0.17	0.14	0.07			
1	最高	0.18	0.15	0.06	0.04	0.03	0.01
	最低	0.21	0.17	0.07			
2	最高	0.44	0.43	0.13	0.23	0.26	0.06
	最低	0.28	0.28	0.07			
3	最高	0.37	0.37	0.10	0.08	0.09	0.03
	最低	0.28	0.28	0.07			
4	最高	0.73	1.12	0.16	0.45	0.84	0.12
	最低	0.43	0.83	0.04			
5	最高	0.51	0.93	0.08	0.09	0.10	0.03
	最低	0.43	0.83	0.04			
6	最高	0.66	1.07	0.14	0.24	0.24	0.09
	最低	0.43	0.83	0.04			
7	最高	0.67	1.08	0.14	0.25	0.25	0.10
	最低	0.42	0.83	0.04			
8	最高	0.77	1.28	0.16	0.34	0.45	0.12
	最低	0.44	0.96	0.04			
9	最高	0.63	1.15	0.11	0.18	0.19	0.07
	最低	0.44	0.96	0.04			
10	最高	0.75	1.27	0.16	0.31	0.31	0.12
	最低	0.44	0.96	0.04			
11	最高	0.61	1.14	0.11	0.17	0.18	0.07
	最低	0.44	0.96	0.04	I		
12	最高	0.53	1.07	0.08	0.09	0.10	0.04
	最低	0.44	0.96	0.04	<u> </u>		
13	最高	0.50	1.04	0.06	0.06	0.08	0.03
	最低	0.44	0.96	0.04			

図4.2.3 浮き上がり変位とA点に発生した半径方向全ひずみの関係

図4.2.5 浮き上がり変位とC点に発生した鉛直方向全ひずみの関係

(3) 隅角部の変形及び全ひずみ分布

最大浮き上がり変位が14.2 cmになるときの隅角部の変形図及び半径方向全ひずみ成分 分布を図4.2.6と図4.2.7に示す。浮き上がり挙動によって隅角部が曲げられ、隅角部の溶接 部の止端部から2 mmの点(B点)に最も大きなひずみが発生した。

図 4.2.7 隅角部の半径方向全ひずみ成分 ε,分布図 (最大浮き上がり 14.2 cm)

4.3 低サイクル疲労評価

地震時の浮き上がりに対する隅角部挙動は、低サイクル疲労を生じる。飯田 **は、溶接 構造用鋼、高張力鋼、一般構造用鋼などの 10 種の鋼のひずみ制御疲労試験を実施し、き 裂発生寿命 Nc をひずみ振幅 Δε (=2 ε_a、ε_aは最適疲労曲線に使用されるひずみ振幅(片振 幅))に対して整理し、次式で最適疲労曲線を表した。図 4.3.1 に飯田の最適疲労曲線及び 設計疲労曲線等を示す。

図 4.3.1 飯田の最適疲労曲線

マイナー則では、次式の疲労損傷度 D=1.0 のときを疲労寿命としており、式(4.3.2)により隅角部の疲労損傷度の評価 **を実施する。

$$D = \frac{n(\Delta \varepsilon_1)}{N_c(\Delta \varepsilon_1)} + \frac{n(\Delta \varepsilon_2)}{N_c(\Delta \varepsilon_2)} + \frac{n(\Delta \varepsilon_3)}{N_c(\Delta \varepsilon_3)} + \dots < 1.0$$

(4.3.2)

ただし、 D: 疲労損傷度 Δεi: ひずみ両振幅 n(Δεi): ひずみ両振幅 Δεiの繰返し回数 N_c(Δεi): ひずみ両振幅 Δεiの疲労寿命

※出典:日本ガス協会、ガス導管耐震設計指針(1982年) p119

B-5 タンクの浮き上がり回数は最大の浮き上がり変位が算出された側の 13 回で設定し、 この条件での疲労損傷度 D を算定した。

表 4.2.2 に示した B 点に発生した板表面上のひずみ両振幅に対する、飯田の最適疲労曲 線式(4.3.1)で求めた疲労寿命 Nc を用いた疲労損傷度評価結果を表 4.3.1 に示す。同表よ り、最大浮き上がり変位 14.2 cm となる B 地区 EW 方向の想定地震動に対し、当該タンク は隅角部の溶接部止端部近傍の B 点の疲労損傷度Dは 0.00033 であり、1.0 以下という結 果になった。

サイクル	浮き上がり変位	B点					
No.	δu	ひずみ両振幅	繰り返し回数	許容繰返し回数	疲労損傷度		
	(mm)	Δεr(%)	n	Nc	D		
1	11.7	0.03	1	5.92E+12	0.00000		
2	73.3	0.26	1	1.74E+05	0.00001		
3	44.6	0.09	1	3.28E+08	0.00000		
4	134. 5	0.84	1	4.23E+03	0.00024		
5	38.1	0.10	1	4.87E+04	0.00002		
6	98.6	0.24	1	2.65E+05	0.00000		
7	103.8	0.25	1	2.25E+05	0.00000		
8	142. 4	0.45	1	2.24E+04	0.00004		
9	70.8	0.19	1	8.93E+05	0.00000		
10	134. 2	0.31	1	8.94E+04	0.00001		
11	67.0	0.18	1	1.23E+06	0.00000		
12	38.1	0.11	1	6.83E+07	0.00000		
13	29.0	0.08	1	1.04E+09	0.00000		
				合計	0.00033		

表 4.3.1 B-5 タンクの隅角部 B 点における疲労損傷度評価結果

サイクル	浮き上がり変位	B点			
No.	δu	ひずみ両振幅	繰り返し回数	許容繰返L回数	疲労損傷度
	(mm)	Δεr(%)	n	Nc	D
1	11.7	0.028	1	5.92E+12	0.00000
2	73. 3	0.288	1	1.13E+05	0.00001
3	44. 6	0.087	1	3.28E+08	0.00000
4	134. 5	0.842	1	4.23E+03	0.00024
5	38. 1	0.098	1	4.87E+04	0.00002
6	98.6	0.239	1	2.65E+05	0.00000
7	103. 8	0.247	1	2.25E+05	0.00000
8	142. 4	0.452	1	2.24E+04	0.00004
9	70. 8	0.191	1	8.93E+05	0.00000
10	134. 2	0.305	1	8.94E+04	0.00001
11	67.0	0.181	1	1.23E+06	0.00000
12	38. 1	0.105	1	6.83E+07	0.00000
13	29.0	0.076	1	1.04E+09	0.00000
				合計	0.00033

5. 3次元シェル要素モデルによる側板の座屈強度評価

<u>非線形構造解析プログラム Abaqus 2016 を用いて、3</u>次元シェル要素モデルによる弾性 大変形解析を実施し<u>た。</u>非線形ばねを持つ質点系モデルの浮き上がり変位解析結果から得 られた最大浮き上がり変位が生じるときに沈み込み側の側板下端に発生する最大軸方向圧 縮応力を求めた。<u></u>側板の限界座屈応力との比較により側板の地震時の座屈強度評価を行っ た。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみの検討である。

5.1 解析モデル

水平一方向の動液圧による加力によるタンクの浮き上がり側及び沈み込み側の挙動に着 目するため、タンクの解析モデルは3次元シェル要素モデルを作成した。図 5.1.1 に示すよ うに、タンクの解析モデルは加力方向を切断面とする対称条件を有するタンクの半割リモ デルとした。底板は全て要素分割して作成しているが、タンク半径の 70%の位置から中心 部分の底板は一部剛体要素でモデル化し、中心の参照点と連動させている。

B-5 タンク(50000 KL)の解析モデルを図 5.1.1 及び図 5.1.2 に示す。タンクの主な寸法と 諸元は 4.1 節の表 4.1.1 に示す。タンク側板の上端にトップアングル及びウィンドガーダー をモデル化した。また、底板およびアニュラ板と基礎との接触・離間を考慮するため、上下 方向の圧縮のみに 294 N/cm³の力が生じるノンテンションばねを設置した。

図5.1.1 B-5タンクの3次元シェルモデル

図5.1.2 タンクモデルのトップアングル及びウィンドガーダー

側板重量等(合計4320 kN)は側板に均等に分布させて調整(側板の質量密度を増加)した。 材料の物性値は4.1節の表4.1.4に示すとおりである。

5.2 荷重条件

(1) 荷重

側板重量等は側板に均等に分布させて調整した。アニュラ板と底板の自重をモデル 上考慮した。

(2) 動液圧の算定

動液圧及び動液圧分布の算定に当っては、消防法で規定されている算出式を用いた。 算出した動液圧は、1/2対称境界面を最大/最小として、側板と底板の周方向に余弦分 布させてモデルに入力した。

消防法における水平方向地震動による側板部に作用する液圧は次式で表される。

$$P_h = P_{h0} + P_{h1}$$

(5.2.1)

 P_h は、底部からの高さ Z における側板部に作用する動液圧(N/mm²)である。 P_{h0} 及び P_{h1} は次式のとおり。

$$P_{h0} = \frac{9.80665\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{0i} \left(\frac{Z}{H}\right)^{i} \right\} K_{h1} / \nu_{3}$$
(5.2.2)

$$P_{h1} = \frac{9.80665\,\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{1i} \left(\frac{Z}{H}\right)^{i} \right\} (1 - \frac{1}{\nu_{3}}) K_{h1}$$
(5.2.3)

ここで、 K_{h1} は設計水平震度、 ρ は、貯蔵液の比重、Hは最高液面高さ(m)、 v_3 は特定 屋外貯蔵タンクの固有周期を考慮した応答倍率(-)、 C_{0i} と C_{1i} は、特定屋外貯蔵タンク の最高液面高さと直径との比により、求めた係数である。

上記式により算定されたタンクの動液圧を添付資料3に示す。

(3) 解析ステップ

解析ステップを、次のように2段階に分けて実施した。

ステップ1:通常時荷重(静液圧)

ステップ2:地震時荷重(静液圧+動液圧)

静液圧が負荷されている状態から、動液圧を段階的に増加させ負荷した。

質点系モデルにて算定された最大浮き上がり変位となるときに側板に 発生する応力を確認した。

5.3 解析結果

以下にB-5タンクの最大浮き上がり変位14.2 cmになった時点の解析結果を示す。 側板最下端の浮き上がり14.2 cm時の変形を図5.3.1、相当応力分布を図5.3.2、浮き上が り範囲を図5.3.3に示す。

図5.3.3 浮き上がり範囲(14.2 cm浮き上がり時)

側板下端部の半径方向に対応する軸方向(上下)変位を図5.3.4に示す。最大浮き上がり変 位が14.2 cmのとき、沈み込み側の最大沈み込み変位は僅か0.6 cmであることが確認され た。

沈み込み側の軸方向膜応力と側板の高さの関係を図5.3.5に示す。このとき沈み込み側の 側板下端に発生する最大軸方向圧縮応力は4.5 N/mm²であった(図5.3.5参照)。また、沈 み込み側の円周方向膜応力と側板の高さの関係を図5.3.6に示す。このとき沈み込み側の側 板最下段(下端からの高さ:1805 mm)に発生する最大円周方向膜応力は282 N/mm²で あった(図5.3.6参照)。

図5.3.4 側板下端部の半径方向に対応する浮き上がり変位

図5.3.5 側板に発生した軸方向の膜応力と側板高さの関係(沈み込み側)

図5.3.6 側板に発生した円周方向の膜応力と側板高さの関係(沈み込み側)

5.4 座屈強度評価

座屈強度評価においては、以下のような手順で軸圧縮限界座屈応力を評価するが、必要 に応じて内圧を考慮した評価を行う。

(5.4.1)

一様軸圧縮を受ける内圧のない円筒殻の弾性軸圧縮限界座屈応力は次式で表される。

$$\sigma_{cr} = 0.4E \frac{t_s}{D}$$

ここで、

- σ_{cr}: 一様軸圧縮を受ける円筒殻の弾性軸圧縮限界座屈応力 (N/mm²)
- E: 側板の縦弾性係数 (N/mm²)
- ts: 側板最下端の板厚 (mm)
- D: タンクの直径 (mm)

運転時満液状態にある平底円筒形石油貯槽においては、地震時動液圧負荷側(図 5.3.3 の 沈み込み側)の最下段側板の円周方向膜応力が、降伏応力の 0.3 倍を上回っている場合、象 の脚型座屈の評価が要求されている。 ここでは容器構造設計指針において、円周方向膜応力と降伏強度との比が 0.3 以上の場合の限界座屈応力値に着目し、内圧下における側板の象の脚型座屈限界応力を以下に示す。

$$\frac{\sigma_{\phi}}{\sigma_{y}} \ge 0.3$$
 かつ、 $\frac{D}{t_{s}} \ge 1.614(\frac{E}{\sigma_{y}})$ の場合

$$\sigma_{cr} = 0.96E \frac{t_s}{D} (1 - \frac{\sigma_{\phi}}{\sigma_y}) \tag{5.4.2}$$

B-5 タンクの側板最下段に発生した最大円周方向膜応力(282 N/mm²)は、降伏強度(450 N/mm²)との比(0.63)が 0.3 以上であるため、象の脚型座屈の評価が必要となる。

表 5.4.1 に示す側板材料の物性値と寸法を用いて、式(5.4.1)と式(5.4.2)より、軸圧縮限界 座屈応力及び象の脚型圧縮の限界座屈応力を算定して同表に示した。

表5.4.1 B-5タンクの側板の座屈強度評価結果

側板材	料物性值	タンク内径	側板最下端	限界座屈応力 σcr		軸圧縮	
縦弾性係数	降伏強度	D	板厚	軸圧縮	象の脚型	膜応力	評価
E (N/mm2)	$\sigma y (N/mm2)$	(mm)	ts (mm)	(N/mm2)	(N/mm2)	(N/mm2)	
205939.7	450	69765	22.1	26.1	23.2	4.5	合格

解析結果から得られた浮き上がり時側板に発生した軸圧縮膜応力の最大値の4.5 N/mm² は、軸圧縮及び象の脚型の両方の限界座屈応力以下であるため、当該区域の想定地震動に 対して、B-5タンクの最大浮き上がり変位が14.2 cm発生した場合の圧縮応力は、従来評価 手法の限界座屈応力を超えない評価結果となった。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみでの検討である。

書式変更:インデント : 最初の行 : 8 字

6. 解析・評価結果のまとめ

今年度は首都直下地震の発生を想定し、代表とする3地区のタンク20基の浮き上がり挙動と耐震安全性を解析により検討した。想定する入力地震動により、最も浮き上がりの影響を受けるタンクにおいて隅角部の疲労損傷及び側板の座屈強度の評価を実施し、許容値以下であることを確認した。

(1) 質点系モデルによる浮き上がり解析結果

マルチリニア型非線形ばね特性を持つ質点系モデルを用いて時刻歴地震応答解析を行 い、特防区域代表 3 地区の代表タンク合計 20 基の浮き上がり量を検討した。検討した代 表タンクのうち、B 地区の B-5 タンク(50000 KL)が最も大きな浮き上がり変位(14.2 cm) を生じる結果となり、当該タンクを FEM 詳細解析による隅角部疲労損傷度評価、側板座 屈評価の対象に選定した。

(2) 2次元軸対称ソリッド要素モデルによる隅角部の疲労損傷度評価

選定した B-5 タンクの質点系モデルでの浮き上がり履歴を使用して、2 次元軸対称ソ リッド要素モデルによる静的弾塑性大たわみ解析を実施した。タンク隅角部に発生したひ ずみ両振幅と飯田の最適疲労曲線式から算定した疲労寿命、及びその繰り返し回数から求 めた疲労損傷度 D は 1.0 以下となり、許容値以内であった。

(3) 3次元シェル要素モデルによる側板の座屈強度評価

選定した B-5 タンクの 3 次元シェル要素モデルによる静的弾性解析を実施した。選定 した B-5 タンクが 14.2 cm の浮き上がりを発生する時の側板沈み込み側の最大軸圧縮応 力は、軸圧縮限界座屈応力及び象の脚型限界座屈応力以内であることを確認した。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみでの検討である。

以上

添付資料 1

代表タンクの質点系モデルの入力諸元の計算シート

(1) A地区(代表タンク:合計6基、A-1~A-6)

付表 1.1-1 A-1 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u> 質点系モデルによる側板下端の浮き </u>	(赤字:入力値)		
[諸元]			-
公称容量	VOL (kl)	1000	(kl)
貯槽内径	D	11600	(mm)
側板高さ	Hmax	12190	(mm)
最下段側板厚	t _s	6	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	4.87	(mm)
アニュラ板厚	t _b	10	(mm)
鋼材のヤング率(SM400C)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	10882	(mm)
液密度	r	6.67E-07	(kg/mm3)
直径/液高さ比	D/H	1.07	(-)
液高さ/直径比	H/D	0.94	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 0.8427(\frac{H}{D})^3 - 0.916(\frac{H}{D})^2 + 0.916(\frac{H}{D})^$	0.75	(-)	
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429 (\frac{H}{D})^4 + 0.9653 (\frac{H}{D})^3 - 2.2807 (\frac{H}{D})^2 + 0.000 (H$	0.67	(-)	
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.1493(\frac{H}{D})^2 + 0.1493(\frac{H}{D})^$	0.42	(-)	
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0216(\frac{H}{D})^2$	$0.0207(\frac{H}{D}) + 0.3644$		
	-	0.48	(-)
低板に作用する最大静液圧			
$P_0 = g \gamma H$		0.07	(N/mm2)

側板重量	Ws0	2.56E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.62E+02	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.56E+05	(N)

付表 1.1-2 A タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値] 紫字:モデルの入力値 (単位:N, cm) 貯槽の固有周期 $T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$ 0.1445 (sec) $\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$ 0.2375 (-) 液重量 W=gγπD²H/4 7.52E+06 (N) W 合計重量(W+Wsr) W+Wsr 7.78E+06 (N) 減衰比 0.15 (-) 基礎地盤と貯槽本体の連成振動補正係数 (-) 1.1 有効液重量 Wo 5.62E+06 (N) $W_0 = f_{w0} * (W)$ $W_1 = f_{w1} * (W) + Wsr$ W1 5.33E+06 (N) 消防法/有効液重量率 0.75 (-) f_{w0} (-) 0.67 f_{w1} 有効液の重心高さ $H_0 = f_{h0} * H$ Ho 456.94 (cm) $H_1 = f_{h1} * H$ Hı 521.50 (cm) 消防法/有効液の重心高さ係数 0.42 (-) f_{h0} 0.48 (-) f_{h1} 側板自重による鉛直抵抗力at 70.17 (N/cm) qt ばね係数 Кь 1.03E+07 (N/cm) 浮き上がり抵抗力 340.97 (N/cm) qу 浮き上がり抵抗力+鉛直抵抗力(qy+qt) 411.14 (N/cm) qy+qt 保有水平耐力(降伏耐力) Qy 1.67E+06 (N) 降伏変位 (=Qy/Kb) Δy 0.16 (cm) 減衰係数 Ce 7.09E+04 (N/(cm/s)) 貯蔵内径と有効液の重心高さの比 D/H₁ 2.22 (-)

		0.045.05	.
Point I $Q_{\pi R^2 a}$ $Q_{R^*} C_{10}$	QRt	2.84E+05	N
$Q_{Rt} = \frac{2\pi R q_t}{T} \qquad \alpha_t = \frac{1}{(\sigma f - r) R^2}$		0.27	_
O^{H_1} $(\mathcal{Y}_{W1}p_0\mathbf{K})$	<u>a</u> t	0.02	
$\Delta_{et} = \frac{\mathcal{Q}_{Rt}}{K_{b}}$	∆et	0.03	cm
Point Y	mv	4.08E+03	N
$a = \frac{4}{m} \sqrt{m} n_{a}$ $m_{a} = \frac{\sigma_{y}}{m} t_{a}^{2}$	av	2.78E+02	N/cm
$\sqrt{6} \sqrt{6} \sqrt{10} $	QRv	1.13E+06	N
$2\pi R^2 q$ Et_a^3	αγ	0.06	-
$Q_{Ry} = \frac{-m^2 q_y}{m} D_a (= \frac{1}{12(1-v^2)})$	CM	12.94	-
	Da	1.89E+06	N.cm
$\alpha_{n} = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δy	0.44	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.58	cm
$\Lambda = \frac{H_1[Q_y]^4}{1}$			
$\frac{X_y}{RD} = \frac{RD}{RD} \frac{n^3 [C}{(\alpha + \alpha)} \frac{R^2}{R^2}]^4$			
$HD_{a}P_{0}DO_{M}(M_{y}+M_{t})H_{1}$	QRy+Qt	1.41E+06	N
$\mathbf{A}_{k} = \mathbf{A}_{k} + \frac{[Q_{Ry} + Q_{Rt}]}{[Q_{Ry} + Q_{Rt}]}$			
$\Delta_{ey} - \Delta_y + \frac{K_b}{K_b}$			
Point P σ_{1} 2 4	mp	6.13E+03	Ν
$m_p = \frac{y}{\sqrt{6}} t_a^2$ $q_p = \frac{1}{\sqrt{6}} \sqrt{m_p p_0}$	qp	3.41E+02	N/cm
+ 2 [0]C	QRp	1.38E+06	N
$a_{p} = \frac{2\pi R^2 q_{p}}{q_{p}} = \alpha_{p} = \frac{[Q_{Rp}]C_{10}}{[Q_{Rp}]C_{10}}$	αp	0.07	-
$\mathcal{Q}_{Rp} = \frac{1}{H_{L}} \qquad (\pi f_{W1} p_0 R^2)$	CM	12.86	-
$H_1[O_{P_n}]^4$	Da	1.89E+06	N.cm
$\Delta_p = \frac{12 \omega_{Rp}}{P^2}$	Δp	1.02	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\kappa}{m}]^4$	∆ер	1.18	cm
H_1	QRp+Qt	1.67E+06	N
$\Delta_{ep} - \Delta_{p} + K_{b}$			
Point 4 4	m4	8.17E+03	N
$q_4 = \frac{1}{\sqrt{\epsilon}} \sqrt{m_4 p_0}$	q4	3.94E+02	N/cm
$2\pi R^2 a Q_{R4} C_{10}$	QR4	1.60E+06	Ν
$Q_{R4} = \frac{2\pi R^2 q_4}{R} \alpha_4 = \frac{2\pi R^2 n^2}{(\pi f - n R^2)}$	α4	0.08	-
\boldsymbol{n}_1 ($\mathcal{Y}_{W1}P_0\mathbf{n}$)	СМ	12.79	-
$\Lambda_{L} = \frac{H_{1}[Q_{R4}]^{*}}{1}$	Da	1.89E+06	N.cm
$= \frac{-4}{RD} n^{3} [C (\alpha + \alpha) \frac{R^{2}}{R}]^{4}$	∆4	1.85	cm
$KD_a p_0 [C_M (\alpha_4 + \alpha_t) \frac{H_1}{H_1}]$	∆e4	2.03	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{\mathcal{X}}$			
K _b	QR4+QRt	1.88E+06	Ν
Point 5 4	m5	1.02E+04	Ν
$q_5 = \frac{1}{\sqrt{m_5}} \sqrt{m_5} p_0$	q5	4.40E+02	N/cm
$\sqrt{6}$	QR5	1.78E+06	Ν
	α5	0.09	-
	СМ	12.73	-
	Da	1.89E+06	N.cm
	∆5	2.95	cm
	<u>∆</u> e5	3.15	cm
	QR5+QRt	2.07E+06	Ν

