屋外タンク貯蔵所の耐震安全性に係る調査検討

報告書(案)

平成29年3月

総務省消防庁危険物保安室

はじめに

危険物を大量に貯蔵する屋外タンク貯蔵所は、危険物が流出した場合の影響が大きいこ とから、過去に発生した地震を教訓に技術基準の見直しを重ね、東北地方太平洋沖地震で も、危険物の流出事故はほとんど報告されておらず、「東日本大震災を踏まえた危険物施設 等の地震・津波対策のあり方に係る検討会」(座長:亀井浅道)においても、現行基準は妥 当なものとされている。

しかしながら、中央防災会議等において、東日本大震災を踏まえて従来の想定を超える ような南海トラフ地震等の想定地震動の検討が進められていたことを踏まえ、消防庁危険 物保安室では平成26年度から「屋外タンク貯蔵所の耐震安全性に係る調査検討会」を開催 し、新たな大規模な地震に対する屋外タンク貯蔵所の耐震安全性について検討を開始した。

平成 26 年度及び平成 27 年度は、内閣府が公開している南海トラフ地震の想定地震動に 対する屋外タンク貯蔵所の耐震安全性について、屋外貯蔵タンク、基礎・地盤及び浮き屋 根に分けて検討を行った。屋外貯蔵タンクについては、大規模地震の挙動をより正確に反 映させるため、従来のものより精緻な 1 質点系モデルを採用して時刻歴応答解析により側 板直下部の浮き上がり変位及び浮き上がり回数を検討し、それを基に 2 次元軸対称モデル による浮き上がりの繰返し挙動を考慮した隅角部の疲労損傷度の評価及び 3 次元シェルモ デルによる底板浮き上がり時の側板の座屈強度の評価を行った。基礎・地盤については、 断面 2 次元非線形有効応力解析によりその変形の評価を行った。浮き屋根については、線 形有限要素法浮き屋根動的応答解析システムを用いて、時刻歴地震応答解析を行いポンツ ーンに発生する応力を評価した。

平成28年度は、同じく内閣府が公開している首都直下地震の想定地震動に対する屋外タ ンク貯蔵所の耐震安全性について検討を行った。この想定地震動は周期が2~3秒よりも短 い領域で強く揺れることを想定したものであることから、短周期地震動の影響を強く受け る屋外貯蔵タンク及び基礎・地盤について検討した。なお、解析手法は平成26年度及び平 成27年度の解析手法を踏襲している。

3ヶ年の検討の結果、南海トラフ地震及び首都直下地震において、概ね致命的な被害は ないとの評価結果が得られたところである。また、各事業者が自ら更なる耐震安全性の向 上を図る上で有効な対策についても取りまとめられた。今後新たな知見を踏まえた地震動 の想定がなされた際等に各事業所等が屋外タンク貯蔵所の耐震安全性の検討を行う上で参 考とされることを期待するものである。

本報告書がとりまとめられたのは、ご多忙中にも関わらず積極的に参加し、専門的な知 見からの貴重な意見により熱い議論をしていただいた委員各位の協力の賜であり、深く感 謝申し上げる次第である。

平成29年3月

屋外タンク貯蔵所の耐震安全性に係る調査検討会

座 長 亀井 浅道

屋外タンク貯蔵所の耐震安全性に係る調査検討報告書

報告書目次

第1部 調査検討の概要
1 調査検討の目的
2 調查検討事項
3 調査検討体制
4 調査検討経過
第2部 南海トラフ地震に対する耐震安全性の確認
第1章 地震波形の作成
1 地震波形作成手法の検証
2 地震波形の作成
3 地震波形作成のまとめ
第2章 屋外貯蔵タンクの耐震安全性の解析
1 屋外タンク貯蔵所の耐震安全性の解析手法の検証
2 屋外タンク貯蔵所の耐震安全性の解析(平成 26 年度)
3 屋外タンク貯蔵所の耐震安全性の解析(平成 27 年度)
4 屋外タンク貯蔵所の耐震安全性の解析のまとめ
第3章 地盤・構造物の耐震安全性の解析
1 基礎・地盤の耐震安全性の解析条件の設定
2 基礎・地盤の耐震安全性の解析
3 基礎・地盤の耐震安全性の解析のまとめ
第4章 浮き屋根の耐震安全性の解析
1 浮き屋根の耐震安全性の解析の概要
2 解析対象地区及びタンクの選定
3 浮き屋根の簡易耐震強度調査
4 浮き屋根の有限要素法モデルによる詳細耐震強度調査
5 浮き屋根の耐震安全性の解析の概要のまとめ
第3部 首都直下地震に対する耐震安全性の確認
第1章 地震波形の解析
1 地震波形の作成
 2 地震波形作成のまとめ
第2章 屋外貯蔵タンクの解析
第3章 地盤・構造物の解析