付表 1.1-3 A-1 タンクの非線形水平ばねの復元力特性とする Q-∆線図の計算シート (No.3計算シート)

質点系モデルによる側板下端の浮き上	がり変位計算月	用諸元	(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	5000	(kl)
貯槽内径	D	23240	(mm)
側板高さ	Hmax	12235	(mm)
最下段側板厚	t _s	12	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	9.2	(mm)
アニュラ板厚	t _b	9	(mm)
鋼材のヤング率(SS41)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.1663	(N/mm2)
最高液高さ	Н	11790	(mm)
液密度	r	8.32E-07	(kg/mm3)
直径/液高さ比	D/H	1.97	(-)
液高さ/直径比	H/D	0.51	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2$	$2.0933(\frac{H}{D}) - 0.1172$	0.55	(-)
消防法/有効液重量率 f _{w1}			
$f_{\rm W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 +$	$2.3017(\frac{H}{D}) - 0.1634$	0.53	(-)
消防法/有効液の重心高さ係数 f _{ho}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	0.40	(-)	
消防法/有効液の重心高さ係数 f _{h1}	0.10		
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	0.41	(-)	
底板に作用する最大静液圧			
P ₀ =gγH		0.10	(N/mm2)

付表 1.2-1 A-2 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	6.37E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	2.75E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	9.12E+05	(N)

[計算式と質点系モデルの入力数値]		紫字:モデルの入力((単位:N, cm)	直
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1790	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3250	(-)
液重量 W=gγπD ² H/4	w	4.08E+07	(N)
合計重量(W+Wsr)	W+Wsr	4.17E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.25E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	2.27E+07	(N)
消防法/有効液重量率	f _{w0}	0.55	(-)
	f _{w1}	0.53	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	476.57	(cm)
$H_1 = f_{h1} * H$	Hı	488.20	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.41	(-)
側板自重による鉛直抵抗力qt	qt	124.88	(N/cm)
ばね係数	K⊳	2.85E+07	(N/cm)
浮き上がり抵抗力	qy	356.87	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	481.75	(N/cm)
保有水平耐力(降伏耐力)	Qy	8.37E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.29	(cm)
減衰係数	Ce	2.44E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	4.76	(-)

付表 1.2-2 A-2 タンクの質点系モデルの諸元計算シート(No.2計算シート)

Point T	QRt	2.17E+06	Ν
$\alpha = \frac{2\pi R^2 q_t}{\alpha} = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.63	-
$Q_{Rt} - \frac{1}{H_1} - \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.06	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.08	cm
$\Delta_{et} = \frac{1}{K_{b}}$			
Point Y σ	my	3.31E+03	Ν
$q_{y} = \frac{4}{m_{y}p_{0}}$ $m_{y} = \frac{-y}{m_{y}}t_{a}^{2}$	qy	2.91E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	5.06E+06	Ν
$2\pi R^2 q_{\mu} = D \left(\frac{Et_a^3}{2} \right)$	αy	0.15	-
$Q_{Ry} = \frac{1}{12} D_a (= \frac{1}{12(1-v^2)})$	CM	12.13	-
H_1	Da	1.37E+06	N.cm
$\alpha_{y} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{2}$	Δy	0.18	cm
$\int_{W_1}^{Y} p_0 R^2$	∆ey	0.43	cm
$H_1[Q_{y}]^4$			
$\Delta_y = \frac{1}{R^2 r^4}$			
$RD_a p_0^{\sigma} [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^{\tau}$	QRv+Qt	7.23E+06	N
$[O_{P_{1}}+O_{P_{1}}]$,	,	
$\Delta_{ey} = \Delta_y + \frac{2\omega_{Ky} - \omega_{Ky}}{K}$			
κ _b			
Point P $\sigma_{y} = \frac{4}{m} \sqrt{m} p_{0}$	mp	4.96E+03	N
$m_p = \frac{1}{4} I_a \qquad I_p \qquad \sqrt{6} \sqrt{10^p P_0}$	qp	3.57E+02	N/cm
$2 - R^2 = [0, 1]C_{12}$	QRp	6.20E+06	N
$Q = \frac{2\pi \mathbf{K} \ \mathbf{q}_p}{\alpha_p} = \frac{12\pi \mathbf{k} \ \mathbf{q}_p}{\alpha_p^2}$	αp	0.18	-
$\mathcal{L}_{Rp} = H_1 - (\pi_{W_1} p_0 R^2)$	CM	11.94	-
$H_1[Q_{Rp}]^4$	Da	1.37E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	0.43	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ep	0.72	cm
$\Delta_{ap} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	8.37E+06	N
$k^{ep} p K_b$			
Point 4 4	m4	6.62E+03	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	4.12E+02	N/cm
$2\pi R^2 a$, $Q_{R4}C_{10}$	QR4	7.16E+06	N
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{\pi (m_1 m_2)}{(\pi f_{m_1} m_2 R^2)}$	α4	0.21	-
Π_1 (9 W1P0R)	СМ	11.77	-
$\Lambda_{\perp} = \frac{H_1[Q_{R4}]^*}{1}$	Da	1.37E+06	N.cm
R^{-4}	∆4	0.80	cm
$\frac{KD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{H_1}$	∆e4	1.13	cm
$\Delta_{44} = \Delta_{44} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
K_{b}	QR4+QRt	9.33E+06	Ν

付表 1.2-3 A-2 タンクの非線形水平ばねの復元力特性とする Q-∆線図の計算シート (No.3計算シート)

<u>質点系モデルによる側板下端の浮き上</u>	(赤字:入力値)		
[諸元]			
公称容量	VOL (kl)	10000	(kl)
貯槽内径	D	32930	(mm)
側板高さ	Hmax	15195	(mm)
最下段側板厚	t _s	19	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	14.11	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SM400C)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11697	(mm)
液密度	r	7.35E-07	(kg/mm3)
直径/液高さ比	D/H	2.82	(-)
液高さ/直径比	H/D	0.36	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$ 消防法/有効液重量率 f_{w1}		0.42	(-)
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 +$	$-2.3017(\frac{H}{D}) - 0.1634$	0.41	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	0.40	(-)	
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	0.39	(-)	
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.08	(N/mm2)

付表 1.3-1 A-3 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	1.60E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	8.56E+01	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	7.37E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.34E+06	(N)

[計算式と質点系モデルの入力数値]		紫字:モデルの入力((単位:N, cm)	直
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1722	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3619	(-)
液重量 W=gγπD ² H/4	w	7.18E+07	(N)
合計重量(W+Wsr)	W+Wsr	7.41E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	3.02E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	3.16E+07	(N)
消防法/有効液重量率	f _{w0}	0.42	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	468.57	(cm)
H ₁ = f _{h1} *H	Hı	459.92	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	225.75	(N/cm)
ばね係数	K₅	4.29E+07	(N/cm)
浮き上がり抵抗力	qy	445.31	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	671.05	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.49E+07	(N)
<u>降伏変位 (=Qy/Kb)</u>	Δy	0.58	(cm)
減衰係数	Ce	3.53E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	7.16	(-)

付表 1.3-2 A-3 タンクの質点系モデルの諸元計算シート(No.2計算シート)

Point T	QRt	8.36E+06	Ν
$\alpha = \frac{2\pi R^2 q_t}{\alpha} \qquad \alpha = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.75	-
$Q_{Rt} = \frac{1}{H_1} + \frac{1}{H_1} + \frac{1}{(\pi f_{W1} p_0 R^2)}$	αt	0.22	-
Q_{Rt}	∆et	0.19	cm
$\Delta_{et} = \overline{K_{h}}$			
Point Y , O	my	5.88E+03	Ν
$a = \frac{4}{m} \sqrt{m} \frac{m}{p_0} \qquad m_y = \frac{\sigma_y}{m} t_0^2$	qy	3.64E+02	N/cm
$\sqrt{6}\sqrt{9}$	QRy	1.35E+07	Ν
$2\pi R^2 q$ Et_a^3	αy	0.35	-
$Q_{Ry} = \frac{-124^{-1} q_y}{12} D_a = \frac{12(1-v^2)}{12(1-v^2)}$	СМ	10.02	-
	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δy	0.39	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.89	cm
$H_1[Q_N]^4$			
$\Delta_y = \frac{1}{R^2 + 1}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^4$	0By+0t	2 18F+07	N
$[O_n + O_n]$	Girty Gr	2.102.07	
$\Delta_{ey} = \Delta_y + \frac{\mathcal{L}_{Ry} + \mathcal{L}_{Rt}}{V}$			
κ _b			
Point P $\sigma_{y} = 2$ $a = \frac{4}{m} \sqrt{m}$	mp	8.82E+03	Ν
$m_p = \frac{1}{4} t_a q_p = \sqrt{6} \sqrt{m_p P_0}$	qp	4.45E+02	N/cm
$2 p^2 [0] C$	QRp	1.65E+07	N
$\boldsymbol{O}_{p} = \frac{2\pi \mathbf{K} \boldsymbol{q}_{p}}{10} \qquad \boldsymbol{\alpha}_{p} = \frac{12\pi \mathbf{R} \boldsymbol{q}_{p}}{10}$	αp	0.43	-
$\mathcal{L}_{Rp} = H_1 \qquad (\pi f_{W1} p_0 R^2)$	СМ	9.56	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{R^2}$	Δp	1.05	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ер	1.63	cm
$\Delta_{ap} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	2.49E+07	Ν
$\epsilon_{p} p K_{b}$			
Point 4 4	m4	1.18E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	5.14E+02	N/cm
$2\pi R^2 q \qquad Q_{R4} C_{10}$	QR4	1.90E+07	Ν
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{\pi (m_1 - m_2)}{(m_1 - m_1 R^2)}$	α4	0.49	-
H_1 $(\mathcal{Y}_{W1}\mathcal{P}_0\mathcal{R})$	СМ	9.17	-
$\Lambda_{1} = \frac{H_{1}[Q_{R4}]^{4}}{H_{1}[Q_{R4}]^{4}}$	Da	3.26E+06	N.cm
R^{2}	∆4	2.21	cm
$\frac{KD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{H_1}$	∆e4	2.85	cm
$\Delta_{A} = \Delta_{A} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
^{e4} ⁴ K _b	QR4+QRt	2.74E+07	Ν

付表 1.3-3 A-3 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

<u>質点系モデルによる側板下端の浮き.</u>	<u>上がり変位計算月</u>	月諸元	(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	30000	(kl)
貯槽内径	D	53600	(mm)
側板高さ	Hmax	16455	(mm)
最下段側板厚	t _s	35	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	26.89	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SS41)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.1663	(N/mm2)
最高液高さ	Н	12875	(mm)
液密度	r	8.85E-07	(kg/mm3)
直径/液高さ比	D/H	4.16	(-)
液高さ/直径比	H/D	0.24	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.29	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.27	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 - 0.0126(\frac{H}{D})^2 - 0.0126(\frac{H}{D})^3 + 0.0126(\frac{H}{D})^2 - 0.0126(\frac{H}{D})^3 - 0.0126(\frac{H}{D})^3 - 0.0026(\frac{H}{D})^3 - 0.0026(\frac{H}{D})^3$	$+0.0207(\frac{H}{D})+0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.11	(N/mm2)

付表 1.4-1 A-4 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>タンク本体重量(赤字:入力値)</u>

側板重量	Ws0	4.71E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.67E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.71E+06	(N)

[計算式と質点系モデルの入力数値]		紫字:モデルの入力((単位:N, cm)	直
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.2159	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3918	(-)
液重量 W=gγπD ² H/4	w	2.52E+08	(N)
合計重量(W+Wsr)	W+Wsr	2.57E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	i	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	7.22E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	7.30E+07	(N)
消防法/有効液重量率	f _{w0}	0.29	(-)
	f _{w1}	0.27	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	515.06	(cm)
$H_1 = f_{h1} * H$	Hı	489.25	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	279.63	(N/cm)
ばね係数	K₅	6.31E+07	(N/cm)
浮き上がり抵抗力	qy	512.83	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	792.46	(N/cm)
保有水平耐力(降伏耐力)	Qy	7.31E+07	(N)
<u>降伏変位 (=Qy/Kb)</u>	Δy	1.16	(cm)
減衰係数	Ce	6.50E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	10.96	(-)

付表 1.4-2 A-4 タンクの質点系モデルの諸元計算シート(No.2計算シート)

付表 1.4-3 A-4 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

非称形ロッキングはね特性称凶計昇			
Point T	QRt	2.58E+07	N
$\alpha = \frac{2\pi R^2 q_t}{\alpha} \qquad \alpha = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.81	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \qquad$	αt	0.31	-
$A = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.41	cm
$\Delta_{et} - K_{h}$			
Point Y	my	5.88E+03	N
$a_{y} = \frac{4}{m} \sqrt{m p_{0}} \qquad m_{y} = \frac{3}{m} \frac{y}{t_{0}}^{2}$	qy	4.19E+02	N/cm
$\sqrt{6}\sqrt{9}$	QRy	3.86E+07	Ν
$2\pi R^2 q$ Et_a^3	αy	0.46	-
$Q_{Ry} = \frac{1}{12} \frac$	СМ	8.83	-
H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.32	cm
$(\pi f_{W_1} p_0 R^2)$	Δey	1.34	cm
$H_1[O_n]^4$			
$\Delta_y = \frac{1}{R^2} \frac{1}{R^2}$			
$RD_a p_0^3 [C_M(\alpha_y + \alpha_t) \frac{1}{H_1}]^*$	QRv+Qt	644F+07	N
$[O_{p_1} + O_{p_2}]^{-1}$	any at	0.112 07	
$\Delta_{ey} = \Delta_y + \frac{\mathcal{L}_{Ky} - \mathcal{L}_{KT}}{K}$			
K _b			
Point P σ_{y} , 2 $a = \frac{4}{m} \sqrt{m} p_{z}$	mp	8.83E+03	N
$m_p = \frac{1}{4} t_a q_p \sqrt{6} \sqrt{m_p p_0}$	qp	5.13E+02	N/cm
$2 - n^2 = [0, 1]$	QRp	4.73E+07	N
$Q_{p} = \frac{2\pi \mathbf{K} q_{p}}{\mathbf{m}} \qquad \alpha_{p} = \frac{12\pi \mathbf{k} q_{p}}{(1-2\pi)^{2}}$	αp	0.56	-
$\mathcal{L}_{Rp} \qquad H_1 \qquad (\pi f_{W1} p_0 R^2)$	СМ	8.22	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	0.95	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ер	2.11	cm
n_1			
$\Delta_{ep} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	7.31E+07	N
$K_{P} = K_{b}$			
Point 4 4	m4	1.18E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	5.92E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	5.46E+07	N
$Q_{R4} = \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{m} p_0 R^2)}$	α4	0.65	-
H_1 $(5W1P0R)$	СМ	7.70	_
$\Delta_{4} = \frac{H_{1}[Q_{R4}]}{1}$	Da	3.26E+06	N.cm
⁴ $RD n^{3}[C (\alpha + \alpha)] \frac{R^{2}}{R^{2}}]^{4}$	$\Delta 4$	2.19	cm
$\frac{n \mathcal{D}_a \mathcal{P}_0[\mathcal{C}_M(\alpha_4 + \alpha_t)]}{\mathcal{O}_m(\alpha_4 + \alpha_t)} = \frac{1}{H_1}$	∆e4	3.46	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
K_{b}	QR4+QRt	8.04E+07	N
	-		

非線形ロッキングばね特性線図計算

<u>、質点系モデルによる側板下端の浮き上れ</u>	がり変位計算月	用諸元	(赤字:入力値)
[諸元]			-
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	61000	(mm)
側板高さ	Hmax	20095	(mm)
最下段側板厚	t _s	21	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	17.31	(mm)
アニュラ板厚	t _b	15	(mm)
鋼材のヤング率(SM490C)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	325	(N/mm2)
最高液高さ	Н	16163	(mm)
液密度	r	8.85E-07	(kg/mm3)
直径/液高さ比	D/H	3.77	(-)
液高さ/直径比	H/D	0.26	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.32	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.30	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.14	(N/mm2)

付表 1.5-1 A-5 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	4.49E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.94E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.49E+06	(N)

付表 1.5-2	A-5 タンクの質	点系モデルの諸元	記 計 算 シート(No	.2計算シート)
11 24 11 4 2				

[計算式と質点系モデルの入力数値]		紫字:モデルの入力((単位:N.cm)	<u>直</u>
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3489	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3852	(-)
液重量 W=gγπD ² H/4	w	4.10E+08	(N)
合計重量(W+Wsr)	W+Wsr	4.14E+08	(N)
減衰比	ξ	0.15	(-)
<u>基礎地盤と貯槽本体の連成振動補止係数</u>	lj	1.1	(-)
		1.005.00	
$W_0 = f_{w0} * (W)$	vv o	1.30E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	W1	1.29E+08	(N)
消防法/有効液重量率	f _{w0}	0.32	(-)
	f _{w1}	0.30	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	646.44	(cm)
$H_1 = f_{h1} * H$	Hı	618.39	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	234.37	(N/cm)
ばね係数	Кь	42639506.26	(N/cm)
浮き上がり抵抗力	qy	826.95	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _y +qt)	qy+qt	1061.32	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.00E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.35	(cm)
減衰係数	Ce	710374.38	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	9.86	(-)

付表	1.5–3	A-5 タンクの非線形水平ばねの復元力特性とする Q-∆線図の計算シート
		(No.3計算シート)

別家がロノインノはない工作の日子			
Point T	QRt	2.22E+07	N
$\alpha = \frac{2\pi R^2 q_t}{\alpha} = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.80	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \qquad$	αt	0.14	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.52	cm
$\overset{\rightharpoonup}{}_{et}$ K_{b}			
Point Y σ	my	1.22E+04	Ν
$q_{\mu} = \frac{4}{2} \sqrt{m_{\mu} p_{0}} \qquad m_{\nu} = \frac{2}{2} t_{a}^{2}$	qy	6.75E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	6.38E+07	Ν
$2\pi R^2 q_{\mu} = D \left(\frac{Et_a^3}{2} \right)$	αγ	0.41	-
$Q_{Ry} = \frac{1}{12} D_a (= \frac{1}{12(1-v^2)})$	СМ	10.08	-
H_1	Da	6.36E+06	N.cm
$\alpha_{ij} = \frac{\left[\mathcal{Q}_{Ry} \right] \mathcal{C}_{10}}{2}$	Δy	0.36	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	2.38	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{R^2 r^4}$			
$RD_a p_0^{\circ} [C_M (\alpha_y + \alpha_t) \overline{H_1}]^{\circ}$	QRv+Qt	8.60E+07	N
$[Q_{P_{v}}+Q_{P_{t}}]$			
$\Delta_{ey} = \Delta_y + \frac{2 \sum K y}{K}$			
<u> </u>			
Point P $\sigma_{y} = \frac{1}{2} q_{p} = \frac{4}{\sqrt{m_{p}p_{0}}}$	mp	1.83E+04	N
$m_p = \frac{1}{4} l_a \qquad l_p \qquad \sqrt{6} \sqrt{4} p r^{-1} l_b$	qp	8.27E+02	N/cm
$2\pi P^2 \alpha$ [Q_p] C_{10}	QRp	7.82E+07	N
$Q_{p} = \frac{2\pi \kappa q_{p}}{m} \qquad \alpha_{p} = \frac{12\pi \kappa p^{2}}{\kappa p^{2}}$	αp	0.50	-
$\mathcal{L}_{Rp} \qquad H_1 \qquad (\pi_{W_1} p_0 K)$	СМ	9.53	-
$H_1[Q_{Rp}]^4$	Da	6.36E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	1.02	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\alpha_t}{\mu}]^4$	∆ер	3.37	cm
n_1			
$\Delta_{ap} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.00E+08	N
$\Gamma^{\epsilon \nu \nu} K_b$			
Point 4 4	m4	2.44E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	9.55E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	9.03E+07	N
$Q_{R4} = \frac{-\pi m q_4}{H} \alpha_4 = \frac{\pi m m q_4}{(\pi f_{m} p_0 R^2)}$	α4	0.58	-
	СМ	9.06	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]^{\dagger}}{1}$	Da	6.36E+06	N.cm
4 RD $n^{3}[C_{(\alpha + \alpha)}]^{R^{2}}$ 1^{4}	$\Delta 4$	2.21	cm
$\frac{RD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{R}$	∆e4	4.85	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
··· · K _b	QR4+QRt	1.12E+08	N

非線形ロッキングばね特性線図計算

質点系モデルによる側板下端の浮き。	上がり変位計算	用諸元	(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	75000	(kl)
貯槽内径	D	70000	(mm)
側板高さ	Hmax	21958	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23.89	(mm)
アニュラ板厚	t _b	18	(mm)
鋼材のヤング率(SPV490Q)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	19618	(mm)
液密度	r	8.80E-07	(kg/mm3)
直径/液高さ比	D/H	3.57	(-)
液高さ/直径比	H/D	0.28	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.34	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$2.3017(\frac{H}{D}) - 0.1634$	0.32	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 (\frac{H}{D})^4 - 0.1493 (\frac{H}{D})^3 + 0.204 (\frac{H}{D})^2 - 0.0807 (\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
P ₀ =gγH		0.17	(N/mm2)

付表 1.6-1 A-6 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	7.68E+03	(KN)	
側板付属品重量	Ws1	0.00E+00	(KN)	
浮き屋根重量	Wr0	0.00E+00	(KN)	
浮き屋根付属品重量	Wr1	2.45E+03	(KN)	
固定屋根重量	Wcr0	0.00E+00	(KN)	
固定屋根骨重量	Wcr1	0.00E+00	(KN)	
固定屋根付属品重量	Wcr2	0.00E+00	(KN)	
タンク本体重量 合計	Wsr	7.68E+06	(N)	

[計算式と質点系モデルの入力数値]		紫字:モデルの入力値	
		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3784	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3812	(-)
液重量 W=gγπD ² H/4	w	6.52E+08	(N)
合計重量(W+Wsr)	W+Wsr	6.59E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0}^*(W)$	Wo	2.19E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	W1	2.18E+08	(N)
消防法/有効液重量率	f _{w0}	0.34	(-)
	f _{w1}	0.32	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	784.63	(cm)
$H_1 = f_{h1} * H$	H1	753.86	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	349.15	(N/cm)
ばね係数	K⊳	6.13E+07	(N/cm)
浮き上がり抵抗力	qу	1338.61	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	qy+qt	1687.76	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.72E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.81	(cm)
減衰係数	Ce	1.11E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	9.29	(-)

付表 1.6-2 A-6 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

Point T	QRt	3.56E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.80	-
$Q_{Rt} - \frac{1}{H_1} = \frac{1}{(\pi f_{W1} p_0 R^2)}$	αt	0.13	-
$\Lambda - \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.58	cm
$\Delta_{et} - K_{b}$			
Point Y σ	my	2.65E+04	Ν
$q_{\mu} = \frac{4}{m_{\mu}} \sqrt{m_{\mu}} \qquad m_{\mu} = \frac{v_{\mu}}{m_{\mu}} t_{\mu}^{2}$	qy	1.09E+03	N/cm
$\sqrt{6}\sqrt{9}$	QRy	1.12E+08	Ν
$2\pi R^2 q$ Et_a^3	αγ	0.42	-
$Q_{Ry} = \frac{2127}{H} \frac{1}{2} \frac{1}{2} \frac{1}{12} \frac$	СМ	10.06	-
H_1	Da	1.10E+07	N.cm
$\alpha_{n} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}$	Δy	0.88	cm
$\int_{W_1}^{Y} (\pi f_{W_1} p_0 R^2)$	∆ey	3.28	cm
$H_1[Q_{\gamma}]^4$			
$\Delta_y = \frac{1}{R^2} \frac{1}{R^2} \frac{1}{R^2}$			
$RD_a p_0^{\sigma} [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^{\tau}$	QRv+Qt	1.47E+08	N
$[O_{P_{1}} + O_{P_{1}}]$,		
$\Delta_{ey} = \Delta_y + \frac{2\omega_{Ky} - \omega_{Ky}}{K}$			
n _b			
Point P σ_{y} a_{z}^{2} $q_{z} = \frac{4}{2} \sqrt{m_{z} p_{0}}$	mp	3.97E+04	N
$m_p = \frac{1}{4} l_a \qquad l_p \qquad \sqrt{6} \sqrt{4} \sqrt{1} p \qquad \sqrt{6} \sqrt{1} \sqrt{1} \sqrt{1} p \qquad \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1}$	qp	1.34E+03	N/cm
$2 - R^2 = [0, 1C]$	QRp	1.37E+08	N
$Q_{p} = \frac{2\pi \kappa q_{p}}{\alpha_{p}} \qquad \alpha_{p} = \frac{12\pi \kappa q_{p}}{\kappa r}$	αp	0.52	_
$\mathcal{L}_{Rp} \qquad H_1 \qquad (\pi \mathcal{J}_{W1} \mathcal{P}_0 \mathcal{R}^2)$	СМ	9.49	-
$H_1[Q_{Rp}]^4$	Da	1.10E+07	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	2.48	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\alpha_l}{H}]^4$	∆ер	5.30	cm
n_1			
$\Delta_{ep} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rl}}{Q_{Rp} + Q_{Rl}}$	QRp+Qt	1.72E+08	N
$r K_b$			
Point 4 4	m4	5.29E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.55E+03	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.58E+08	N
$Q_{R4} = \frac{1}{H} \frac{1}{H} \frac{\alpha_4}{\alpha_4} = \frac{1}{(\pi f_{ma} p_0 R^2)}$	α4	0.60	-
$H_1 \qquad (5 W_1 F_0 - C)$	CM	9.02	
$\Delta_4 = \frac{H_1[Q_{R4}]}{2}$	Da	1.10E+07	N.cm
$\frac{1}{2} RD n^{3} [C (\alpha + \alpha) \frac{R^{2}}{2}]^{4}$	∆4	5.43	cm
$D_a p_0 C_M (\alpha_4 + \alpha_1) H_1$	∆e4	8.58	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{2}$			
K_b	QR4+QRt	1.93E+08	Ν

付表 1.6-3 A-6 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

(2) B地区(代表タンク:合計7基、B-1~B-7)

付表 1.7-1 B-1 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>、質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤弓</u>			
[諸元]	-		1
公称容量	VOL (kl)	1000	(kl)
貯槽内径	D	11630	(mm)
側板高さ	Hmax	10715	(mm)
最下段側板厚	ts	6	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	4.1	(mm)
アニュラ板厚	t _b	6	(mm)
鋼材のヤング率(SS41)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.1663	(N/mm2)
最高液高さ	Н	9421	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	1.23	(-)
液高さ/直径比	H/D	0.81	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.71	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.66	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.42	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.46	(-)
底板に作用する最大静液圧			
P ₀ =gγH		0.09	(N/mm2)

側板重量	Ws0	1.74E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	6.63E+01	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.40E+05	(N)

付表 1.7-2 B-1 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]		紫字:モデルの入力(直
		<u>(単位:N, cm)</u>	r
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi \operatorname{E*t}_{1/3})) * j$		0.1489	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2609	(-)
液重量 W=gγπD ² H/4	w	9.81E+06	(N)
合計重量(W+Wsr)	W+Wsr	1.01E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	6.95E+06	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	6.68E+06	(N)
消防法/有効液重量率	f _{w0}	0.71	(-)
	f _{w1}	0.66	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	391.22	(cm)
$H_1 = f_{h1} * H$	H1	433.56	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.46	(-)
側板自重による鉛直抵抗力qt	qt	65.66	(N/cm)
ばね係数	Кь	1.21E+07	(N/cm)
浮き上がり抵抗力	qy	233.16	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	298.82	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.46E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.12	(cm)
減衰係数	Ce	8.62E+04	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	2.68	(-)

付表 1.7-3 B-1	タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート(No.3
計算シート)	

非線形ロッキングばね特性線図計算			
Point T	QRt	3.22E+05	N
$\alpha = 2\pi R^2 q_i \qquad \alpha = \frac{Q_{Rt}C_{10}}{Q_{Rt}C_{10}}$	C10	0.36	-
$Q_{Rt} = \frac{1}{H_1} \qquad \qquad$	αt	0.02	-
$\Delta_{et} = \frac{Q_{Rt}}{K}$	∆et	0.03	cm
Point Y	mv	1.47E+03	N
$a = \frac{4}{m} \sqrt{m} p \qquad m = \frac{O_y}{t} t^2$	av	1 90F+02	N/cm
$q_y = \sqrt{6} \sqrt{m_y p_0} \qquad m_y \qquad 6$	QRv	9.33E+05	N
$2\pi R^2 a$ Et ³	av	0.05	-
$O_{P_{x}} = \frac{2\pi (q_{y})}{12(1-y^{2})} D_{a} = \frac{1}{12(1-y^{2})}$	CM	12.96	_
H_1 H_1 H_1	Da	4 07E+05	Ncm
$Q_{Ry} = [Q_{Ry}]C_{10}$	Δv	017	cm
$\alpha_{y} = \frac{1}{(\pi f_{w_1} p_0 R^2)}$		0.17	cm
H [O] 14	Деу	0.27	GIII
$\Delta_y = \frac{R_1[Q_y]}{R_2}$			
$RD_a p_0^* [C_M(\alpha_y + \alpha_t)] \overline{H_1}$	QRy+Qt	1.25E+06	Ν
$\Delta = \Delta + \frac{[Q_{Ry} + Q_{Rt}]}{[Q_{Ry} + Q_{Rt}]}$			
ey y K _b			
Point P $\sigma_{y} = 2 - \frac{4}{2} \sqrt{m - p}$	mp	2.21E+03	Ν
$m_p = \frac{1}{4} t_a^{-1} q_p = \sqrt{6} \sqrt{m_p P_0}$	qp	2.33E+02	N/cm
$- r^2$ [0] [C]	QRp	1.14E+06	Ν
$\alpha = \frac{2\pi R^2 q_p}{\alpha_n} = \frac{10 Q_{Rp} R^2 q_{10}}{2\pi R^2 q_p}$	αp	0.06	-
$Q_{Rp} = \frac{1}{H_1} p_0 (\pi f_{W1} p_0 R^2)$	СМ	12.89	-
${}^{1}H_{1}[O_{P_{R}}]^{4}$	Da	4.07E+05	N.cm
$\Delta_p = \frac{12 \omega_{Rp}}{R^2}$	Δp	0.39	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{K}{H}]^4$	∆ep	0.51	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.46E+06	Ν
Point 4	m4	2.94E+03	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	2.69E+02	N/cm
$2\pi R^2 a \qquad Q_{RA}C_{10}$	QR4	1.32E+06	N
$Q_{R4} = \frac{2\pi (q_4)}{M} \alpha_4 = \frac{2\pi (q_4)}{(\pi (p_4)^2)}$	α4	0.07	-
$H_1 \qquad (\mathcal{Y}_{W1} \mathcal{P}_0 \mathcal{K})$	СМ	12.84	-
$\Lambda - \frac{H_1[Q_{R4}]^4}{2}$	Da	4.07E+05	N.cm
$\Delta_4 = \frac{1}{R^2} \frac{1}{R^2}$	Δ4	0.70	cm
$\frac{KD_a p_0 [C_M (\alpha_4 + \alpha_t) \overline{H_1}]}{Q_1 + Q_2}$	∆e4	0.84	cm
$\Delta_{e4} = \Delta_4 + \frac{\boldsymbol{\mathcal{L}}_{R4} + \boldsymbol{\mathcal{L}}_{Rt}}{K_b}$	QR4+QRt	1 64F+06	N
Point 5 /	m5	5 88F+03	N
$a_r = \frac{4}{m_r p_o}$	a5	3.81E+02	N/cm
$\sqrt{6}^{15} \sqrt{6}^{105P_0}$	OB5	1.87E+06	N
v ~	α.5	010	_
	CM	12.65	-
		12.05	Nom
	Δa Λ 5	4.07E+00 2.06	om
	<u>A 65</u>	2.90	om
		0.14	N
		Z 19ETUD	LIN

_質点系モデルによる側板下端の浮き上がり変位計算用諸元			(赤字:入力値)
[諸元]	,,		
公称容量	VOL (kl)	6000	(kl)
貯槽内径	D	29070	(mm)
側板高さ	Hmax	10760	(mm)
最下段側板厚	ts	14	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	8.4	(mm)
アニュラ板厚	t _b	9	(mm)
鋼材のヤング率(SS400)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.16625	(N/mm2)
最高液高さ	Н	9074	(mm)
液密度	γ	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	3.20	(-)
液高さ/直径比	H/D	0.31	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.37	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.36	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.0807(\frac{H}{D}) + 0.08$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.39	(-)
底板に作用する最大静液圧			
Ρ ₀ =g γ Η		0.09	(N/mm2)

付表 1.8-1 B-2 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	7.32E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	4.99E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.23E+06	(N)

付表 1.8-2 B-2 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]		紫字:モデルの入力((単位:N. cm)	直
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1785	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3729	(-)
液重量 W=gγπD ² H/4	w	5.91E+07	(N)
合計重量(W+Wsr)	W+Wsr	6.03E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.21E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W1	2.25E+07	(N)
消防法/有効液重量率	f _{w0}	0.37	(-)
	f _{w1}	0.36	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	363.06	(cm)
$H_1 = f_{h1} * H$	H1	352.01	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	134.86	(N/cm)
ばね係数	Кь	2.85E+07	(N/cm)
浮き上がり抵抗力	qу	343.23	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	478.10	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.80E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.63	(cm)
減衰係数	Ce	2.43E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	8.26	(-)

付表 1.8-3 B-2 タンクの非線形水平ばねの復元力特性とする Q-ム線図の計算シート(No.3 計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	5.09E+06	Ν
$\alpha = \frac{2\pi R^2 q_t}{\alpha} = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.78	-
$Q_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.19	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{et}}$	∆et	0.18	cm
Point Y	mv	3.31E+03	N
$a = \frac{4}{m} \sqrt{m} m = \frac{O_y}{t^2} t^2$	av	2 80F+02	N/cm
$q_y \sqrt{6} \sqrt{m_y p_0} \qquad \qquad$	QRv	1.06E+07	N
$2\pi R^2 a$ Et^3	αv	0.39	-
$Q_{Ry} = \frac{2\pi a (q_y)}{\pi a} D_a (= \frac{a}{12(1-v^2)})$	СМ	9.96	-
H_1	Da	1.37E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.24	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.79	cm
$\begin{split} \Delta_{y} &= \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{i})\frac{R^{2}}{H_{1}}]^{4}} \\ \Delta_{ey} &= \Delta_{y} + \frac{[Q_{Ry} + Q_{R}]}{K_{b}} \end{split}$	QRy+Qt	1.57E+07	Ν
Point P σ 4 $$	mn	4 96F+03	N
$m_p = \frac{\sigma_y}{4} t_a^2$ $q_p = \frac{\sigma_y}{\sqrt{6}} \sqrt{m_p p_0}$	an	3 43E+02	N/cm
4 10	QRn	1 29E+07	N
$2\pi R^2 q_p = q_{-} \frac{[Q_{Rp}]C_{10}}{[Q_{Rp}]C_{10}}$	0/n	0.47	_
$Q_{Rp} = \frac{1}{H} \qquad \alpha_p = \frac{1}{(\pi f_{W1} p_0 R^2)}$	CM	9 4 4	_
$H[O]^4$	Da	1.37E+06	Ncm
$\Delta_p = \frac{\Pi_1 [\mathcal{Q}_{Rp}]}{2}$	Δn	0.68	cm
$RD_{a}p_{0}^{3}[C_{M}(\alpha_{n}+\alpha_{t})\frac{R^{2}}{R}]^{4}$	Δep	1.31	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Ri}}{K_b}$	QRp+Qt	1.80E+07	N
Point 4 4	m4	6.62E+03	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	3.96E+02	N/cm
$2\pi R^2 q_{4} \qquad Q_{R4} C_{10}$	QR4	1.49E+07	N
$Q_{R4} = \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{W1} p_0 R^2)}$	α4	0.55	-
H_1 (5 with 6)	СМ	9.01	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]}{2}$	Da	1.37E+06	N.cm
$RD_{1} n_{2}^{3} [C_{12} (\alpha_{1} + \alpha_{2}) \frac{R^{2}}{R^{2}}]^{4}$	∆4	1.46	cm
$O_{at} + O_{at}$	∆e4	2.16	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Z}_{K4} - \mathcal{Z}_{Kr}}{K_b}$	QR4+QRt	2.00E+07	N
Point 5 4	m5	1.32E+04	N
$q_5 = \frac{1}{\sqrt{c}} \sqrt{m_5 p_0}$	q5	5.60E+02	N/cm
√ 0	QR5	2.11E+07	N
	α5	0.77	-
	СМ	7.65	
	Da	1.37E+06	N.cm
	∆5	11.20	cm
	∆e5	12.122	cm
	QR5+QRt	2.62E+07	N

<u> 、 質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			(赤字:入力値)
[諸元]		-	
公称容量	VOL (kl)	10000	(kl)
貯槽内径	D	32940	(mm)
側板高さ	Hmax	13795	(mm)
最下段側板厚	t _s	18	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	12.8	(mm)
アニュラ板厚	t _b	8	(mm)
鋼材のヤング率(SS41)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11627	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	2.83	(-)
液高さ/直径比	H/D	0.35	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.42	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 (\frac{H}{D})^4 + 0.9653 (\frac{H}{D})^3 - 2.2807 (\frac{H}{D})^2 + 2.3017 (\frac{H}{D}) - 0.1634$		0.41	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.39	(-)
底板に作用する最大静液圧			
P ₀ =gγH		0.11	(N/mm2)

付表 1.9-1 B-3 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	1.36E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	7.02E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.06E+06	(N)

付表 1.9-2 B-3 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値] 紫字:モデルの入力値 (<u>単位:N, cm)</u> 貯槽の固有周期 $T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$ 0.1909 (sec) $\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$ 0.3625 (-) 液重量 W = g $\gamma \pi D^2 H / 4$ 9.72E+07 (N) W 合計重量(W+Wsr) W+Wsr 9.92E+07 (N) 減衰比 0.15 (-) ح 基礎地盤と貯槽本体の連成振動補正係数 (-) 1 有効液重量 $W_0 = f_{w0} * (W)$ Wo 4.06E+07 (N) $W_1 = f_{w1} * (W) + Wsr$ W1 4.14E+07 (N) 消防法/有効液重量率 0.42 (-) f_{w0} (-) 0.41 f_{w1} 有効液の重心高さ $H_0 = f_{h0} * H$ Hο 465.73 (cm) $H_1 = f_{h1} * H$ Ηı 456.84 (cm) 消防法/有効液の重心高さ係数 (-) 0.40 f_{h0} 0.39 (-) f_{h1} 側板自重による鉛直抵抗力qt qt 199.36 (N/cm) ばね係数 Кь 4.58E+07 (N/cm) 浮き上がり抵抗力 (N/cm) qу 345.24 浮き上がり抵抗力+鉛直抵抗力(qy+qt) 544.60 (N/cm) qy+qt 保有水平耐力(降伏耐力) Qy 2.03E+07 (N) <u> 降伏変位 (=Qy/Kb)</u> Δy 0.44 (cm) 減衰係数 4.17E+05 (N/(cm/s)) Ce 貯蔵内径と有効液の重心高さの比 D/H 7.21 (-)