第4部 まとめ

第1部 調査検討の概要

第1部 調査検討の概要

1 調査検討の目的

危険物を大量に貯蔵する屋外タンク貯蔵所は、危険物が流出した場合の影響が大きいことから、 過去に発生した地震を教訓に技術基準の見直しを重ね、東北地方太平洋沖地震においても危険物 の流出事故はほとんど報告されておらず、平成23年度に開催した「東日本大震災を踏まえた危 険物施設等の地震・津波対策のあり方に係る検討会」においても、現行基準は妥当なものとされ ている。

しかしながら、中央防災会議等において、東北地方太平洋沖地震を踏まえて従来の想定を超え るような南海トラフ地震等の想定地震動の検討が進んでいることから、新たに想定された大規模 な地震に対する屋外タンク貯蔵所の耐震安全性について検討を行うため、「屋外タンク貯蔵所の 耐震安全性に係る調査検討会」(以下「検討会」という。)を開催する。

2 調査検討事項

検討対象の地震は、東北地方太平洋沖地震以降に内閣府が新たに想定した地震動のうち、 検討会開催時点で公開されている西日本を中心に大きな被害が予想されている南海トラフ地 震(短周期地震動及び長周期地震動)及び首都圏に大きな被害が予想されている首都直下地 震(短周期地震動)とした。なお、首都直下地震の長周期地震動の地震波形は検討会開催時 点では公開されていない。

耐震安全性の調査検討にあたっては、消防法令の基準に基づいて設置されている屋外タン ク貯蔵所の各設備等のうち、地震により損傷すれば大規模火災や危険物の大量流出等の致命 的な被害を生じる恐れのある屋外貯蔵タンク、基礎・地盤及び浮き屋根について、それぞれ 分けて検討を行うこととした。その際、タンク本体及び基礎・地盤は主に周期が2~3秒以 下の短周期地震動の影響を強く受けることから、内閣府が公開している工学的基盤の短周期 地震動を基に地表の地震波形を作成して解析を行い、浮き屋根は2秒~10数秒の長周期地震 動の影響を強く受けることから、内閣府が公開している地表の地震波形をそのまま用いて解 析を行った。

調査検討項目は以下のとおりである。

- 地震波形の作成
- (2) 屋外貯蔵タンクの耐震安全性の解析
- (3) 基礎・地盤の耐震安全性の解析
- (4) 浮き屋根の耐震安全性の解析(南海トラフ地震のみ)

- ※ 本検討会で使用する略語は以下のとおり
- ・消防法(昭和23年法律第186号)・・・法
- ・危険物の規制に関する政令(昭和34年政令第306号)・・・政令
- ・危険物の規制に関する規則(昭和34年総理府令第55号)・・・規則
- ・危険物の規制に関する技術上の基準の細目を定める告示(昭和49年自治省告示第99号)・・・ 告示
- ・屋外タンク貯蔵所のタンク本体・・・タンク本体
- ・屋外タンク貯蔵所の基礎・地盤・・・基礎・地盤
- ・危険物の規制に関する政令及び消防法施行令の一部を改正する政令(昭和52年政令第10号) の施行後に設置許可の申請がなされた特定屋外タンク貯蔵所・・・新法タンク
- ・危険物の規制に関する政令及び消防法施行令の一部を改正する政令(昭和52年政令第10号)の施行の際、現に法第11条第1項前段の規定による設置に係る許可を受け、又は当該許可の申請がされていた特定屋外タンク貯蔵所で、その構造及び設備が政令第11条第1項第3号の2又は第4号に定める技術上の基準に適合していなかったもののうち、その構造及び設備が昭和52年政令第10号附則第3項各号に定める技術基準に適合しているもの・・・旧法タンク
- ・石油コンビナート等災害防止法第2条第2号に規定する石油コンビナート等特別防災区 域・・・特防区域