付表 1.9-3 B-3 タンクの非線形水平ばねの復元力特性とする Q-∆線図の計算シート

(No.3計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	7.44E+06	Ν
$\alpha = \frac{2\pi R^2 q_t}{\alpha} \qquad \alpha = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.76	-
$Q_{Rt} = \frac{1}{H_1} \qquad (\pi f_{W1} p_0 R^2)$	αt	0.14	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{L}}$	∆et	0.16	cm
Point Y σ	my	2.61E+03	N
$a = \frac{4}{m_{10}} \sqrt{m_{10}} \qquad m_{11} = \frac{3}{m_{10}} t_{12}^{2}$	qy	2.82E+02	N/cm
$\sqrt{6} \sqrt{6} \sqrt{m_y P_0} \qquad 6$	QRv	1.05E+07	N
$2\pi R^2 q$ Et_a^3	αγ	0.20	-
$Q_{Ry} = \frac{1}{12} \frac$	СМ	11.33	-
H_1	Da	9.66E+05	N.cm
$\alpha_{y} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{2}$	Δy	0.12	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.51	cm
$\begin{split} \Delta_{y} &= \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}} \\ \Delta_{ey} &= \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}} \end{split}$	QRy+Qt	1.80E+07	N
Point P σ 4 $$	mn	3 92E+03	N
$m_p = \frac{\sigma_y}{1} t_a^2 q_p = \frac{\sigma_y}{\sqrt{6}} \sqrt{m_p p_0}$	an	3.52E+03	N/cm
4 4	QRn	1 29E+07	N
$2\pi R^2 q_p = q_{-10} - \frac{[Q_{R_p}]C_{10}}{[Q_{R_p}]C_{10}}$	0 n	0.25	_
$Q_{Rp} = \frac{P}{H} - \frac{\alpha_p}{(\pi f_{W1} p_0 R^2)}$	CM	11.05	_
$H[O]^4$	Da	9.66E+05	Ncm
$\Delta_p = \frac{\Pi_1 [\mathcal{Q}_{Rp}]}{2}$	Δn	0.29	cm
$RD p^{3}[C (\alpha + \alpha)] \frac{R^{2}}{R^{2}}]^{4}$	Aen	0.23	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rp}}{K_b}$	QRp+Qt	2.03E+07	N
Point 4	m4	5.23E+03	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	3.99E+02	N/cm
$2\pi R^2 a_1$, $Q_{R4}C_{10}$	QR4	1.49E+07	N
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{\pi (q_4)}{(\pi (q_4)^2)}$	α4	0.29	-
$\boldsymbol{\Pi}_1$ $(\mathcal{Y}_{W1}\mathcal{P}_0\mathcal{H})$	СМ	10.83	-
$\Lambda = \frac{H_1[Q_{R4}]^4}{1}$	Da	9.66E+05	N.cm
$R_{4}^{2} = \frac{R_{1}^{2}}{R_{1}^{2}} R_{1}^{2} R_{1}^{2} R_{1}^{2}$	∆4	0.56	cm
$KD_a p_0 [C_M (a_4 + a_1)] \overline{H_1}$	∆e4	1.04	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{K_b}$	QR4+QRt	2.23E+07	N
Point 5 4	m5	1.05E+04	N
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	5.64E+02	N/cm
$\sqrt{6}$	QR5	2.10E+07	N
	α5	0.40	-
	СМ	10.12	-
	Da	9.66E+05	N.cm
	Δ5	2.91	cm
	∆ e5	3.53	cm
	QR5+QRt	2.85E+07	N

<u>.質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	30000	(kl)
貯槽内径	D	52330	(mm)
側板高さ	Hmax	16745	(mm)
最下段側板厚	t _s	17	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	13.8	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率 (SPV490Q)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	13158	(mm)
液密度	γ	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	3.98	(-)
液高さ/直径比	H/D	0.25	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{2})^4 + 0.8427(\frac{H}{2})^3 - 1.916(\frac{H}{2})^2 + 2.0933(\frac{H}{2}) - 0.1172$			
<u></u> 消防法/有効液重量率 f _{w1}		0.30	(-)
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.29	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
P₀=gγH		0.13	(N/mm2)

付表 1.10-1 B-4 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	2.90E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	1.43E+03	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.34E+06	(N)

付表 1.10-2 B-4 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値] 紫字:モデルの入力値 <u>(単位:N,cm)</u> 貯槽の固有周期 $T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$ 0.2896 (sec) $\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$ 0.3888 (-) 液重量 W = g $\gamma \pi D^2 H / 4$ 2.78E+08 (N) W 合計重量(W+Wsr) W+Wsr 2.82E+08 (N) 減衰比 0.15 (-) ح 基礎地盤と貯槽本体の連成振動補正係数 (-) 1 有効液重量 $W_0 = f_{w0} * (W)$ Wo 8.35E+07 (N) $W_1 = f_{w1} * (W) + Wsr$ W1 8.37E+07 (N) 消防法/有効液重量率 0.30 (-) f_{w0} (-) 0.29 f_{w1} 有効液の重心高さ $H_0 = f_{h0} * H$ Hο 526.30 (cm) $H_1 = f_{h1} * H$ Ηı 501.53 (cm) 消防法/有効液の重心高さ係数 (-) 0.40 f_{h0} 0.38 (-) f_{h1} 側板自重による鉛直抵抗力qt qt 263.88 (N/cm) ばね係数 Кь 4.02E+07 (N/cm) 浮き上がり抵抗力 (N/cm) qу 779.09 浮き上がり抵抗力+鉛直抵抗力(qy+qt) 1042.97 (N/cm) qy+qt 保有水平耐力(降伏耐力) Qy 8.95E+07 (N) <u> 降伏変位 (=Qy/Kb)</u> Δy 2.23 (cm) 減衰係数 5.55E+05 (N/(cm/s)) Ce 貯蔵内径と有効液の重心高さの比 D/H 10.43 (-)

付表 1. 10-3 B-4 タンクの非線形水平ばねの復元力特性とする Q-∆線図の計算シート

(No.3計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	2.26E+07	Ν
$\alpha = \frac{2\pi R^2 q_i}{2\pi R^2 q_i} \qquad \alpha = \frac{Q_{Rt} C_{10}}{2\pi R^2 q_i}$	C10	0.81	-
$Q_{Rt} = \frac{1}{H_{L}} \qquad $	αt	0.23	-
$Q_{Rt} = Q_{Rt}$	∆et	0.56	cm
$\Delta_{et} \equiv \frac{1}{K_{h}}$			
Point Y	my	1.18E+04	N
$a = \frac{4}{m_{10}} \sqrt{m_{10}} \qquad m_{11} = \frac{0}{m_{11}} t_{12}^{2}$	qv	6.36E+02	N/cm
$\sqrt{6}\sqrt{10}$ $\sqrt{6}$ $\sqrt{10}$ $\sqrt{6}$ $\sqrt{10}$ $\sqrt{6}$ $\sqrt{10}$ $\sqrt{6}$ $\sqrt{10}$	QRy	5.46E+07	N
$2\pi R^2 q$ Et_a^3	αγ	0.55	-
$Q_{Ry} = \frac{2\pi i r^2 q_y}{R_y} D_a (= \frac{1}{12(1-v^2)})$	СМ	8.71	-
H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	1.22	cm
$(\pi f_{W1} p_0 R^2)$	Δey	3.14	cm
$H_1[O_n]^4$			
$\Delta_y = \frac{R^2}{R^2}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{\alpha_t}{H_t}]^4$		7 72E+07	N
[0, +0,]	Gity Gt	7.72L '07	
$\Delta_{ev} = \Delta_v + \frac{12 R_v + 2 R_t I}{K}$			
K _b			
Point P $\sigma_{y} = a = \frac{4}{m}$	mp	1.76E+04	Ν
$m_p = \frac{1}{4} t_a^2 q_p = \frac{1}{\sqrt{6}} \sqrt{m_p p_0}$	qp	7.79E+02	N/cm
	QRp	6.68E+07	Ν
$\alpha_{p} = \frac{2\pi R^{2} q_{p}}{\alpha_{p}} = \frac{12 q_{Rp} C_{10}}{\alpha_{p}}$	αp	0.68	-
$\mathcal{Q}_{Rp} = \frac{1}{H_1} p_0 (\pi f_{W1} p_0 R^2)$	СМ	7.97	-
$H_{1}[Q_{P_{0}}]^{4}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{\mathbf{p}^2}$	Δp	3.91	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{K}{m}]^4$	∆ер	6.13	cm
H_1			
$\Lambda = \Lambda + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	8.95E+07	N
$\Delta_{ep} = \Delta_{p} + K_{b}$			
Point 4	m4	2.35E+04	N
$q_4 = \frac{1}{\sqrt{\epsilon}} \sqrt{m_4 p_0}$	q4	9.00E+02	N/cm
$2\pi P^2 a \qquad Q_{PA}C_{10}$	QR4	7.72E+07	N
$Q_{R4} = \frac{2\pi (q_4)}{m} \alpha_4 = \frac{2\pi (q_4)}{(\pi (q_4)^2)}$	α4	0.78	-
$H_1 \qquad (\mathcal{Y}_{W1} \mathcal{P}_0 \mathbf{K})$	СМ	7.34	-
$H_1[Q_{R4}]^4$	Da	3.26E+06	N.cm
$\Delta_4 = \frac{1}{R^2} \frac{1}{R^2}$	Δ4	9.63	cm
$RD_a p_0[C_M(\alpha_4 + \alpha_t)]^{\dagger}$	∆e4	12.12	cm
$\Lambda = \Lambda + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$\sim_{e4} \sim_{4} \sim K_b$	QR4+QRt	9.98E+07	N

70

<u> 貫点系モデルによる側板下端の浮き</u>	上がり変位計算用	諸元	(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	69765	(mm)
側板高さ	Hmax	15290	(mm)
最下段側板厚	t _s	22.1	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	18.1	(mm)
アニュラ板厚	t _b	11.4	(mm)
鋼材のヤング率(HT60)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	450	(N/mm2)
最高液高さ	Н	12608	(mm)
液密度	r	8.66E-07	(kg/mm3)
直径/液高さ比	D/H	5.53	(-)
液高さ/直径比	H/D	0.18	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2$	$+2.0933(\frac{H}{D})-0.1172$	0.20	(-)
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2$	$+2.3017(\frac{H}{D}) - 0.1634$		
	D	0.18	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.37	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.107	(N/mm2)

付表 1.11-1 B-5 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	4.32E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.22E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.32E+06	(N)

付表 1.11-2 B-5 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値] 紫字:モデルの入力値 <u>(単位:N, cm)</u> 貯槽の固有周期 $T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$ 0.2927 (sec) $\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$ 0.4080 (-) 液重量 W = g $\gamma \pi D^2 H / 4$ 4.09E+08 (N) W 合計重量(W+Wsr) W+Wsr 4.14E+08 (N) 減衰比 ζ 0.15 (-) 基礎地盤と貯槽本体の連成振動補正係数 (-) 1 有効液重量 8.32E+07 (N) $W_0 = f_{w0} * (W)$ Wo $W_1 = f_{w1} * (W) + Wsr$ W1 7.95E+07 (N) 消防法/有効液重量率 f_{w0} 0.20 (-) 0.18 (-) f_{w1} 有効液の重心高さ 505.38 $H_0 = f_{h0} * H$ Hο (cm) $H_1 = f_{h1} * H$ Ηı 472.05 (cm) 消防法/有効液の重心高さ係数 (-) 0.40 f_{h0} f_{h1} 0.37 (-) 側板自重による鉛直抵抗力qt qt 197.09 (N/cm) ばね係数 Кь 3.74E+07 (N/cm) 浮き上がり抵抗力 680.12 qу (N/cm) 浮き上がり抵抗力+鉛直抵抗力(qy+qt) 877.21 (N/cm) qy+qt 保有水平耐力(降伏耐力) Qy 1.42E+08 (N) <u>降伏変位 (=Qy/Kb)</u> Δy 3.80 (cm) Ce 5.22E+05 (N/(cm/s)) 減衰係数 貯蔵内径と有効液の重心高さの比 14.78 D/H₁ (-)
付表 1.11-3 B-5 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3 計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	3.19E+07	Ν
$\alpha = \frac{2\pi R^2 q_i}{\alpha} = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.81	-
$Q_{Rt} = \frac{1}{H_1} + \frac{1}{H_1} + \frac{1}{(\pi f_{W1} p_0 R^2)}$	αt	0.35	-
$Q_{Rt} = Q_{Rt}$	∆et	0.85	cm
$\Delta_{et} - \overline{K_{h}}$			
Point Y	my	9.75E+03	N
$a = \frac{4}{m} \sqrt{m} \frac{m}{p_a} \qquad m_w = \frac{\sigma_y}{m} t_a^2$	qy	5.28E+02	N/cm
$\frac{1}{\sqrt{6}}\sqrt{6}\sqrt{1}$	QRv	8.54E+07	N
$2\pi R^2 q$ Et_a^3	αγ	0.92	-
$Q_{Ry} = \frac{D M^2 q_y}{M} D_a (= \frac{1}{12(1-v^2)})$	CM	5.82	-
H_1	Da	2.79E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	4.16	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	7.30	cm
$H_1[Q_N]^4$			
$\Delta_y = \frac{R^2}{R^2}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{1}{H_s}]^4$	QBy+Qt	1 17E+08	N
$[O_n + O_n]$	any ac	1.172.00	
$\Delta_{ey} = \Delta_y + \frac{12 Ry}{V}$			
κ _b			
Point P $\sigma_{y} = 2$ $a = \frac{4}{m}$	mp	1.46E+04	N
$m_p = \frac{1}{4} t_a q_p = \sqrt{6} \sqrt{m_p P_0}$	qp	6.46E+02	N/cm
$2 p^2 \qquad [0] C$	QRp	1.05E+08	N
$Q = \frac{2\pi R q_p}{\alpha_p} = \alpha_p = \frac{12 \epsilon_{Rp} \sigma_{10}}{\sigma_{10}}$	αp	1.13	-
$\mathcal{L}_{Rp} = H_1 \qquad (\pi_{W_1} p_0 R^2)$	CM	4.58	-
$H_1[Q_{Rp}]^4$	Da	2.79E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	24.38	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ep	28.04	cm
H_1			
$\Delta_{av} = \Delta_{av} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.37E+08	N
e^{p} p K_{b}			
Point 4	m4	1.56E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	6.67E+02	N/cm
$2\pi R^2 a Q_{R4} C_{10}$	QR4	1.08E+08	Ν
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{\pi (m+1)}{(\pi (m+1)^2)}$	α4	1.17	-
Π_1 $(9_{W1}P_0)$	СМ	4.36	-
$\Lambda_{\perp} = \frac{H_1[Q_{R4}]^*}{\dots}$	Da	2.79E+06	N.cm
$\frac{-4}{RD} n^{3} [C (\alpha + \alpha)] R^{2}]^{4}$	Δ4	33.82	cm
$\frac{nD_a p_0 [C_M (a_4 + a_t)]}{P_1}$	∆e4	37.57	cm
$\Delta_{a4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
^{e+} ⁺ K _b	QR4+QRt	1.40E+08	Ν

_質点系モデルによる側板下端の浮き上がり変位計算用諸元			<u>(赤字:入力値)</u>
[諸元]			
公称容量	VOL (kl)	77000	(kl)
貯槽内径	D	77270	(mm)
側板高さ	Hmax	19490	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	22.8	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SM58Q)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	460	(N/mm2)
最高液高さ	Н	16355	(mm)
液密度	r	8.55E-07	(kg/mm3)
直径/液高さ比	D/H	4.72	(-)
液高さ/直径比	H/D	0.21	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.25	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.23	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.4096(\frac$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.14	(N/mm2)

付表 1.12-1 B-6 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	7.82E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.11E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.82E+06	(N)

付表 1.12-2 B-6 タンクの質点系モデルの諸元計算シート(No.2計算シート)

紫字:モデルの入力値 [計算式と質点系モデルの入力数値] <u>(単位:N, cm)</u> 貯槽の固有周期 $T_{b} = 2 / \lambda \operatorname{sqrt}((W)/(g\pi E * t_{1/3}))*j$ 0.3338 (sec) $\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$ 0.3995 (-) 液重量 W=gγπD²H/4 6.43E+08 (N) W 合計重量(W+Wsr) W+Wsr 6.51E+08 (N) 減衰比 ۶ 0.15 (-) 基礎地盤と貯槽本体の連成振動補正係数 (-) 1 有効液重量 $W_0 = f_{w0} * (W)$ Wo 1.59E+08 (N) $W_1 = f_{w1} * (W) + Wsr$ W1 1.56E+08 (N) 消防法/有効液重量率 0.25 (-) f_{w0} f_{w1} 0.23 (-) 有効液の重心高さ $H_0 = f_{h0} * H$ H٥ 654.72 (cm) $H_1 = f_{h1} * H$ Ηı 616.90 (cm) 消防法/有効液の重心高さ係数 0.40 (-) f_{h0} (-) 0.38 f_{h1} 側板自重による鉛直抵抗力qt qt 322.12 (N/cm) ばね係数 Кb 5.64E+07 (N/cm) 浮き上がり抵抗力 778.19 (N/cm) qу 浮き上がり抵抗力+鉛直抵抗力(qy+qt) qy+qt 1100.31 (N/cm) 保有水平耐力(降伏耐力) Qy 1.67E+08 (N) <u>降伏変位 (=Qy/Kb)</u> Δy 2.97 (cm) 8.98E+05 (N/(cm/s)) 減衰係数 Ce 貯蔵内径と有効液の重心高さの比 D/H1 12.53 (-)

付表 1.12-3 B-6 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

非線形ロッキングばね特性線図計算

$ \begin{array}{llllllllllllllllllllllllllllllllllll$	外線がジャントレントの時代に新聞日子			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Point T O C	QRt	4.90E+07	N
$\begin{array}{c c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$	$\alpha_{t} = \frac{2\pi R^2 q_{t}}{\alpha_{t}} \qquad \alpha_{t} = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\alpha_{t}}$	C10	0.81	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Q_{R_{l}} = \frac{1}{H_{1}} (\pi f_{W1} p_{0} R^{2})$	αt	0.27	-
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\Delta_{et} = \frac{Q_{Rt}}{K_{b}}$	∆et	0.87	cm
$ \begin{array}{c} q_{y} = \frac{4}{\sqrt{6}} \sqrt{m_{p}p_{0}} \qquad m_{y} = \frac{6}{9} y t_{a}^{2} \\ \hline q_{y} = \frac{6}{\sqrt{6}} \sqrt{m_{p}p_{0}} \\ Q_{Ry} = \frac{2\pi R^{2} q_{y}}{H_{1}} \qquad D_{a} (= \frac{Et_{a}^{3}}{12(1-v^{2})}) \\ \alpha_{y} = \frac{10}{H_{1}} \qquad D_{a} (= \frac{Et_{a}^{3}}{12(1-v^{2})}) \\ \alpha_{y} = \frac{10}{(\pi_{fw_{1}p_{0}}p_{0}^{R^{2}})} \\ \Delta_{y} = \frac{H_{1}[Q_{.1}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{x} + \alpha_{x}), \frac{R^{2}}{H_{1}}]^{4}} \\ \Delta_{ey} = \Delta_{y} + \frac{(Q_{Ry} + Q_{Ry})}{K_{b}} \\ \hline \\ \mathbf{Point P}_{m_{p}} = \frac{\sigma_{y}}{4} t_{a}^{-2} q_{p} = \frac{4}{\sqrt{6}} \sqrt{m_{p}p_{0}} \\ M_{1} = \frac{110(Q_{Ry})^{4}}{(\pi_{fw_{1}}p_{0})^{4}} \\ \Delta_{p} = \frac{2\pi R^{2} q_{p}}{H_{1}} \qquad \alpha_{p} = \frac{(Q_{Rp})C_{10}}{(\pi_{fw_{1}}p_{0})^{2}} \\ \Delta_{p} = \frac{2\pi R^{2} q_{p}}{H_{1}} \qquad \alpha_{p} = \frac{(Q_{Rp})C_{10}}{(\pi_{fw_{1}}p_{0})^{2}} \\ \Delta_{p} = \frac{2\pi R^{2} q_{p}}{(\pi_{p} - \alpha_{p})^{2} \left[\frac{Q_{Rp}}{(\pi_{fw_{1}}p_{0})^{2}} \right]^{4}} \\ \Delta_{ep} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rr}}{K_{b}} \\ \hline \\ \hline \\ \hline \\ \hline \\ Point 4 = \frac{2\pi R^{2} q_{4}}{H_{1}} \qquad \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{fw_{1}}p_{0}R^{2})} \\ \Delta_{4} = \frac{2\pi R^{2} q_{4}}{(H_{1} - \alpha_{4})} \left[\frac{Q_{Ra}C_{10}}{(\pi_{fw_{1}}p_{0})^{2}} \right]^{4}} \\ \Delta_{eq} = \Delta_{4} + \frac{Q_{R4} + Q_{Ri}}{K_{b}} \\ \hline \\$	Point Y	mv	1.10E+04	N
$\begin{array}{c} \begin{array}{c} 1 \\ \gamma & \sqrt{6} \sqrt{n}^{1/2} \sqrt{6} & \gamma & 6 & a \\ \hline Q_{Ry} & = \frac{2\pi R^2 q_y}{H_1} & D_a (= \frac{El_a^{-3}}{12(1-v^2)}) \\ \hline Q_{Ry} & = \frac{10}{H_1} & D_a (= \frac{El_a^{-3}}{12(1-v^2)}) \\ \hline \alpha_y & = \frac{(Q_{Ry}) C_{10}}{H_1} & D_a (= \frac{El_a^{-3}}{12(1-v^2)}) \\ \hline \Delta_y & = \frac{(Q_{Ry}) C_{10}}{RD_a p_0^3 (C_M (\alpha_y + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_{cy} & = \frac{M_1 [Q_y]^4}{RD_a p_0^3 (C_M (\alpha_y + \alpha_z)) \frac{R^2}{H_1}} \\ \hline Point P_{m_p} & = \frac{\sigma_y}{4} t_a^{-2} & q_p = \frac{4}{\sqrt{6}} \sqrt{m_p p_0} \\ \hline \Omega_{Rp} & = \frac{2\pi R^2 q_p}{H_1} & \alpha_p = \frac{(Q_{Rp}) C_{10}}{(\pi f_W 1 p_0 R^2)} \\ \hline \Delta_p & = \frac{H_1 [Q_{Rp}]^4}{RD_a p_0^3 (C_M (\alpha_p + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_{cp} & = \Delta_p + \frac{Q_{Rp} + Q_{Ri}}{K_b} \\ \hline Point 4 & q_4 & = \frac{4}{\sqrt{6}} \sqrt{m_4 p_0} \\ \hline Q_{Rq} & = \frac{2\pi R^2 q_4}{H_1} & \alpha_4 & = \frac{Q_{RA} C_{10}}{(\pi f_W 1 p_0 R^2)} \\ \hline \Delta_q & = \frac{2\pi R^2 q_4}{H_1} & \alpha_4 & = \frac{Q_{RA} C_{10}}{(\pi f_W 1 p_0 R^2)} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{2\pi R^2 q_4}{H_1} & \alpha_4 & = \frac{Q_{RA} C_{10}}{(\pi f_W 1 p_0 R^2)} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_z)) \frac{R^2}{H_1}} \\ \hline \Delta_q & = \frac{4}{RD_a p_0^3 (C_M (\alpha_q + \alpha_$	$a = \frac{4}{m_{y}} \sqrt{m_{y}} \qquad m_{y} = \frac{\sigma_{y}}{m_{y}} t_{a}^{2}$	qv	6.35E+02	N/cm
$ \begin{array}{c c} Q_{Rv} = \frac{2\pi R^2 q_y}{H_1} & D_a (= \frac{Et_a^3}{12(1-v^2)}) \\ \alpha_y = \frac{[Q_{Rv}] C_{10}}{(\pi f_{w_1} p_0 R^2)} \\ \Delta_y = \frac{H_1[Q_y]^4}{RD_a p_0^3 [C_M (\alpha_y + \alpha_i) \frac{R^2}{H_1}]^4} \\ \Delta_{ey} = \Delta_y + \frac{[Q_{Rv} + Q_{Rv}]}{K_b} \\ \end{array} $	$\sqrt{6}\sqrt{1}$ $\sqrt{6}\sqrt{1}$ $\sqrt{6}$ $\sqrt{1}$ $\sqrt{6}$ $\sqrt{1}$ $\sqrt{6}$ $\sqrt{1}$	QRv	9.66E+07	N
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$2\pi R^2 a$ Et_a^3	αγ	0.53	-
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$Q_{Ry} = \frac{2\pi (1 - V_{Ty})}{U} \qquad D_a (= \frac{1}{12(1 - V^2)})$	СМ	8.62	-
$\begin{array}{c c} \alpha_{y} = \frac{12g_{ky}1e_{10}}{(\pi_{y1}^{2}p_{0}R^{2})} & & & & & & & & & & & & & & & & & & $	H_1	Da	3.26E+06	N.cm
$\begin{split} & \int (\pi f_{W1} p_0 R^2) \\ & \Delta_y = \frac{H_1[Q_y]^4}{RD_a p_0^3 [C_M(\alpha_y + \alpha_i) \frac{R^2}{H_1}]^4} \\ & \Delta_{ey} = \Delta_y + \frac{[Q_{ky} + Q_{RI}]}{K_b} \\ \hline & \\ & \\ \hline & \\ & \\$	$\alpha_{y} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{2}$	Δy	0.87	cm
$ \begin{split} \Delta_{y} &= \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{i})\frac{R^{2}}{H_{1}}]^{4}} \\ \Delta_{ey} &= \Delta_{y} + \frac{[Q_{ky} + Q_{kl}]}{K_{b}} \end{split} \qquad \qquad$	$\int (\pi f_{W1} p_0 R^2)$	∆ey	3.46	cm
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\Delta_y = \frac{H_1[Q_y]^4}{RD_a p_0^3 [C_M(\alpha_y + \alpha_i) \frac{R^2}{H_1}]^4}$ $\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rt}]}{K_b}$	QRy+Qt	1.46E+08	N
$\begin{split} m_{p} &= \frac{1}{4} t_{a}^{-1} - q_{p}^{-1} - \sqrt{6} \sqrt{m_{p}} P_{0}^{-1} \\ q_{p} &= \frac{1}{4} t_{a}^{-1} - q_{p}^{-1} - \frac{1}{4} q_{p}^{-1} - \frac{1}{4} \\ Q_{Rp} &= \frac{1}{1.18E+08} - \frac{1}{4} \\ M_{p} &= \frac{1}{1.18E+08} - \frac{1}{4} \\ \Delta_{p} &= \frac{1}{4} \frac{1}{1} \left[Q_{Rp} \right]^{4} \\ \Delta_{p} &= \frac{1}{4} \frac{1}{1} \left[Q_{Rp} \right]^{4} \\ \Delta_{ap} &= \frac{1}{4} \frac{1}{4} \left[Q_{Rp} + Q_{R} + Q_{$	Point P $\sigma_{x} = 2 - \frac{4}{m} \sqrt{m}$	mp	1.66E+04	Ν
$ \begin{aligned} \mathcal{Q}_{Rp} &= \frac{2\pi R^2 q_p}{H_1} \alpha_p = \frac{[\mathcal{Q}_{Rp}]C_{10}}{(\pi f_{W1}p_0R^2)} \\ \Delta_p &= \frac{H_1[\mathcal{Q}_{Rp}]^4}{RD_a p_0^3[C_M(\alpha_p + \alpha_1)\frac{R^2}{H_1}]^4} \\ \Delta_{ep} &= \frac{\Delta_p + \frac{Q_{Rp} + Q_{Rr}}{K_b}}{Q_{R4} = \frac{2\pi R^2 q_4}{H_1} \alpha_4 = \frac{Q_{R4}C_{10}}{(\pi f_{W1}p_0R^2)} \\ \mathcal{Q}_{R4} &= \frac{2\pi R^2 q_4}{H_1} \alpha_4 = \frac{Q_{R4}C_{10}}{(\pi f_{W1}p_0R^2)} \\ \Delta_4 &= \frac{H_1[\mathcal{Q}_{R4}]^4}{RD_a p_0^3[C_M(\alpha_4 + \alpha_1)\frac{R^2}{H_1}]^4} \\ \Delta_{e4} &= \Delta_4 + \frac{Q_{R4} + Q_{Rr}}{K_b} \end{aligned} $	$m_p = \frac{1}{4} t_a^2 q_p = \frac{1}{\sqrt{6}} \sqrt{m_p p_0}$	qp	7.78E+02	N/cm
$ \begin{aligned} \mathcal{Q}_{Rp} &= \frac{2\pi R^2 q_p}{H_1} \alpha_p = \frac{12\chi_{Rp} \Gamma_{10}}{(\pi_{W1}^2 p_0 R^2)} \\ \Delta_p &= \frac{H_1[Q_{Rp}]^4}{RD_a p_0^3 [C_M(\alpha_p + \alpha_1) \frac{R^2}{H_1}]^4} \\ \Delta_{ep} &= \Delta_p + \frac{Q_{Rp} + Q_{Rr}}{K_b} \end{aligned} $		QRp	1.18E+08	Ν
$ \begin{aligned} & \mathcal{Q}_{Rp} = -\frac{H_1}{RD_a p_0^3 [C_M(\alpha_p + \alpha_i) \frac{R^2}{H_1}]^4} \\ & \Delta_p = \frac{H_1 [Q_{kp}]^4}{RD_a p_0^3 [C_M(\alpha_p + \alpha_i) \frac{R^2}{H_1}]^4} \\ & \Delta_{ep} = \Delta_p + \frac{Q_{kp} + Q_{kl}}{K_b} \end{aligned} \qquad $	$\alpha_{p} = \frac{2\pi R^{2} q_{p}}{\alpha_{p}} \qquad \alpha_{p} = \frac{10 q_{p} C_{10}}{10 q_{p}}$	αp	0.65	-
$ \Delta_{p} = \frac{H_{1}[Q_{Rp}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{p} + \alpha_{i})\frac{R^{2}}{H_{1}}]^{4}} $ $ \Delta_{p} = \frac{2.77 \text{ cm}}{\Delta p} $ $ \Delta_{ep} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rr}}{K_{b}} $ $ Q_{Rp} + Q_{R} + \frac{Q_{Rp} + Q_{Rr}}{K_{b}} $ $ Q_{Rp} + Q_{R} + \frac{Q_{Rp} + Q_{Rr}}{K_{b}} $ $ Q_{Rp} + Q_{R} + \frac{Q_{Rp} + Q_{Rr}}{M_{1}} $ $ Q_{Rq} = \frac{2.7R^{2}q_{4}}{H_{1}} \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} $ $ \Delta_{4} = \frac{H_{1}[Q_{R4}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{4} + \alpha_{r})\frac{R^{2}}{H_{1}}]^{4}} $ $ \Delta_{e4} = \Delta_{4} + \frac{Q_{R4} + Q_{Rr}}{K_{b}} $ $ D_{a} = \frac{3.26E + 06 \text{ N.cm}}{M} $ $ A_{a} = \frac{H_{1}[Q_{R}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{4} + \alpha_{r})\frac{R^{2}}{H_{1}}]^{4}} $ $ \Delta_{e4} = 10.05 \text{ cm} $ $ \Delta_{e5$	$\mathcal{Q}_{Rp} = H_1 \qquad f_{W1} p_0 R^2$	СМ	7.91	-
$\begin{split} & \Delta_{p} = \frac{1}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{p} + \alpha_{r})\frac{R^{2}}{H_{1}}]^{4}} \\ & \Delta_{ep} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rr}}{K_{b}} \\ \hline & \text{Point 4} \\ & q_{4} = \frac{4}{\sqrt{6}}\sqrt{m_{4}p_{0}} \\ & Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} - \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} \\ & \Delta_{4} = \frac{H_{1}[Q_{R4}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{4} + \alpha_{r})\frac{R^{2}}{H_{1}}]^{4}} \\ & \Delta_{e4} = \Delta_{4} + \frac{Q_{R4} + Q_{Rr}}{K_{b}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{K_{b}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{K_{b}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RD_{a}P_{0}^{3}[C_{M}(\alpha_{4} + \alpha_{r})\frac{R^{2}}{H_{1}}]^{4}} \\ \hline & \Delta_{e4} = \Delta_{4} + \frac{Q_{R4} + Q_{Rr}}{K_{b}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RD_{a}P_{0}^{3}[C_{M}(\alpha_{4} + \alpha_{r})\frac{R^{2}}{H_{1}}]^{4}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}{RQ_{R4} + Q_{Rr}} \\ \hline & \Delta_{R4} = \frac{Q_{R4} + Q_{Rr}}$	$H_{1}[Q_{R_{R}}]^{4}$	Da	3.26E+06	N.cm
$ \begin{array}{c c} RD_{a}p_{0}^{3}[C_{M}(\alpha_{p}+\alpha_{i})\frac{R}{H_{1}}]^{4} & \underline{\Delta ep} & 5.74 & \mathrm{cm} \\ \hline \Delta_{ep} = \Delta_{p} + \frac{Q_{Rp} + Q_{Ri}}{K_{b}} & \mathrm{QRp+Qt} & 1.67E+08 & \mathrm{N} \\ \hline \\ \hline \\ Point 4 & q_{4} = \frac{4}{\sqrt{6}}\sqrt{m_{4}p_{0}} & \underline{m4} & 2.21E+04 & \mathrm{N} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} & \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} & \underline{m4} & 2.21E+04 & \mathrm{N} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} & \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} & \underline{m4} & 2.21E+04 & \mathrm{N} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} & \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} & \underline{m4} & 2.21E+04 & \mathrm{N} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} & \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} & \underline{m4} & 2.21E+04 & \mathrm{N} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} & \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} & \underline{m4} & 2.21E+04 & \mathrm{N} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} & \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} & \underline{m4} & 2.21E+04 & \mathrm{N} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} & \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} & \underline{m4} & 2.21E+04 & \mathrm{N} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} & \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} & \underline{m4} & 2.21E+04 & \mathrm{N} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} & \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi_{W1}p_{0}R^{2})} & \underline{m4} & \underline{m5} \\ \hline Q_{R4} = \frac{2\pi R^{2}q_{4}}{RD_{a}} & \underline{m5} \\ \hline$	$\Delta_p = \frac{1}{R^2}$	Δp	2.77	cm
$\begin{array}{c c} & H_{1} \\ \hline & & \\ \Delta_{ep} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rr}}{K_{b}} \\ \hline & & \\ \hline Point \ \ 4 \\ q_{4} = \frac{4}{\sqrt{6}} \sqrt{m_{4}p_{0}} \\ \hline & & \\ Q_{R4} = \frac{2\pi R^{2}q_{4}}{H_{1}} - \alpha_{4} = \frac{Q_{R4}C_{10}}{(\pi f_{W1}p_{0}R^{2})} \\ \hline & & \\ \Delta_{4} = \frac{H_{1}[Q_{R4}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{4} + \alpha_{r})\frac{R^{2}}{H_{1}}]^{4}} \\ \hline & & \\ \Delta_{e4} = \Delta_{4} + \frac{Q_{R4} + Q_{Rr}}{K_{b}} \\ \hline \end{array}$	$RD_a p_0^3 [C_M (\alpha_p + \alpha_i) \frac{R}{H}]^4$	∆ер	5.74	cm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.67E+08	Ν
$\begin{aligned} q_{4} &= \frac{\sqrt{6}}{\sqrt{6}} \sqrt{m_{4}} p_{0} \\ Q_{R4} &= \frac{2\pi R^{2} q_{4}}{H_{1}} \alpha_{4} &= \frac{Q_{R4} C_{10}}{(\pi f_{W1} p_{0} R^{2})} \\ \Delta_{4} &= \frac{H_{1} [Q_{R4}]^{4}}{R D_{a} p_{0}^{3} [C_{M} (\alpha_{4} + \alpha_{i}) \frac{R^{2}}{H_{1}}]^{4}} \\ \Delta_{e4} &= \Delta_{4} + \frac{Q_{R4} + Q_{Ri}}{K_{b}} \end{bmatrix}^{4} \\ \Delta_{e4} &= \Delta_{4} + \frac{Q_{R4} + Q_{Ri}}{K_{b}} \end{bmatrix}^{4} \\ \begin{aligned} q_{R4} &= \frac{R + Q_{R4} + Q_{Ri}}{R + Q_{Ri} + Q_{Ri}} \\ Q_{R4} &= \frac{R + Q_{Ri} + Q_{Ri}}{R + Q_{Ri} + Q_{Ri}} \end{bmatrix}^{4} \\ Q_{R4} &= \frac{R + Q_{Ri} + Q_{Ri}}{R + Q_{Ri} + Q_{Ri} + Q_{Ri}} \end{bmatrix}^{4} \\ a_{R4} &= \frac{R + Q_{Ri} + Q_{Ri}}{R + Q_{Ri} + $	Point 4 4	m4	2.21E+04	Ν
$Q_{R4} = \frac{2\pi R^2 q_4}{H_1} \alpha_4 = \frac{Q_{R4} C_{10}}{(\pi f_{W1} p_0 R^2)}$ $\Delta_4 = \frac{H_1 [Q_{R4}]^4}{R D_a p_0^3 [C_M (\alpha_4 + \alpha_i) \frac{R^2}{H_1}]^4}$ $\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Ri}}{K_b} I^4$ $QR4 = \frac{1.37E+08}{\alpha 4} \frac{N}{\Omega_4}$ $QR4 = \frac{1.37E+08}{\Omega_4} \frac{N}{\Omega_4}$ $QR4 = \frac{1.37E+08}{\Omega_4} \frac{N}{\Omega_4}$ $QR4 = \frac{1.37E+08}{\Omega_4} \frac{N}{\Omega_4}$	$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	8.99E+02	N/cm
$Q_{R4} = \frac{-H^{-} q_{4}}{H_{1}} \alpha_{4} = \frac{1}{(\pi f_{W1} p_{0} R^{2})} \qquad \qquad \frac{\alpha 4}{CR} = \frac{0.75}{CM} = \frac{-1}{CM} = \frac{1}{(\pi f_{W1} p_{0} R^{2})} \qquad \qquad \frac{\alpha 4}{CR} = \frac{1}{RD_{a} p_{0}^{3} [C_{M} (\alpha_{4} + \alpha_{i}) \frac{R^{2}}{H_{1}}]^{4}} = \frac{1}{Da} = \frac{1}{3.26E + 06} = \frac{1}{N.cm} = \frac{1}{CM} = \frac$	$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.37E+08	Ν
$\Delta_{4} = \frac{H_{1}[Q_{R4}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{4} + \alpha_{i})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{e4} = \Delta_{4} + \frac{Q_{R4} + Q_{Ri}}{K_{b}}$ $\frac{CM}{7.31} - \frac{1}{Da}$ $\frac{3.26E+06}{A} \frac{N.cm}{\Delta 4}$ $\frac{\Delta 4}{6.76} \frac{Cm}{Cm}$ $\frac{\Delta 4}{4} \frac{0.76}{1.005} \frac{Cm}{Cm}$ $\frac{\Delta 4}{A} \frac{1.86E+08}{A} \frac{N}{A}$	$Q_{R4} = \frac{1}{H} \frac{1}{H} \frac{\alpha_4}{\alpha_4} = \frac{1}{(\pi f_{W1}, p_0 R^2)}$	α4	0.75	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]}{RD_{a}p_{a}^{3}[C_{M}(\alpha_{4} + \alpha_{i})\frac{R^{2}}{H_{1}}]^{4}} \qquad \qquad \begin{array}{c c c c c c c c c c c c c c c c c c c $	H_1 $(3_{W1}p_0)^2$	СМ	7.31	-
$\begin{array}{c c} & RD_{a}p_{0}^{3}[C_{M}(\alpha_{4}+\alpha_{i})\frac{R^{2}}{H_{1}}]^{4} \\ & \Delta_{e4}=\Delta_{4}+\frac{Q_{R4}+Q_{Ri}}{K_{b}} \end{array} \begin{array}{c c} & \Delta 4 & 6.76 & cm \\ \hline \Delta e4 & 10.05 & cm \\ \hline QR4+QRt & 1.86E+08 & N \end{array}$	$\Delta_{4} = \frac{H_{1}[Q_{R4}]}{2}$	Da	3.26E+06	N.cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{R1}}{K_b} H_1$ $\Delta e4 = 10.05 \text{ cm}$ $QR4+QRt = 1.86E+08 \text{ N}$	$\frac{1}{RD} n^{3} [C (\alpha + \alpha) \frac{R^{2}}{R}]^{4}$	Δ4	6.76	cm
$\Delta_{e4} = \Delta_4 + \frac{\varphi_{R4} + \varphi_{Rt}}{K_b} \qquad \qquad$	$\begin{bmatrix} A B_a P_0 [C_M (\alpha_4 + \alpha_1)] \\ A $	∆e4	10.05	cm
	$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{K_b}$	QR4+QRt	1.86E+08	N

質点系モデルによる側板下端の浮き」	こがり変位計算	用諸元	(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	100000	(kl)
貯槽内径	D	81480	(mm)
側板高さ	Hmax	22570	(mm)
最下段側板厚	t _s	36	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	28	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率 (HT60)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	450	(N/mm2)
最高液高さ	Н	19063	(mm)
液密度	r	1.00E-06	(kg∕mm3)
直径/液高さ比	D/H	4.27	(-)
液高さ/直径比	H/D	0.23	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.28	(-)
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.26	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.$		0.40	(-)
消防法/有効液の重心高さ係数 t _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
P ₀ =gγH		0.19	(N/mm2)

付表 1.13-1 B-7 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

側板重量	Ws0	1.05E+04	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	3.68E+03	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.05E+07	(N)

[計算式と質点系モデルの入力数値]		紫字:モデルの入力((単位:N, cm)	直
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3765	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3935	(-)
液重量 W=gγπD ² H/4	W	9.75E+08	(N)
合計重量(W+Wsr)	W+Wsr	9.85E+08	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.71E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	W1	2.66E+08	(N)
消防法/有効液重量率	f _{w0}	0.28	(-)
	f _{w1}	0.26	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	H₀	762.69	(cm)
$H_1 = f_{h1} * H$	Hı	723.19	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	409.84	(N/cm)
ばね係数	K♭	7.56E+07	(N/cm)
浮き上がり抵抗力	qу	898.67	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1308.51	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.89E+08	(N)
<u>降伏変位 (=Qy/Kb)</u>	Δy	2.50	(cm)
減衰係数	Ce	1.36E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	11.27	(-)

付表 1.13-2 B-7 タンクの質点系モデルの諸元計算シート(No.2計算シート)