3 調查検討体制

屋外貯蔵タンクの検査方法の高度化・合理化に係る調査検討会(五十音順敬称略)

※() は前任者

- 座 長 亀井 浅道 元横浜国立大学 安心・安全の科学研究教育センター 特任教授
- 委 員 青木 雅志 石油化学工業協会
 - 今木 圭 電気事業連合会 工務部副部長(平成 27 年度から)
 - (岩岡 覚 電気事業連合会 工務部副部長(平成 26 年度))
 - 奥村 研一 堺市消防局 予防部 危険物保安課長(平成28年度)
 - (中原 訓史 堺市消防局 予防部 危険物保安課長(平成27年度まで))
 - 河野 和間 元横浜国立大学 客員教授
 - 菅野 浩一 川崎市消防局 予防部 危険物課長(平成 28 年度)
 - (高橋 俊勝 川崎市消防局 予防部 危険物課長(平成27年度まで))
 - 岸川 有一 石油連盟 設備管理専門委員会 タンク部会長
 - 座間 信作 横浜国立大学 リスク共生社会創造センター 客員教授
 - 寒川 慎也 危険物保安技術協会 タンク審査部長
 - 龍岡 文夫 東京理科大学 理工学部土木工学科 教授
 - 西 晴樹 消防庁消防研究センター 火災災害調査部長
 - 野本 敏治 東京大学名誉教授
 - 畑山 健 消防庁消防研究センター 施設等災害研究室長(平成27年度から)
 - 丸山 裕章 独立行政法人 石油天然ガス・金属鉱物資源機構 備蓄企画部 エンジニアリングチーム チームリーダー
 - 八木 高志 危険物保安技術協会 土木審査部長
 - 山内 芳彦 一般社団法人日本産業機械工業会 タンク部会技術分科会
 - 山田 實 元横浜国立大学 リスク共生社会創造センター 客員教授

事務局 秋葉 洋 消防庁危険物保安室長(平成28年度)

(白石 暢彦 消防庁危険物保安室長(平成27年度))

(鈴木 康幸 消防庁危険物保安室長(平成26年度))

七條 勇佑 消防庁危険物保安室課長補佐(平成27年度から)

(大嶋 文彦 消防庁危険物保安室課長補佐(平成26年度))

- 松坂 竜男 消防庁危険物保安室パイプライン係長(平成 27 年度から)
- (工藤 守 消防庁危険物保安室パイプライン係長(平成 26 年度))
- 佐々木 隆行 消防庁危険物保安室総務事務官(平成28年度)

(賣井坂 常幸 消防庁危険物保安室総務事務官(平成27年度まで))

1.4 調査検討経過

検討の経過は以下のとおりである。

○平成 26 年度

第1回検討会	平成 26 年 12 月 2 日
第2回検討会	平成 27 年 3 月 19 日

○平成 27 年度

第1回検討会	平成27年7月3日
第2回検討会	平成 28 年 3 月 17 日

○平成 28 年度

第1回検討会	平成 28 年 7 月 14 日
第2回検討会	平成 29 年 2 月 27 日
第3回検討会	平成 29 年 3 月 23 日

第3部 首都直下地震に対する耐震安全性の確認

第1章 地震波形の作成

1 地震波形の作成

首都直下地震に対する屋外タンク貯蔵所のタンク本体及び基礎・地盤の耐震安全性の検 証を行うため、平成25年に内閣府から公開された工学的基盤における首都直下地震の想定 地震動(短周期地震動)から、地震応答解析により地表の地震波形の作成を行う。

1.1 首都直下地震の概要

内閣府上が推定した首都直下地震の震源域を図 1.1.11 に示す。このうち国が防災対策上の対象地震としており、地震波形が公開提供されている「都心南部直下(Mw7.3)」の地震を、本検討においても対象地震とする。