付表 1.13-3 B-7 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3 計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	5.91E+07	Ν
$\alpha = \frac{2\pi R^2 q_t}{\alpha} \qquad \alpha = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.81	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \mathcal{M}_t \qquad (\pi f_{W1} p_0 R^2)$	αt	0.19	-
$\Delta_{et} = \frac{Q_{Rt}}{V}$	Δet	0.78	cm
		1.005.04	N1
Point Y 4 $\sigma_{y, 2}$	my	1.08E+04	N
$q_y = \frac{1}{\sqrt{c}} \sqrt{m_y p_0} \qquad m_y = \frac{1}{6} t_a$	qy	7.34E+02	N/cm
$\sqrt{0}$ $\sqrt{0}$ $\sqrt{10}$	QRy	1.06E+08	N
$D_{a} = \frac{2\pi R^2 q_y}{D_a} = \frac{EI_a}{D_a}$	αy	0.34	-
$Q_{Ry} = \frac{1}{H_1}$	CM	10.26	-
$[O_{p_{1}}]C_{10}^{1}$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{c \sum_{ky} r_{10}}{(r - r_{10})^2}$	Δy	0.34	cm
$(\pi g_{W1} p_0 K)$	∆ey	2.52	cm
$\Delta_y = \frac{H_1[Q_y]^4}{RD_a p_0^3 [C_M(\alpha_y + \alpha_t) \frac{R^2}{H_1}]^4}$ $\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rt}]}{K_b}$	QRy+Qt	1.65E+08	N
Point P $\sigma_{y} = 2 - \frac{4}{2} \sqrt{m - p}$	mp	1.62E+04	Ν
$m_p = \frac{y}{\sqrt{2}} t_a^2 q_p = \frac{1}{\sqrt{6}} \sqrt{m_p p_0}$	qp	8.99E+02	N/cm
$\overline{\mathbf{r}}$	QRp	1.30E+08	N
$\alpha_{r} = \frac{2\pi R^2 q_p}{\alpha_{r}} \qquad \alpha_{r} = \frac{[\mathcal{Q}_{Rp}]\mathcal{C}_{10}}{[\mathcal{Q}_{Rp}]\mathcal{C}_{10}}$	αp	0.41	-
$Q_{Rp} = \frac{1}{H_1} p_0 (\pi f_{W1} p_0 R^2)$	СМ	9.82	-
$(1 H_1[O_{P_n}]^4)$	Da	3.26E+06	N.cm
$\Delta_p = \frac{122 Rp^3}{R^2}$	Δp	0.91	cm
$RD_{a}p_{0}^{3}[C_{M}(\alpha_{p}+\alpha_{t})\frac{\kappa}{2}]^{4}$	Δep	3.41	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.89E+08	N
Point 4	m4	2.16E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.04E+03	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.50E+08	N
$Q_{R4} = \frac{2\pi m^2 q_4}{\mu} \alpha_4 = \frac{2\pi m^2 q_4}{(\pi f_{m} n_R R^2)}$	α4	0.47	-
$II_1 \qquad (9_W I P 0 H)$	СМ	9.44	-
$\Delta_{I} = \frac{H_1[Q_{R4}]^{*}}{1}$	Da	3.26E+06	N.cm
4 RD $n^{3}[C (\alpha + \alpha)] \frac{R^{2}}{R^{2}}$	∆4	1.90	cm
$\frac{RD_a p_0 [C_M (\alpha_4 + \alpha_1) \overline{H_1}]}{Q_1 + Q_2}$	∆e4	4.66	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{K}$		2.005+08	N
is b	WK4+WKT	2.090700	IN

(3) C地区(代表タンク:合計7基、C-1~C-7)

質点系モデルによる側板下端の浮き	上がり変位計算用	諸元	(赤字:入力値)
L. T.		1000	
<u>立你各里</u> 腔槽内径		11620	(mm)
創作品を	Hmax	12160	(mm)
最下段側板厚	ts	6	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	4.4	(mm)
アニュラ板厚	t _b	9	(mm)
鋼材のヤング率(SS41)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.1663	(N/mm2)
最高液高さ	Н	10850	(mm)
液密度	r	7.20E-07	(kg/mm3)
直径/液高さ比	D/H	1.07	(-)
液高さ/直径比	H/D	0.93	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.75	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.67	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.42	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$			
 底板に作用する最大静液圧		0.48	(-)
$P_0 = g \gamma H$		0.08	(N/mm2)

付表 1.14-1 C-1 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	1.95E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	6.46E+01	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.59E+05	(N)

付表 1.14-2 C-1 タンクの質点系モデルの諸元計算シート	ヽ(No.2計算シート)
----------------------------------	--------------

[計算式と質点系モデルの入力数値]		紫字:モデルの入力値 (単位:N. cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1432	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2383	(-)
液重量 W=gγπD ² H/4	w	8.12E+06	(N)
合計重量(W+Wsr)	W+Wsr	8.38E+06	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	6.06E+06	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	5.74E+06	(N)
消防法/有効液重量率	f _{w0}	0.75	(-)
	f _{w1}	0.67	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	455.43	(cm)
$H_1 = f_{h1} * H$	H1	519.28	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.48	(-)
側板自重による鉛直抵抗力qt	qt	70.99	(N/cm)
ばね係数	Кь	1.13E+07	(N/cm)
浮き上がり抵抗力	qy	318.47	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	qy+qt	389.46	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.59E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.14	(cm)
減衰係数	Ce	7.70E+04	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	2.24	(-)

付表 1.14-3 C-1 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

(No.3計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	2.90E+05	Ν
$Q = 2\pi R^2 q_t \qquad q = \frac{Q_{Rt} C_{10}}{Q_{Rt} C_{10}}$	C10	0.27	_
$Q_{Rt} = \frac{1}{H_1} \qquad (\pi f_{W1} p_0 R^2)$	αt	0.01	_
$A = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.03	cm
$\Delta_{et} - K_{h}$			
Point Y σ	my	3.31E+03	Ν
$q_{y} = \frac{4}{m_{y}p_{0}}$ $m_{y} = \frac{-y}{m_{y}}t_{a}^{2}$	qy	2.60E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	1.06E+06	N
$2\pi R^2 q_{y} = D \left(-\frac{Et_a^3}{a}\right)$	αy	0.05	-
$Q_{Ry} = \frac{1}{H} D_a (-\frac{1}{12(1-v^2)})$	CM	12.98	-
$\begin{bmatrix} \Omega_{1} \end{bmatrix} \begin{bmatrix} \Omega_{1} \end{bmatrix}$	Da	1.37E+06	N.cm
$\alpha_{y} = \frac{12 \epsilon_{Ry} 12 \epsilon_{10}}{\epsilon_{Ry} 12 \epsilon_{10}}$	Δy	0.36	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.48	cm
$\Lambda = \frac{H_1[Q_y]^4}{1}$			
$= \frac{1}{2} RD_a p_0^3 [C_M(\alpha_y + \alpha_t) \frac{R^2}{H}]^4$	OBv+Ot	1 35E+06	N
$[O_{n} + O_{n}]^{-1}$	Girty Gr	1.002.000	
$\Delta_{ey} = \Delta_y + \frac{i\mathcal{L}_{Ky} - \mathcal{L}_{Kl}}{K_b}$			
Point P σ_{n-2} 4	mp	4.96E+03	N
$m_p = \frac{1}{\sqrt{6}} t_a^2 q_p = \frac{1}{\sqrt{6}} \sqrt{m_p p_0}$	qp	3.18E+02	N/cm
4 [0.10]	QRp	1.30E+06	N
$\alpha_{p} = \frac{2\pi R^2 q_{p}}{\alpha_{p}} = \frac{[\mathcal{Q}_{Rp}]\mathcal{C}_{10}}{[\mathcal{Q}_{Rp}]\mathcal{C}_{10}}$	αp	0.06	-
$Q_{Rp} = \frac{1}{H_1} p_0 (\pi f_{W1} p_0 R^2)$	СМ	12.91	-
${}^{1}H_{1}[Q_{R_{D}}]^{4}$	Da	1.37E+06	N.cm
$\Delta_p = \frac{1 - \lambda_p r}{p^2}$	Δp	0.83	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{K}{M}]^4$	∆ер	0.98	cm
H_1	QRp+Qt	1 59F+06	N
$\Delta_{ep} - \Delta_{p} + K_{b}$			
Point 4 4	m4	6.62E+03	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	3.68E+02	N/cm
$2\pi R^2 a$, $Q_{R4}C_{10}$	QR4	1.50E+06	N
$Q_{R4} = \frac{2\pi R q_4}{H} \alpha_4 = \frac{\pi R R^2}{(\pi f_{res}, p, R^2)}$	α4	0.07	-
H_1 (9 W1P010)	CM	12.85	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]^{*}}{1}$	Da	1.37E+06	N.cm
⁴ $RD n^{3} [C (\alpha + \alpha) \frac{R^{2}}{R}]^{4}$	$\Delta 4$	1.51	cm
$AD_a p_0 [C_M (\alpha_4 + \alpha_t) H_1]$	∆e4	1.67	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{R1}}{K}$		1 705 100	N
Point 5	<u>wR4TWR(</u>	1.79E+04	N
$a_{r} = \frac{4}{m_{r} p_{r}}$	d5	5 20E+02	N/cm
$\sqrt{6} \sqrt{6} \sqrt{5} \sqrt{10} \sqrt{5} \sqrt{10}$	QR5	2 12E+06	N
• -	$\alpha 5$	0.11	-
	СM	12.67	_
	Da	1.37E+06	Ncm
	Δ5	6 40	cm
	Δ e5	6.61	cm
	QR5+QRt	2.41E+06	N

<u>、質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	5000	(kl)
貯槽内径	D	23250	(mm)
側板高さ	Hmax	13755	(mm)
最下段側板厚	t _s	13	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	9.93	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SM41C)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.16625	(N/mm2)
最高液高さ	Н	12382	(mm)
液密度	r	7.59E-07	(kg/mm3)
直径/液高さ比	D/H	1.88	(-)
液高さ/直径比	H/D	0.53	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right) - 0.1172$		0.57	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.55	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.41	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.42	(-)
底板に作用する最大静液圧			
P ₀ =gγH		0.09	(N/mm2)

付表 1.15-1 C-2 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	7.47E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.42E+02	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.47E+05	(N)

付表 1.15-2 C-2 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]		紫字:モデルの入力((単位:N.cm)	直
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1561	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3192	(-)
液重量 W=gγπD ² H/4	w	3.91E+07	(N)
合計重量(W+Wsr)	W+Wsr	3.99E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.23E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W1	2.23E+07	(N)
消防法/有効液重量率	f _{w0}	0.57	(-)
	f _{w1}	0.55	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	H₀	501.49	(cm)
$H_1 = f_{h1} * H$	Hı	517.31	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.41	(-)
	f _{h1}	0.42	(-)
側板自重による鉛直抵抗力qt	qt	102.30	(N/cm)
ばね係数	Кь	3.68E+07	(N/cm)
浮き上がり抵抗力	qy	465.74	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	568.04	(N/cm)
保有水平耐力(降伏耐力)	Qy	9.32E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.25	(cm)
減衰係数	Ce	2.74E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	4.49	(-)

付表 1. 15-3 C-2 タンクの非線形水平ばねの復元力特性とする Q-Δ線図の計算シート

(No.3計算シート)

非線形ロッキングばね特性線図計算

Point T $O_{\rm T}C_{\rm T}$	QRt	1.68E+06	N
$ Q_{t} = \frac{2\pi R^{2} q_{t}}{\alpha_{t}} \qquad \alpha_{t} = \frac{\varphi_{Rt} \varphi_{10}}{\alpha_{t}} $	C10	0.61	-
$\mathcal{Q}_{R} = H_1 \qquad (\pi f_{W1} p_0 R^2)$	αt	0.05	-
$\Delta_{et} = \frac{Q_{Rt}}{K}$	∆et	0.05	cm
	mv	5 88F+03	N
$a = \frac{4}{m} m = \frac{0}{y} t^2$	av	3.80E+02	N/cm
$q_y = \sqrt{6} \sqrt{m_y p_0} \qquad m_y \qquad 6$		6.24E+06	N
$2 - R^2 = Et^3$		0.18	_
$Q_{p} = \frac{2\pi K q_{y}}{12(1-x^{2})} D_{a} (= \frac{2\pi a}{12(1-x^{2})})$	CM	12.05	_
$\mathcal{Z}_{Ry} \qquad H_1 \qquad 12(1-V)$		3 26E+06	Nom
$[Q_{Ry}]C_{10}$		0.202,00	om
$\alpha_y = \frac{1}{(\pi f_{yy}, p_0 R^2)}$		0.27	om
$(5_{W1}F_{0})^{-1}$	Δey	0.49	CIII
$\Delta_{y} = \frac{\Pi_{1}(\underline{v}_{y})}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	7.92E+06	N
		0.025+02	N
$m_{p} = \frac{\sigma_{y}}{m_{p}} t_{p}^{2} q_{p} = \frac{4}{\sqrt{\epsilon}} \sqrt{m_{p} p_{0}}$	mp	8.83E+03	N N/am
p^{p} 4 " $\sqrt{6}$	db OD::	4.00E+02	N/ Cm
$2\pi R^2 q$ $[Q_{Rp}]C_{10}$		7.04E+00	N
$Q_{Rp} = \frac{2\pi i r q_p}{\pi i}$ $\alpha_p = \frac{1}{(\pi f - p R^2)}$	αp	0.22	-
$H_1 \qquad (g_{W1}p_0R)$	CM	11.81	-
$\Lambda = \frac{H_1[Q_{Rp}]}{1}$	Da	3.26E+06	N.cm
$\Delta_p = R^2 R^2$	Δp	0.66	cm
$RD_a p_0^* [C_M(\alpha_p + \alpha_t)] \overline{H_1}]^*$	∆ер	0.91	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	9.32E+06	Ν
Point 4 4	m4	1.18E+04	Ν
$q_4 = \frac{1}{\sqrt{c}} \sqrt{m_4 p_0}$	q4	5.38E+02	N/cm
$2\pi P^2 a \qquad O_{PA}C_{10}$	QR4	8.83E+06	N
$Q_{R4} = \frac{2\pi (q_4)}{M} \alpha_4 = \frac{2\pi (q_4)}{(\pi (p_4)^2 + 10)}$	α4	0.25	-
$H_1 \qquad (\mathcal{Y}_{W1} \mathcal{P}_0 \mathcal{K})$	СМ	11.62	-
$\Lambda = \frac{H_1[Q_{R4}]^4}{1}$	Da	3.26E+06	N.cm
$R_{4}^{2} = \frac{R_{4}^{2}}{R_{1}^{2}}$	Δ4	1.25	cm
$\kappa D_a p_0^* [C_M (\alpha_4 + \alpha_1) \overline{H_1}]^T$	∆e4	1.53	cm
$\Delta_{r4} = \Delta_4 + \frac{Q_{R4} + Q_{R1}}{Q_{R4} + Q_{R1}}$			
••• • K _b	QR4+QRt	1.05E+07	Ν
Point 5 4	m5	1.77E+04	Ν
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	6.59E+02	N/cm
$\sqrt{6}$	QR5	1.08E+07	Ν
	α5	0.30	-
	СМ	11.28	-
	Da	3.26E+06	N.cm
	Δ5	3.16	cm
	∆ e5	3.497	cm
	QR5+QRt	1.25E+07	N

省占系モデルによる側板下端の浮き	トポリ変位計算用	()))))))))))))))))))))))))))))))))))))	/ (赤字·入力値)
<u>[諸元]</u>	<u> </u>		
公称容量	VOL (kl)	10000	(kl)
	D	32930	(mm)
側板高さ	Hmax	13755	(mm)
最下段側板厚	t _s	18	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	13.5	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SM400C)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11890	(mm)
液密度	γ	8.60E-07	(kg/mm3)
直径/液高さ比	D/H	2.77	(-)
液高さ/直径比	H/D	0.36	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2$	$+2.0933(\frac{H}{D})-0.1172$	0.43	(-)
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2$	$+2.3017(\frac{H}{D}) - 0.1634$	0.41	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 (\frac{H}{D})^4 - 0.1493 (\frac{H}{D})^3 + 0.204 (\frac{H}{D})^2$	$-0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2$	$+0.0207(\frac{H}{D})+0.3644$	0.39	(-)
底板に作用する最大静液圧			
P ₀ =gγH		0.10	(N/mm2)

付表 1.16-1 C-3 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	1.31E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	5.07E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.82E+06	(N)

付表 1.16-2 C-3 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値] 紫字:モデルの入力値 (単位:N, cm) 貯槽の固有周期 $T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$ 0.1752 (sec) $\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$ (-) 0.3604 液重量 W = g $\gamma \pi D^2 H / 4$ (N) W 8.54E+07 合計重量(W+Wsr) W+Wsr 8.72E+07 (N) 減衰比 0.15 (-) 基礎地盤と貯槽本体の連成振動補正係数 (-) 1 有効液重量 3.64E+07 (N) $W_0 = f_{w0} * (W)$ Wo $W_1 = f_{w1} * (W) + Wsr$ W1 3.71E+07 (N) 消防法/有効液重量率 0.43 (-) f_{w0} 0.41 (-) f_{w1} 有効液の重心高さ 476.41 $H_0 = f_{h0} * H$ Hο (cm) $H_1 = f_{h1} * H$ Hı 468.40 (cm) 消防法/有効液の重心高さ係数 (-) f_{h0} 0.40 0.39 (-) f_{h1} 側板自重による鉛直抵抗力at 175.62 (N/cm) qt ばね係数 4.87E+07 (N/cm) Кь 浮き上がり抵抗力 485.65 (N/cm) qу 浮き上がり抵抗力+鉛直抵抗力(qy+qt) 661.26 (N/cm) qy+qt 保有水平耐力(降伏耐力) 2.40E+07 Qy (N) 降伏変位 (=Qy/Kb) Δy 0.49 (cm) (N/(cm/s)) 減衰係数 4.07E+05 Ce 貯蔵内径と有効液の重心高さの比 D/H1 7.03 (-)

付表 1. 16-3 C-3 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No. 3 計算シート)

非線形ロッキングばね特性線図計算

非称ルロフィンフは14行に称込計昇			
Point T	QRt	6.39E+06	N
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.75	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \qquad$	αt	0.14	-
$A = Q_{Rt}$	∆et	0.13	cm
$\Delta_{et} = \frac{1}{K_h}$			
Point Y	my	5.88E+03	N
$a = \frac{4}{m_{1}} \sqrt{m_{2}} \qquad m_{1} = \frac{\sigma_{y}}{m_{1}} t_{1}^{2}$	av	3.97E+02	N/cm
$q_y \sqrt{6} \sqrt{m_y p_0} \qquad \qquad$	QRv	1.44E+07	N
$2\pi R^2 a$ Et_a^3	αv	0.31	-
$Q_{Ry} = \frac{2\pi i (q_y)}{r_x} D_a (= \frac{a}{12(1-v^2)})$	СМ	10.74	-
H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.25	cm
$(\pi f_{W1} p_0 R^2)$	Δey	0.68	cm
$H_1[O_n]^4$			
$\Delta_y = \frac{1}{R^2}$			
$RD_a p_0^{\beta} [C_M(\alpha_y + \alpha_t)] \overline{H_1}^{\beta}$	QRv+Qt	2 08E+07	N
$[Q_{P_{Y}} + Q_{P_{Y}}]$		2.002.07	
$\Delta_{ey} = \Delta_y + \frac{1 - \kappa_y}{K} - \frac{1}{K}$			1
K _b			
Point P $\sigma_{y} = 2 a = \frac{4}{m} \int m p dx$	mp	8.82E+03	N
$m_p = \frac{1}{4} t_a q_p \sqrt{6} \sqrt{m_p P_0}$	qp	4.86E+02	N/cm
$2 p^2 [0] C$	QRp	1.77E+07	N
$Q = \frac{2\pi R q_p}{\alpha_p} = \alpha_p = \frac{10 q_p}{(10 q_p)^2}$	αp	0.38	-
$\mathcal{Q}_{Rp} = H_1 \qquad f_{W1} p_0 R^2$	CM	10.33	_
$H_{1}[Q_{Rn}]^{4}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{R^2}$	Δp	0.66	cm
$RD_a p_0^3 [C_M(\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ep	1.15	cm
$\Omega \rightarrow \Omega$			
$\Delta_{ep} = \Delta_{p} + \frac{\mathcal{Q}_{Rp} + \mathcal{Q}_{Rt}}{2}$	QRp+Qt	2.40E+07	N
$C_{P} \qquad P \qquad K_{b}$			
Point 4 4	m4	1.18E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	5.61E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	2.04E+07	Ν
$Q_{R4} = \frac{-\alpha_{14}}{H} \alpha_{4} = \frac{-\alpha_{14}}{(\pi f_{-1}, p_{1}, R^{2})}$	α4	0.43	-
m_1 $(9_{W1}P_0)$	СМ	9.99	
$\Lambda_{L} = \frac{H_1[Q_{R4}]^*}{1}$	Da	3.26E+06	N.cm
$RD n^{3} [C (\alpha + \alpha) R^{2}]^{4}$	Δ4	1.34	cm
$KD_a p_0 [C_M (\alpha_4 + \alpha_t) \overline{H_1}]$	∆e4	1.89	cm
$\Delta_{a4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{2}$			
••• • K _b	QR4+QRt	2.68E+07	Ν
Point 5 4	m5	1.76E+04	N
$q_5 = \frac{\tau}{\sqrt{m_5}} \sqrt{m_5 p_0}$	q5	6.87E+02	N/cm
$\sqrt{6}$	QR5	2.50E+07	Ν
	α5	0.53	
	СМ	9.41	-
	Da	3.26E+06	N.cm
	∆5	3.84	cm
	∆e5	4,481	cm
	QR5+QRt	3.14E+07	N

<u>_質点系モデルによる側板下端の浮き</u>	<u>(赤字:入力値)</u>		
[諸元]			
公称容量	VOL (kl)	30000	(kl)
貯槽内径	D	45760	(mm)
側板高さ	Hmax	20143	(mm)
最下段側板厚	ts	18	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	12.2	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率 (SPV50)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σγ	490.3325	(N/mm2)
最高液高さ	Н	16481	(mm)
液密度	r	8.00E-07	(kg/mm3)
直径/液高さ比	D/H	2.78	(-)
液高さ/直径比	H/D	0.36	(-)
消防法/有効液重量率 f _{w0}			
$f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^3$	$b^2 + 2.0933(\frac{H}{D}) - 0.1172$	0.43	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^3$	$(1)^2 + 2.3017(\frac{H}{D}) - 0.1634$	0.41	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^3$	$b^2 - 0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.13	(N/mm2)
P ₀ =gγH		0.13	(N/mm2)

付表 1.17-1 C-4 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	2.80E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.30E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.80E+06	(N)

付表 1.17-2 C-4 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と貫点系モデルの入力数値]		紫字:モデルの入力((単位:N, cm)	直
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3197	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3606	(-)
液重量 W=gγπD ² H/4	w	2.13E+08	(N)
合計重量(W+Wsr)	W+Wsr	2.15E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の運成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	9.04E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	9.05E+07	(N)
消防法/有効液重量率	f _{w0}	0.43	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	660.34	(cm)
$H_1 = f_{h1} * H$	H1	649.06	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	194.95	(N/cm)
ばね係数	Кь	3.56E+07	(N/cm)
浮き上がり抵抗力	qy	780.15	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _y +qt)	qy+qt	975.10	(N/cm)
保有水平耐力(降伏耐力)	Qy	4.94E+07	(N)
降伏変位 (=Qy/Kb)	Δy	1.39	(cm)
減衰係数	Ce	5.44E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	7.05	(-)

付表 1.17-3 C-4 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

非線形ロッキングばね特性線図計算

別家がロアインプロロ目目の目的			
Point T	QRt	9.88E+06	N
$\alpha_{l} = \frac{2\pi R^2 q_l}{\alpha_{l}} \qquad \alpha_{l} = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\mathcal{Q}_{Rt} \mathcal{C}_{10}}$	C10	0.75	-
$Q_{Rt} = \frac{1}{H_1} \qquad \qquad$	αt	0.08	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{L}}$	∆et	0.28	cm
Point Y	mv	1.18E+04	N
$a = \frac{4}{m} \sqrt{m} \frac{m}{n}$ $m_{y} = \frac{\sigma_{y}}{m} t^{2}$	av	6.37E+02	N/cm
$q_y = \sqrt{6} \sqrt{m_y p_0} \qquad \qquad$	QRy	3.23E+07	N
$2\pi R^2 a$ Et_a^3	αv	0.28	-
$Q_{Ry} = \frac{2\pi (q_y)}{m} D_a (= \frac{a}{12(1-v^2)})$	СМ	11.23	_
H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δy	0.65	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	1.83	cm
$\begin{split} \Delta_y &= \frac{H_1[Q_y]^4}{RD_a p_0^3 [C_M(\alpha_y + \alpha_i) \frac{R^2}{H_1}]^4} \\ \Delta_{ey} &= \Delta_y + \frac{[Q_{Ry} + Q_{Ri}]}{K_b} \end{split}$	QRy+Qt	4.22E+07	N
Point P σ 4	mp	1.77E+04	N
$m_p = \frac{y}{\sqrt{2}} t_a^2 q_p = \frac{1}{\sqrt{6}} \sqrt{m_p p_0}$	ap	7.80E+02	N/cm
2 [0.10]	QRp	3.95E+07	N
$\alpha = \frac{2\pi R^2 q_p}{\alpha} = \frac{[Q_{Rp}]C_{10}}{\alpha}$	αρ	0.34	-
$Q_{Rp} = \frac{1}{H_{e}} (\pi f_{W1} p_0 R^2)$	СМ	10.86	-
$H_1[O_{p_1}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{122 Rp^3}{R^2}$	Δp	1.67	cm
$RD_{\alpha}p_{0}^{3}[C_{M}(\alpha_{p}+\alpha_{t})\frac{\kappa}{2}]^{4}$	∆ep	3.06	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	4.94E+07	N
Point 4	m4	2.35E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	9.01E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	4.57E+07	N
$Q_{R4} = \frac{1}{H} \frac{\alpha_4}{H} = \frac{\alpha_4}{(\pi f_{m}, p_0 R^2)}$	α4	0.39	-
H_1 $(5W1F0^{-1})$	СМ	10.55	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]}{2}$	Da	3.26E+06	N.cm
$\frac{1}{2} RD n^{3} [C (\alpha + \alpha) \frac{R^{2}}{R^{2}}]^{4}$	∆4	3.34	cm
$\frac{1}{2} \frac{1}{2} \frac{1}$	∆e4	4.90	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{K_b}$	QR4+QRt	5.55E+07	N
Point 5 4	m5	3.53E+04	N
$q_5 = -\frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	1.10E+03	N/cm
$\sqrt{6}$	QR5	5.59E+07	N
	α5	0.48	
	СМ	10.02	-
	Da	3.26E+06	N.cm
	$\Delta 5$	9.22	cm
	∆e5	11.07	cm
	QR5+QRt	6 58F+07	N

_質点系モデルによる側板下端の浮き上がり変位計算用諸元			<u>(赤字:入力値)</u>
[諸元]			
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	67800	(mm)
側板高さ	Hmax	18275	(mm)
最下段側板厚	t _s	26	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	20.9	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(2H)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490.3325	(N/mm2)
最高液高さ	Н	14407	(mm)
液密度	r	7.48E-07	(kg/mm3)
直径/液高さ比	D/H	4.71	(-)
液高さ/直径比	H/D	0.21	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.25	(-)
消防法/有効液重量率 f _{w1}			
$f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.23	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
P ₀ =gγH		0.11	(N/mm2)

付表 1.18-1 C-5 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	5.53E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	6.59E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	5.53E+06	(N)

付表 1.18-2 C-5 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値] 紫字:モデルの入力値 (単位:N, cm) 貯槽の固有周期 $T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$ 0.2687 (sec) $\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$ 0.3993 (-) 液重量 W=g $\gamma \pi D^2$ H/4 w 3.82E+08 (N) 合計重量(W+Wsr) W+Wsr 3.87E+08 (N) 減衰比 ζ 0.15 (-) 基礎地盤と貯槽本体の連成振動補正係数 (-) 1 有効液重量 9.50E+07 (N) $W_0 = f_{w0} * (W)$ Wo $W_1 = f_{w1} * (W) + Wsr$ 9.39E+07 (N) W1 消防法/有効液重量率 0.25 (-) f_{w0} 0.23 (-) f_{w1} 有効液の重心高さ $H_0 = f_{h0} * H$ 576.73 Hο (cm) $H_1 = f_{h1} * H$ Hı 543.54 (cm) 消防法/有効液の重心高さ係数 0.40 (-) f_{h0} (-) 0.38 f_{h1} 側板自重による鉛直抵抗力qt qt 259.80 (N/cm) ばね係数 Кь 5.24E+07 (N/cm) 浮き上がり抵抗力 705.31 (N/cm) qу 浮き上がり抵抗力+鉛直抵抗力(qy+qt) 965.11 (N/cm) qy+qt Qy 保有水平耐力(降伏耐力) 1.28E+08 (N) 降伏変位 (=Qy/Kb) Δy 2.45 (cm) 減衰係数 Ce 6.72E+05 (N/(cm/s)) 貯蔵内径と有効液の重心高さの比 D/H1 12.47 (-)

付表 1.18	-3 C-5	ンクの非	線形水平ばれ	aの復元力特	性とする	Q−Δ線図の	計算シート	• (No. 3	計
算シート)									

非線形ロッキングばね特性線図計算

Point T	QRt	3.45E+07	N
$\alpha = \frac{2\pi R^2 q_t}{\alpha} \qquad \alpha = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.81	-
$Q_{Rt} = \frac{1}{H_{L}} \qquad $	αt	0.32	-
$Q_{Rt} = Q_{Rt}$	∆et	0.66	cm
$\Delta_{et} = \frac{1}{K_{h}}$			
Point Y	my	1.18E+04	Ν
$a = \frac{4}{m} \sqrt{m} \frac{m}{p_0} \qquad m_y = \frac{3}{m} \frac{y}{t_0} \frac{t_0^2}{t_0^2}$	qy	5.76E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	7.65E+07	Ν
$2\pi R^2 q$ Et_a^3	αy	0.70	-
$Q_{Ry} = \frac{D_a (1 - V_a)}{D_a} D_a (1 - \frac{1}{2(1 - V^2)})$	CM	7.29	-
$\begin{bmatrix} 0 & H_1 \\ 0 & IC \end{bmatrix}$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{2}$	Δy	2.53	cm
$\int (\pi f_{W1} p_0 R^2)$	∆ey	4.64	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{R^2 r^4}$			
$RD_a p_0^{\gamma} [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^{\gamma}$	QRv+Qt	1.11E+08	N
$[Q_{P_{v}}+Q_{P_{t}}]$			
$\Delta_{ey} = \Delta_y + \frac{2\Sigma K y - \Sigma K r}{K}$			
n _b			
Point P $\sigma_{y} = \frac{1}{2} q_{z} = \frac{4}{m_{z}p_{0}}$	mp	1.77E+04	N
$m_p = \frac{1}{4} l_a \qquad l_p \qquad \sqrt{6} \sqrt{-p l_0}$	qp	7.05E+02	N/cm
$2 - R^2 = [O_R] C_R$	QRp	9.37E+07	N
$Q_{p} = \frac{2\pi \mathbf{R} \ \mathbf{q}_{p}}{\mathbf{\alpha}_{p}} \qquad \alpha_{p} = \frac{12\pi \mathbf{R} \ \mathbf{q}_{p}}{(1-2\pi)^{2}}$	αp	0.86	-
$\mathcal{L}_{Rp} \qquad H_1 \qquad (\pi f_{W1} p_0 R^2)$	СМ	6.35	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	9.88	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ер	12.33	cm
$\Delta_{ep} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.28E+08	N
$\epsilon_{p} P K_{b}$			
Point 4	m4	2.12E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	7.73E+02	N/cm
$2\pi R^2 q_1$ $Q_{R4} C_{10}$	QR4	1.03E+08	N
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{\pi (q_4)}{(\pi f_{even} n_e R^2)}$	α4	0.94	-
Π_1 $(9_{W1}P_0 \Pi)$	СМ	5.86	-
$\Lambda_{L} = \frac{H_1[Q_{R4}]^{\dagger}}{1}$	Da	3.26E+06	N.cm
R^{2}	Δ4	19.63	cm
$KD_a p_0 [C_M (\alpha_4 + \alpha_t) \overline{H_1}]$	∆e4	22.25	cm
$\Delta_{t} = \Delta_{t} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
^{e4} ⁴ K _b	QR4+QRt	1.37E+08	Ν

<u> 賃点系モデルによる側板下端の</u> 浮	(赤字:入力値)		
[諸元]			
公称容量	VOL (kl)	70000	(kl)
貯槽内径	D	67800	(mm)
側板高さ	Hmax	21960	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	22.3	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(HT60)	Е	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	449.99971	(N/mm2)
最高液高さ	Н	19833	(mm)
液密度	r	8.93E-07	(kg/mm3)
直径/液高さ比	D/H	3.42	(-)
液高さ/直径比	H/D	0.29	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.35	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.34	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.39	(-)
底板に作用する最大静液圧			
Ρ ₀ =g γ Η		0.17	(N/mm2)

付表 1.19-1 C-6 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	7.19E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	2.10E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.19E+06	(N)

付表 1.19-2 C-6 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]		紫字:モデルの入力((単位:N.cm)	直
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3523	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3780	(-)
液重量 W=gγπD ² H/4	w	6.27E+08	(N)
合計重量(W+Wsr)	W+Wsr	6.34E+08	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.20E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	2.19E+08	(N)
消防法/有効液重量率	f _{w0}	0.35	(-)
	f _{w1}	0.34	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	793.31	(cm)
$H_1 = f_{h1} * H$	Hı	764.87	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	337.55	(N/cm)
ばね係数	Кь	7.11E+07	(N/cm)
浮き上がり抵抗力	qy	866.21	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _y +qt)	qy+qt	1203.76	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.14E+08	(N)
降伏変位 (=Qy/Kb)	Δy	1.60	(cm)
減衰係数	Ce	1.20E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	8.86	(-)

付表 1.19-3 C-6 タンクの非線形水平ばねの復元力特性とする Q-ム線図の計算シート

(No.3計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	3.19E+07	N
$\alpha = \frac{2\pi R^2 q_t}{\alpha} = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.79	-
$Q_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.12	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{b}}$	Δet	0.45	cm
Point Y	my	1.08E+04	N
$q_{y} = \frac{4}{2} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{3}{2} \sqrt{m_{y} t_{z}^{2}}$	qy	7.07E+02	N/cm
$\sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} $	QRy	6.68E+07	N
$2\pi R^2 q_{\mu} = D \left(\frac{Et_a^3}{2} \right)$	αγ	0.25	-
$Q_{Ry} = \frac{1}{12} \frac$	СМ	11.19	-
$\begin{bmatrix} n_1 \\ 0 \end{bmatrix} C$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{1 \Sigma_{Ry} \Gamma_{10}}{1 \Gamma_{10}}$	Δy	0.33	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	1.72	cm
$\begin{split} \Delta_{y} &= \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}} \\ \Delta_{ey} &= \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}} \end{split}$	QRy+Qt	9.86E+07	Ν
Point P σ 4 $$	mp	1.62E+04	N
$m_p = \frac{\gamma_p}{A} t_a^2 q_p = \frac{\gamma_p}{\sqrt{6}} \sqrt{m_p p_0}$	qp	8.66E+02	N/cm
	QRp	8.18E+07	N
$\alpha = \frac{2\pi R^2 q_p}{q_p} = \alpha_n = \frac{[Q_{Rp}]C_{10}}{[Q_{Rp}]C_{10}}$	αp	0.31	-
$\boldsymbol{\boldsymbol{\mathcal{L}}}_{Rp} = \overline{\boldsymbol{\boldsymbol{\mathcal{H}}}_{P}} (\boldsymbol{\boldsymbol{\pi}}_{W1} \boldsymbol{\boldsymbol{\mathcal{P}}}_{0} \boldsymbol{\boldsymbol{\mathcal{R}}}^{2})$	CM	10.85	
$(1 - 1)^{-1} H_1 [Q_{,p_{,m}}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{D^2}$	Δp	0.84	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\kappa}{m}]^4$	∆ер	2.43	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rr}}{K_b}$	QRp+Qt	1.14E+08	N
Point 4	m4	2.16E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.00E+03	N/cm
$2\pi R^2 q_4 \sim Q_{R4} C_{10}$	QR4	9.44E+07	N
$Q_{R4} = \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{\dots} p_{\alpha} R^2)}$	α4	0.35	-
	СМ	10.57	-
$\Delta_4 = \frac{H_1[\mathcal{Q}_{R4}]}{2}$	Da	3.26E+06	N.cm
$RD_{a}p_{0}^{3}[C_{a}(\alpha_{a}+\alpha_{a})\frac{R^{2}}{m^{2}}]^{4}$	Δ4	1.65	cm
$O_{n4} + O_{n} H_1$	∆e4	3.43	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathbf{z}_{K4} + \mathbf{z}_{Kl}}{K_b}$	QR4+QRt	1.26E+08	N
Point 5 4	m5	5.40E+04	N
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	1.58E+03	N/cm
√0	QR5	1.49E+08	N
	α5	0.56	-
	CM	9.35	-
	Da	3.26E+06	N.cm
	Δ5	16.85	cm
	Δe5	19.40	cm
	QR5+QRt	1.81E+08	N

質点系モデルによる側板下端の浮き上がり変位計算用諸元			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	100000	(kl)
貯槽内径	D	81600	(mm)
側板高さ	Hmax	21880	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(HW50)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490.3325	(N/mm2)
最高液高さ	Н	18628	(mm)
液密度	r	1.00E-06	(kg∕mm3)
直径/液高さ比	D/H	4.38	(-)
液高さ/直径比	H/D	0.23	(-)
消防法/有効液重量率 f _{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.27	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.25	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.4096(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.4096(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.0807(\frac{H}{D}) + 0.4096(\frac{H}{D}) + 0.0807(\frac{H}{D}) + 0.08$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.18	(N/mm2)

付表 1.20-1 C-7 タンクの質点系モデルの諸元計算シート(No.1計算シート)

側板重量	Ws0	9.08E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.78E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	9.08E+06	(N)

[計算式と質点系モデルの入力数値]		紫字:モデルの入力値		
		<u>(単位 : N, cm)</u>		
貯槽の固有周期				
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.4097	(sec)	
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3950	(-)	
液重量 W=gγπD ² H/4	W	9.55E+08	(N)	
合計重量(W+Wsr)	W+Wsr	9.64E+08	(N)	
減衰比	ξ	0.15	(-)	
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)	
有効液重量				
$W_0 = f_{w0} * (W)$	Wo	2.58E+08	(N)	
$W_1 = f_{w1} * (W) + Wsr$	W 1	2.52E+08	(N)	
消防法/有効液重量率	f _{w0}	0.27	(-)	
	f _{w1}	0.25	(-)	
有効液の重心高さ				
$H_0 = f_{h0} * H$	Ho	745.37	(cm)	
$H_1 = f_{h1} * H$	Hı	705.63	(cm)	
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)	
	f _{h1}	0.38	(-)	
側板自重による鉛直抵抗力qt	qt	354.15	(N/cm)	
ばね係数	Кь	6.04E+07	(N/cm)	
浮き上がり抵抗力	qy	927.31	(N/cm)	
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1281.46	(N/cm)	
保有水平耐力(降伏耐力)	Qy	1.90E+08	(N)	
降伏変位 (=Qy/Kb)	Δy	3.14E+00	(cm)	
減衰係数	Ce	1.18E+06	(N/(cm/s))	
貯蔵内径と有効液の重心高さの比	D/H1	11.56	(-)	

付表 1. 20-2 C-7 タンクの質点系モデルの諸元計算シート(No. 2 計算シート)

付表 1. 20-3 C-7 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

(No.3計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	5.25E+07	Ν
$\alpha_{l} = \frac{2\pi R^2 q_{l}}{\alpha_{l}} = \frac{Q_{Rt} C_{10}}{2\pi R^2 q_{l}}$	C10	0.81	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \mathcal{M}_t \qquad (\pi f_{W1} p_0 R^2)$	αt	0.18	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{L}}$	∆et	0.87	cm
Point Y a	mv	1.18E+04	N
$a = \frac{4}{m} \overline{m} p$, $m_{y} = \frac{0}{y} t^{2}$	av	7.57E+02	N/cm
$\sqrt{6}\sqrt{m_y}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRv	1.12E+08	N
$2\pi R^2 a$ Et_a^3	αv	0.37	-
$Q_{Ry} = \frac{2\pi (q_y)}{r_x} D_a (= \frac{a}{12(1-v^2)})$	CM	10.10	-
H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.43	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	3.15	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	1.65E+08	N
Point P $\sigma_{a} = 4$	mp	1.77E+04	N
$m_p = \frac{-y}{4} t_a^2 q_p = \frac{-\sqrt{6}}{\sqrt{6}} \sqrt{m_p p_0}$	ap	9.27E+02	N/cm
4	QRp	1.37E+08	N
$2\pi R^2 q_p \qquad \alpha = \frac{[\mathcal{Q}_{Rp}]\mathcal{C}_{10}}{[\mathcal{Q}_{Rp}]\mathcal{C}_{10}}$	αp	0.46	-
$Q_{Rp} = \frac{1}{H_{1}} (\pi f_{W1} p_0 R^2)$	CM	9.60	-
$H_1[O_{p_1}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{12 \epsilon_{Rp} r}{r^2}$	Δp	1.18	cm
$RD_a p_0^3 [C_M(\alpha_p + \alpha_t) \frac{K}{\pi}]^4$	Δep	4.32	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rl}}{K_b}$	QRp+Qt	1.90E+08	N
Point 4 4	m4	2.35E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.07E+03	N/cm
$2\pi R^2 q_{\mu} \qquad Q_{R4} C_{10}$	QR4	1.59E+08	Ν
$Q_{R4} = \frac{2\pi \alpha q_4}{\mu} \alpha_4 = \frac{\pi \alpha n}{(\pi f_{m}, n, R^2)}$	α4	0.53	-
H_1 (9_W1P0^{-1})	СМ	9.18	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]^{*}}{1}$	Da	3.26E+06	N.cm
⁴ $RD n^{3}[C (\alpha + \alpha) \frac{R^{2}}{R^{2}}]^{4}$	∆4	2.51	cm
$\frac{RD_a p_0 [C_M (a_4 + a_t)]}{Q_1 + Q_2} H_1$	∆e4	6.01	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{K_b}$	QR4+QRt	2.11E+08	N
Point 5 4	m5	4.71E+04	Ν
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	1.51E+03	N/cm
$\sqrt{6}$	QR5	2.24E+08	Ν
	α5	0.75	
	CM	7.87	-
	Da	3.26E+06	N.cm
	Δ5	18.61	cm
	∆e5	23.20	cm
	QR5+QRt	2.77E+08	N

添付資料2

代表タンク 20 基の浮き上がり解析結果のまとめ

以下の代表三地区の代表タンク 20 基の最大浮き上がり変位と回数のまとめを付表 2.1 に 示す。各代表タンクの浮き上がり変位の時刻歴を付図 2.1 から付図 2.34 に示す。