図 1.1.1 首都直下地震の震源域

1 内閣府首都直下地震モデル検討会:首都直下のM7クラスの地震及び相模トラフ沿いの M8クラスの地震等の震源断層モデルと震度分布・津波高等に関する報告書 (平成 25 年 12 月 19 日発表)

1.2 地表における地震波形の作成の流れ

図 1.2.1 に示す手順により、首都直下地震の想定地震波形を作成する。

内閣府が作成した工学的基盤における首都直下地震の地震波形は、震源モデルや既知の 歴史地震との比較分析により妥当性が確認されている。また、今回の作成手法は、一定の 妥当性があることを確認している平成 26 年度の南海トラフ地震の地震波形の作成手法

(第2部第1章)と同様の手法を用いる。一方、内閣府から公開された想定地震波形については、統計的グリーン関数法により工学的基盤約1kmメッシュごとに推計した結果であり、統計上のばらつきが生じている可能性があること、また、解析対象とする特防区域で複数のメッシュが存在することから、対象地域の地震波形を選定する際には統計的に処理して妥当性を確認する。なお、統計的グリーン関数法により推計された地震波形は、南海トラフ地震の長周期地震動などで採用されている三次元差分法による推計と異なり、主に短周期成分に着目した結果であることに留意する必要がある。

1.3 対象地区

内閣府から公開されている首都直下地震による震度分布(図1.3.1)を参照して、東京湾 沿岸の特防区域のうち、大規模な屋外タンク貯蔵所が多数所在し、かつ、想定震度が震度 6強となる主な特防区域として、京浜臨海、根岸臨海、京葉臨海中部の3地区を選定し た。

図 1.3.1 首都直下地震による震度分布 出典:内閣府首都直下地震モデル検討会:

首都直下のM7クラスの地震及び相模トラフ沿いのM8クラスの地震等の震源断層モデルと震度分布・津波高等に関する報告書 図表集(平成25年12月19日発表)

1.4 計算に用いる首都直下地震の工学的基盤における地震波形

内閣府から公開されている解析対象地区の工学的基盤での波形(1km メッシュ毎)から 各地区に存在するタンクのバルジング固有周期帯で加速度応答スペクトルが最大となる波 形を選定した。表 1.4.1 に最大加速度値を示す。また、工学的基盤での波形及びスペクト ルを図 1.4.1~図 1.4.12 に示す。

計毎地区	最大加速度(cm/s ²)			
刈豕地区	NS	\mathbf{EW}		
京浜臨海地区	220.5	562.4		
根岸臨海地区	168.4	469.3		
京葉臨海中部地区	442.6	46.8		

表1.4.1 首都直下地震の工学的基盤での最大加速度

図 2.4.1 京浜臨海地区(川崎)の内閣府(2013)波形公開位置(約1kmメッシュ) と 採用波形の位置

図 1.4.2 京浜臨海地区(川崎)の全メッシュと平均の加速度応答スペクトル (EW 成分 h=5%)

図 1.4.3 京浜臨海地区(川崎)の平均と周期 0.2~0.8 秒での最大の加速度応答スペクト ル(EW 成分 h=5%)

図 1.4.4 京浜臨海地区(川崎)で採用した時刻歴波形と応答スペクトル(h=10%)

図 1.4.5 根岸臨海地区の内閣府(2013)波形公開位置(約 1km メッシュ) と 採用波形の位置

図 1.4.6 根岸臨海地区の全メッシュと平均の加速度応答スペクトル (EW 成分 h=5%)

(EW 成分 h=5%)

図 1.4.9 京葉臨海中部地区の内閣府(2013)波形公開位置(約 1km メッシュ) と 採用波形の位置

図 1.4.10 京葉臨海中部地区の全メッシュと平均の加速度応答スペクトル (NS 成分 h=5%)

図 1.4.11 京葉臨海中部地区の平均と周期 0.1~1.0 秒での最大の加速度応答スペクトル (NS 成分 h=5%)

1.5 解析対象地区の地盤構成の検討

地震応答解析を考えた場合、地盤構成、物理特性及び動的変形特性等を適切に考慮して 設定することが重要である。また、屋外タンク貯蔵所の基礎・地盤については、液状化対 策が行われていることが前提となる。したがって、関係団体より提供されたデータ(地盤 調査及び液状化対策工法に関する資料)を詳細に吟味するとともに、既往調査資料や各種 文献などのデータも参考にしながら定数を設定した。