	タンク	タンク	EW			NS		
地区	番号	容量	最大浮き上がり変位	浮き上がり回数		最大浮き上がり変位	浮き上がり回数	
		(KL)	(cm)	0度側	180度側	(cm)	0度側	180度側
A	1	1000	2.3	36	36	0.5	21	25
	2	5000	2.5	32	34	0.4	10	7
	3	10000	1	6	5	0	0	0
	4	30000	1	2	3	0	0	0
	5	50000	2.8	19	23	0.5	5	5
	6	75000	6.6	20	22	0.9	4	4
В	1	1000	5.6	52	57	1.2	29	34
	2	6000	6.7	41	38	0.9	10	8
	3	10000	8.8	43	38	0.9	11	13
	4	30000	8.6	23	25	1.4	2	4
	5	50000	14.2	15	17	0	0	0
	6	77000	7.3	19	18	0.9	1	2
	7	100000	6.3	20	19	0.4	3	3
С	1	1000	0.2	6	9	2.3	48	53
	2	5000	0.2	0	4	2.3	53	58
	3	10000	0	0	0	1.6	29	37
	4	30000	0.6	6	4	7.8	34	38
	5	50000	0	0	0	6	7	4
	6	70000	0.4	3	1	8.1	27	31
	7	100000	0	0	0	4.1	21	22

付表 2.1 代表タンク 20 基の最大浮き上がり変位と回数のまとめ

(1) A 地区(代表タンク:合計6基、A-1~A-6)

付図 2.1 浮き上がり変位の時刻歴(A地区 EW、A-1タンク)

付図 2.2 浮き上がり変位の時刻歴(A地区 NS、A-1 タンク)

付図 2.3 浮き上がり変位の時刻歴(A地区 EW、A-2 タンク)

付図 2.4 浮き上がり変位の時刻歴(A地区 NS、A-2 タンク)

付図 2.5 浮き上がり変位の時刻歴(A地区 EW、A-3 タンク)

付図 2.6 浮き上がり変位の時刻歴(A地区 ES、A-4 タンク)

付図 2.7 浮き上がり変位の時刻歴(A地区 EW、A-5 タンク)

付図 2.8 浮き上がり変位の時刻歴(A地区 NS、A-5 タンク)

付図 2.9 浮き上がり変位の時刻歴(A地区 EW、A-6 タンク)

付図 2.10 浮き上がり変位の時刻歴(A地区 NS、A-6 タンク)

付図 2.11 浮き上がり変位の時刻歴(B地区 EW、B-1 タンク)

付図 2.12 浮き上がり変位の時刻歴(B地区 NS、B-1 タンク)

付図 2.13 浮き上がり変位の時刻歴(B地区 EW、B・2 タンク)

付図 2.14 浮き上がり変位の時刻歴(B地区 NS、B-2 タンク)

付図 2.15 浮き上がり変位の時刻歴(B地区 EW、B-3 タンク)

付図 2.16 浮き上がり変位の時刻歴(B地区 NS、B-3 タンク)

付図 2.17 浮き上がり変位の時刻歴(B地区 EW、B-4 タンク)

付図 2.18 浮き上がり変位の時刻歴(B地区 NS、B-4 タンク)

付図 2.19 浮き上がり変位の時刻歴(B地区 EW、B-5 タンク)

付図 2.20 浮き上がり変位の時刻歴(B地区 EW、B-6 タンク)

付図 2.21 浮き上がり変位の時刻歴(B地区 NS、B-6 タンク)

付図 2.22 浮き上がり変位の時刻歴(B地区 EW、B-7 タンク)

付図 2.23 浮き上がり変位の時刻歴(B地区 NS、B-7 タンク)

 $[\]begin{bmatrix}
1.0 \\
0.8 \\
0.6 \\
0.4 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0$

⁽³⁾ C地区(代表タンク:合計7基、C-1~C-7)

付図 2.24 浮き上がり変位の時刻歴(C地区 EW、C-1 タンク)

付図 2.25 浮き上がり変位の時刻歴(C地区 NS、C-1 タンク)

付図 2.26 浮き上がり変位の時刻歴(C地区 EW、C-2 タンク)

付図 2.27 浮き上がり変位の時刻歴(C地区 NS、C-2 タンク)

付図 2.28 浮き上がり変位の時刻歴(C地区 NS、C-3 タンク)

付図 2.29 浮き上がり変位の時刻歴(C地区 EW、C-4 タンク)

付図 2.30 浮き上がり変位の時刻歴(C地区 NS、C-4 タンク)

付図 2.31 浮き上がり変位の時刻歴(C地区 NS、C-5 タンク)

付図 2.32 浮き上がり変位の時刻歴(C地区 EW、C-6 タンク)

付図 2.33 浮き上がり変位の時刻歴(C地区 NS、C-6 タンク)

付図 2.34 浮き上がり変位の時刻歴(C地区 NS、C-7 タンク)

添付資料3

B-5 タンクの動液圧の計算結果

付表 3.1 B-5 タンクの動液圧計算用入力データ

D	69765 mm
Н	12608 mm
Kh1	0.4484
ν3	1.79
ρ	8.66E-07 kg/mm3

H/D	0.180721
分割	100
⊿H	126.08 mm
g	9.8 m/sec2
Z	3.33E+13 mm3

C00	C01	C02	C03	C04	C05
0.818987	-0.13123	0.688	-4.22843	5.706144	-2.85
C10	C12	C12	C13	C14	C15
0.810687	0.254276	-1.46843	0.572191	-0.20929	0.041771

付図 3.1 側板の高さにおける動液圧の分布(B-5 タンク)

付表 3.2 B-5 タンクの動液圧計算結果

				P = 2D*Ph(z)*	<u>π/4 より</u>	
Z (mm)	Ph0(Z)	Ph1(Z)	Ph(Z) (MPa)	P (N/mm)	M (N mm)	Q (NI)
0.00	0.02195	0.01717	0.03912	4286.90	1 8708F+11	3 8198F+07
126.08	0.02192	0.01722	0.03914	4288.80	1.8230E+11	3 7658E+07
252.16	0.02189	0.01726	0.03915	4290.35	1.7759E+11	3.7117E+07
378.24	0.02186	0.01730	0.03916	4291.50	1.7294E+11	3.6576E+07
504.32	0.02183	0.01733	0.03917	4292.20	1.6836E+11	3.6035E+07
630.40	0.02181	0.01736	0.03917	4292.38	1.6385E+11	3.5494E+07
756.48	0.02179	0.01738	0.03917	4291.99	1.5941E+11	3.4952E+07
882.56	0.02176	0.01740	0.03916	4291.00	1.5504E+11	3.4411E+07
1008.64	0.02174	0.01740	0.03914	4289.35	1.5074E+11	3.3870E+07
1134.72	0.02171	0.01741	0.03912	4287.01	1.4650E+11	3.3330E+07
1260.80	0.02169	0.01741	0.03909	4283.95	1.4233E+11	3.2/90E+0/
1512.06	0.02100	0.01740	0.03906	4280.11	1.3623E+11	3.2250E+07
1639.04	0.02103	0.01738	0.03901	4270.48	1.3420E+11	3.1770E+07
1765.12	0.02156	0.01734	0.03891	426373	1.0024E+11	3.0634E+07
1891.20	0.02153	0.01731	0.03884	4256 56	1 2251E+11	3 0096F+07
2017.28	0.02149	0.01728	0.03877	4248.50	1.1875E+11	2.9560E+07
2143.36	0.02145	0.01724	0.03869	4239.53	1.1506E+11	2.9025E+07
2269.44	0.02140	0.01719	0.03860	4229.63	1.1143E+11	2.8491E+07
2395.52	0.02135	0.01714	0.03850	4218.79	1.0787E+11	2.7959E+07
2521.60	0.02130	0.01709	0.03839	4207.00	1.0438E+11	2.7428E+07
2647.68	0.02124	0.01703	0.03827	4194.26	1.0096E+11	2.6898E+07
2773.76	0.02118	0.01697	0.03815	4180.54	9.7599E+10	2.6370E+07
2899.84	0.02112	0.01690	0.03801	4165.86	9.4307E+10	2.5844E+07
3025.92	0.02105	0.01682	0.03787	4150.20	9.1082E+10	2.5320E+07
3152.00	0.02098	0.01674	0.03772	4133.55	8./922E+10	2.4/9/E+0/
3278.08	0.02090	0.01657	0.03730	4115.93	8.4829E+10 8.1800E+10	2.4277E+07
3530.24	0.02002	0.01648	0.03721	4077.76	7 8837E+10	2.3744E+07
3656.32	0.02064	0.01638	0.03702	4057.22	7.5939E+10	2.2731E+07
3782.40	0.02055	0.01628	0.03683	4035.70	7.3105E+10	2.2221E+07
3908.48	0.02045	0.01617	0.03662	4013.22	7.0335E+10	2.1714E+07
4034.56	0.02035	0.01606	0.03641	3989.79	6.7630E+10	2.1209E+07
4160.64	0.02024	0.01594	0.03619	3965.40	6.4987E+10	2.0708E+07
4286.72	0.02013	0.01582	0.03595	3940.08	6.2408E+10	2.0209E+07
4412.80	0.02001	0.01570	0.03571	3913.82	5.9891E+10	1.9714E+07
4538.88	0.01990	0.0155/	0.0354/	3886.63	5./436E+10	1.9223E+07
4004.90	0.01977	0.01544	0.03521	3838.34	5.5044E+10	1.8/34E+0/
4/91.04	0.01904	0.01516	0.03495	3799.64	5.2712E+10	1.8250E+07
5043.20	0.01938	0.01502	0.03439	3768.86	4 8231F+10	1 7292E+07
5169.28	0.01924	0.01487	0.03410	3737.21	4.6081E+10	1.6818E+07
5295.36	0.01909	0.01471	0.03381	3704.69	4.3990E+10	1.6349E+07
5421.44	0.01894	0.01456	0.03350	3671.32	4.1958E+10	1.5884E+07
5547.52	0.01879	0.01440	0.03319	3637.10	3.9984E+10	1.5424E+07
5673.60	0.01864	0.01423	0.03287	3602.05	3.8068E+10	1.4967E+07
5799.68	0.01848	0.01406	0.03254	3566.18	3.6210E+10	1.4515E+07
5925.76	0.01832	0.01389	0.03221	3529.49	3.4408E+10	1.4068E+07
6177.00	0.01815	0.013/1	0.0318/	3491.99	3.2002E+10	1.3025E+07
6304.00	0.01/98	0.01353	0.03152	3433.08	3.09/2E+10 2.0327E+10	1.3188E+U/ 1.2755E±07
6430.09	0.01762	0.01335	0.03110	3374.60	2.3337EF10	1 2327E+07
6556.16	0.01745	0.01297	0.03042	3334.01	2.6228E+10	1.1904E+07
6682.24	0.01727	0.01278	0.03005	3292.55	2.4753E+10	1.1486E+07
6808.32	0.01708	0.01258	0.02966	3250.30	2.3331E+10	1.1074E+07
6934.40	0.01689	0.01238	0.02927	3207.27	2.1961E+10	1.0666E+07
7060.48	0.01670	0.01217	0.02887	3163.46	2.0641E+10	1.0265E+07
7186.56	0.01650	0.01196	0.02846	3118.87	1.9372E+10	9.8688E+06
7312.64	0.01630	0.01175	0.02805	3073.48	1.8152E+10	9.4784E+06
7438.72	0.01609	0.01153	0.02762	3027.29	1.6982E+10	9.0938E+06
/564.80	0.01588	0.01131	0.02/20	2980.30	1.5859E+10	8./151E+06
7090.88	0.01567	0.01109	0.02676	2932.50	1.4/84±+10	8.3424E+06
7010.90	0.01545	0.01087	0.02032	2003.8/	1.3/33E+10 1.2779E+10	7.9/3/E+00 7.6152E+06
/ / 543.04	0.01023	0.01004	0.02380	2034.40	1.2//25+10	7.0152E+00

8069.12	0.01500	0.01040	0.02541	2784.07	1.1834E+10	7.2610E+06
8195.20	0.01477	0.01017	0.02494	2732.87	1.0941E+10	6.9132E+06
8321.28	0.01453	0.00993	0.02446	2680.77	1.0091E+10	6.5720E+06
8447.36	0.01429	0.00969	0.02398	2627.75	9.2832E+09	6.2373E+06
8573.44	0.01405	0.00944	0.02349	2573.78	8.5174E+09	5.9094E+06
8699.52	0.01379	0.00919	0.02298	2518.84	7.7926E+09	5.5884E+06
8825.60	0.01353	0.00894	0.02247	2462.88	7.1078E+09	5.2743E+06
8951.68	0.01327	0.00868	0.02195	2405.89	6.4622E+09	4.9674E+06
9077.76	0.01300	0.00843	0.02142	2347.81	5.8548E+09	4.6677E+06
9203.84	0.01272	0.00817	0.02088	2288.61	5.2847E+09	4.3754E+06
9329.92	0.01243	0.00790	0.02033	2228.25	4.7510E+09	4.0907E+06
9456.00	0.01214	0.00763	0.01977	2166.67	4.2527E+09	3.8136E+06
9582.08	0.01183	0.00736	0.01920	2103.83	3.7889E+09	3.5444E+06
9708.16	0.01152	0.00709	0.01861	2039.67	3.3585E+09	3.2832E+06
9834.24	0.01120	0.00681	0.01801	1974.13	2.9605E+09	3.0302E+06
9960.32	0.01087	0.00653	0.01740	1907.14	2.5938E+09	2.7855E+06
10086.40	0.01053	0.00625	0.01678	1838.66	2.2575E+09	2.5494E+06
10212.48	0.01017	0.00597	0.01614	1768.59	1.9504E+09	2.3220E+06
10338.56	0.00981	0.00568	0.01548	1696.88	1.6715E+09	2.1035E+06
10464.64	0.00943	0.00539	0.01481	1623.44	1.4194E+09	1.8942E+06
10590.72	0.00903	0.00509	0.01413	1548.19	1.1932E+09	1.6943E+06
10716.80	0.00863	0.00480	0.01342	1471.05	9.9161E+08	1.5039E+06
10842.88	0.00820	0.00450	0.01270	1391.91	8.1337E+08	1.3234E+06
10968.96	0.00776	0.00420	0.01196	1310.69	6.5725E+08	1.1531E+06
11095.04	0.00731	0.00389	0.01120	1227.29	5.2196E+08	9.9308E+05
11221.12	0.00683	0.00358	0.01042	1141.61	4.0616E+08	8.4375E+05
11347.20	0.00634	0.00327	0.00961	1053.52	3.0851E+08	7.0537E+05
11473.28	0.00583	0.00296	0.00879	962.92	2.2759E+08	5.7825E+05
11599.36	0.00529	0.00264	0.00794	869.69	1.6196E+08	4.6272E+05
11725.44	0.00473	0.00233	0.00706	773.70	1.1015E+08	3.5912E+05
11851.52	0.00415	0.00201	0.00616	674.83	7.0633E+07	2.6781E+05
11977.60	0.00355	0.00168	0.00523	572.93	4.1826E+07	1.8915E+05
12103.68	0.00291	0.00136	0.00427	467.87	2.2115E+07	1.2354E+05
12229.76	0.00225	0.00103	0.00328	359.50	9.8273E+06	7.1378E+04
12355.84	0.00156	0.00070	0.00226	247.67	3.2409E+06	3.3102E+04
12481.92	0.00084	0.00036	0.00121	132.22	5.7706E+05	9.1539E+03
12608.00	0.00009	0.00003	0.00012	12.99	0.0000E+00	0.0000E+00

添付資料4

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2 の算定式による応力-ひずみ線図

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2の算定式で計算した B-5 タンクの側板とアニュラ板(両方の材料:HT60)及び底板(材料:SS41)の応力一ひずみ線図の数値を付表 4.1 と付表 4.2 に示す。

ASME Code の算定式と記号に関する記述文の抜粋を付録 4.1 に示す。

σys	450	N/mm2
σ uts	570	N/mm2
۲	0.7894737	
<	0.3381026	
m2	0.1263158	
42	839.91085	
£р	2.00E-05	
εys	2.00E-03	mm/mm
M1	5.18E-02	
41	6.22E+02	
Ξy	205940	N/mm2

付表 4.1 側板とアニュラ板(材料:HT60)の応力—ひずみ線図の計算値

σt	Н	ε1	ε2	γ1	γ2	εt
N/mm2						mm/mm
450	-2.00E+00	1.92E-03	7.15E-03	1.89E-03	1.29E-04	4.20E-03
500	4.65E-01	1.47E-02	1.65E-02	4.16E-03	1.18E-02	1.84E-02
530	1.94E+00	4.53E-02	2.61E-02	9.11E-04	2.56E-02	2.91E-02
550	2.93E+00	9.27E-02	3.50E-02	2.64E-04	3.49E-02	3.79E-02
600	5.39E+00	4.98E-01	6.97E-02	1.03E-05	6.97E-02	7.27E-02
650	7.86E+00	2.34E+00	1.31E-01	3.49E-07	1.31E-01	1.35E-01
700	1.03E+01	9.78E+00	2.36E-01	1.05E-08	2.36E-01	2.40E-01
750	1.28E+01	3.71E+01	4.08E-01	2.89E-10	4.08E-01	4.12E-01
800	1.53F+01	1.29F+02	6.80F-01	7.27F-12	6.80F-01	6.84F-01

ここに、σ_t:真応力、 ε_t:真ひずみ

σys	245	N/mm2
σ uts	400	N/mm2
R	0.6125	
K	0.3923987	
m2	0.2325	
A2	708.50043	
£р	2.00E-05	
εys	2.00E-03	mm/mm
M1	1.07E-01	
A1	4.77E+02	
Ev	205940	N/mm2

付表 4.2 底板(材料: SS41)の応力—ひずみ線図の計算値

σt	Н	ε1	ε2	γ1	γ2	εt
(N/mm2)						(mm/mm)
245	-2.00E+00	1.96E-03	1.04E-02	1.93E-03	1.87E-04	3.30E-03
270	-1.18E+00	4.87E-03	1.58E-02	4.45E-03	1.37E-03	7.12E-03
300	-1.91E-01	1.30E-02	2.48E-02	7.75E-03	1.01E-02	1.93E-02
350	1.45E+00	5.51E-02	4.82E-02	2.86E-03	4.57E-02	5.02E-02
400	3.10E+00	1.92E-01	8.55E-02	3.92E-04	8.54E-02	8.77E-02
450	4.74E+00	5.79E-01	1.42E-01	4.41E-05	1.42E-01	1.44E-01
500	6.39E+00	1.55E+00	2.23E-01	4.41E-06	2.23E-01	2.26E-01
550	8.03E+00	3.78E+00	3.36E-01	4.01E-07	3.36E-01	3.39E-01
600	9.67E+00	8.54E+00	4.89E-01	3.38E-08	4.89E-01	4.92E-01
650	1.13E+01	1.80E+01	6.90E-01	2.67E-09	6.90E-01	6.93E-01
700	1.30E+01	3.61E+01	9.49E-01	1.99E-10	9.49E-01	9.53E-01

ここに、σ_t:真応力、 ε_t:真ひずみ

付録 4.1

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2の抜粋

3.D.3 Stress Strain Curve

The following model for the stress-strain curve shall be used in design calculations where required by this Division when the strain hardening characteristics of the stress-strain curve are to be considered. The yield strength and ultimate tensile strength in paragraphs 3.D.1 and 3.D.2 may be used in this model to determine a stress-strain curve at a specified temperature.

$$\varepsilon_t = \frac{\sigma_t}{E_y} + \gamma_1 + \gamma_2 \tag{3.D.1}$$

where

$$\gamma_1 = \frac{\varepsilon_1}{2} \left(1.0 - \tanh[H] \right) \tag{3.D.2}$$

$$\gamma_2 = \frac{\varepsilon_2}{2} \left(1.0 + \tanh[H] \right) \tag{3.D.3}$$

$$\mathcal{E}_{1} = \left(\frac{\sigma_{t}}{A_{1}}\right)^{\frac{1}{m_{1}}}$$
(3.D.4)

$$A_{1} = \frac{\sigma_{ys} \left(1 + \varepsilon_{ys}\right)}{\left(\ln\left[1 + \varepsilon_{ys}\right]\right)^{m_{1}}}$$
(3.D.5)

$$m_{1} = \frac{\ln[R] + (\varepsilon_{p} - \varepsilon_{y_{2}})}{\ln\left[\frac{\ln[1 + \varepsilon_{p}]}{\ln[1 + \varepsilon_{y_{2}}]}\right]}$$
(3.D.6)

$$\varepsilon_2 = \left(\frac{\sigma_t}{A_2}\right)^{\frac{1}{m_2}}$$
(3.D.7)

$$A_2 = \frac{\sigma_{utr} \exp[m_2]}{m_2^{m_2}}$$
(3.D.8)

$$H = \frac{2\left[\sigma_t - \left(\sigma_{yz} + K\left\{\sigma_{utz} - \sigma_{yz}\right\}\right)\right]}{K\left(\sigma_{utz} - \sigma_{yz}\right)}$$
(3.D.9)

$$R = \frac{\sigma_{y_5}}{\sigma_{u_5}} \tag{3.D.10}$$

$$\varepsilon_{yz} = 0.002$$
 (3.D.11)

$$K = 1.5R^{1.5} - 0.5R^{2.5} - R^{3.5}$$
(3.D.12)

The parameters m_2 , and ε_p are provided in Table 3.D.1.The development of the stress strain curve should be limited to a value of true ultimate tensile stress at true ultimate tensile strain. The stress strain curve beyond this point should be perfectly plastic. The value of true ultimate tensile stress at true ultimate tensile strain is calculated as follows:

$$\sigma_{uts,t} = \sigma_{uts} \exp[m_2] \tag{3.D.13}$$