1.5.1 京浜臨海地区

設定した地盤モデルについて表 1.5.1 に示す。埋め立て地盤であり、地表から深さ 10m 付近までN値 10 前後の砂質土層と深さ 10m~30m 付近まで粘性土層の有楽町層と呼ばれ る沖積層、その下部には粘性土と砂質土の互層となる洪積層が深さ 70m 付近まで続き、S 波速で 450m/s となる礫質層が工学的基盤となる地盤構成となっている。図 1.5.1 に示す 港湾地域強震観測(川崎地-M)が設置されている地点の地盤情報等を元にモデル化を行っ た。動的変形曲線は、池田ら(2012)2(図 1.5.2)を参考に設定した。

また、図 1.5.3 及び図 1.5.4 で示すように東京湾で発生した地震による観測記録を用いて 再現計算を行ったうえで、モデルの妥当性を確認した。

1.5.2 根岸臨海地区

設定した地盤モデルについて表 1.5.2 に示す。埋め立て地盤であり、地表から深さ 6m 程度で N 値 50 以上、S 波速で 470m/s、工学的基盤となる上総層群が確認され、その上部 に沖積の砂質土層や粘性土層が薄く堆積する地盤構成となっている。原地盤の地盤情報を 元にモデル化を行った。図 1.5.5 に示す横浜市が公開している柱状図 ³を基本に、図 1.5.6 港湾地域強震観測(山下-F)が設置されている地点の地盤情報等を元にモデル化を行っ た。動的変形曲線は、京浜臨海地区同様に池田ら(2012)より設定した。

根岸臨海地区周辺には一般公開されている地震観測記録はなく、その妥当性は検証でき ていないが、地盤モデルが比較的単純であるため影響は少ないと判断した。

1.5.3 京葉臨海中部地区

設定した地盤モデルについて表 1.5.3 に示す。埋め立て地盤であり、地表から深さ 20m 付近までN値 5~15 前後の砂質土層、N値 0~3 前後の粘性土層からなる沖積層が堆積し ている。沖積層の下には埋没した段丘堆積物である N値 50 を確認する洪積層があり、一 般的な杭基礎などはこの層を基盤としている。しかし、下部には N値 20 以上ではあるも

² 池田他(2012):地盤の非線形地震応答解析による 2011 年東北地方太平洋沖地震における東京湾臨海部の地震時挙動の検討、土木学会第 67 回年次学術講演会 I-232

³ 横浜市地盤地図情報 「地盤View(じばんびゅー)」

http://wwwm.city.yokohama.lg.jp/agreement.asp?dtp=3&

のの洪積の粘性土層があらわれ、50m 付近で N 値 50 以上と工学的基盤となるような砂質 土層からなる地盤構成となっている。図 1.5.7 に示す千葉県が公開している柱状図 4を基 本に、図 1.5.8 に示す港湾地域強震観測(千葉-G)が設置されている地点の地盤情報等を 元にモデル化を行った動的変形曲線は、京浜臨海地区同様に池田ら(2012)を参考に設定 した。

さらに、港湾地域強震観測(千葉・G)においては、図 1.5.9 及び図 1.5.10 で示すよう に、H23 東北地方太平洋沖地震等による観測記録を用いて再現計算を行ったうえで、観測 記録の増幅特性などを再現できる S 波速度を設定するなど地盤定数のチューニングを行 い、工学的基盤の S 波速度を 700m/s に設定するなどモデル化に反映した。

		深さ(m)		代表N	密度	P 波速度	S 波速度
記号 土質	土質	上端下端	值	q(t/m3)	Vp	Vs	
			1		p(t/m0/	(m/sec)	(m/sec)
FI	埋土·盛土	0.00	0.50	5	1.90	460	150
SF	沖積砂質土	0.50	5.00	5	1.95	1500	150
SF	沖積砂質土	5.00	12.00	12	1.95	1500	190
М	沖積シルト	12.00	16.00	3	1.65	1500	130
М	沖積シルト	16.00	32.00	3	1.65	1500	150
С	沖積粘性土	32.00	42.50	5	1.65	1500	210
SF	洪積砂質土	42.50	46.50	30	1.85	1500	380
С	洪積粘性土	46.50	52.50	14	1.70	1500	250
SF/M	洪積砂質土	52.50	60.50	30	1.70	1500	250
М	洪積シルト	60.50	68.00	14	1.70	1500	250
GF	礫質土	68.00	74.00	50	2.00	1500	450

表 1.5.1 京浜臨海地区の地盤モデル

4 千葉情報マップ https://www.pref.chiba.lg.jp/jousei/chibamap/

図 1.5.2 京浜臨海地区で参考にした動的変形曲線

図 1.5.3 2005.6の東京湾での地震の再現計算結果(京浜臨海地区 NS 成分)

		深さ	(m)	代表 N 値	密度	P 波速度	S 波速度
記号 土質	土質	トな半	下涉		值 <i>p</i> (t/m3)	Vp	Vs
		ᆂᄩ	「五日	ļ		(m/sec)	(m/sec)
FI	埋土·盛土	0.00	2.40	10	1.60	380	160
S	沖積砂質土	2.40	4.80	11	1.70	1290	230
М	沖積シルト	4.80	6.00	3	1.60	1530	220
R	岩盤	6.00	8.35	50	1.90	1790	470

表 1.5.2 根岸臨海地区の地盤モデル

土 質 柱 状 図

(横浜市地盤地図情報 「地盤View(じばんびゅー)」)

(港湾強震計 山下-F)

		深さ(m)		代表N	密度	P 波速度	S 波速度
記号	土質	上端	下端	值	q(t/m3)	Vp	Vs
			1 - 114		10, 0, 000,	(m/sec)	(m/sec)
В	埋土·盛土	0.00	1.20	13.0	1.60	460	100
As1	沖積砂質土	1.20	2.50	6.0	1.60	1410	100
Ac1	沖積粘性土	2.50	4.30	0.0	1.50	1410	100
As2	沖積砂質土	4.30	11.70	16.1	1.80	1410	150
Ac2	沖積粘性土	11.70	19.40	3.1	1.70	1410	120
Ds1	洪積砂質土	19.40	22.80	43.7	2.00	1580	290
Dc1	洪積粘性土	22.80	26.05	25.3	2.00	1580	290
Dc2	洪積粘性土	26.05	32.80	46.9	2.00	1580	290
Dc3	洪積粘性土	32.80	48.10	28.8	1.90	1580	250
Ds2	洪積砂質土	48.10	50.00	41.5	2.00	1500	290
Ds3	洪積砂質土	50.00	53.44	50.0	2.20	1640	700

表1.5.3 京葉臨海中部地区の地盤モデル

図 1.5.7 京葉臨海中部地区の参考とした柱状図例(千葉マップ)

図 1.5.8 京葉臨海中部地区の参考とした柱状図例(港湾強震計 千葉-G)

図 1.5.9 H23 東北地方太平洋沖地震の再現計算結果(京葉臨海中部地区 NS 成分)

図 1.5.10 H23 東北地方太平洋沖地震の再現計算結果(京葉臨海中部地区 EW 成分)

1.6 地震応答解析による地表の地震波形の作成

これまでの検討結果を踏まえ、首都直下地震の工学的基盤の波形を入力地震波として、 対象地区における地表面での地震波形の作成を行った。

地震応答解析は、首都直下地震という大きな地震動を検討対象とするため、同じ全応力 法でも等価線形解析より大きなひずみで精度が高い全応力逐次非線形解析を採用し、プロ グラムコードは、南海トラフ地震の検討と同様に『YUSAYUSA-2』5を採用した。

解析結果を表 1.6.1、図 1.6.1~図 1.6.3、深さごとの最大応答値を図 1.6.4~図 1.6.6 に 示す。

京浜臨海地区では、深さ10m~30m付近の有楽町層においてひずみ0.5%を超えて1% まで達しており、非線形特性が顕著に表れた結果、最大相対変位は25cmと大きくなる一 方、最大加速度は340cm/s²程度に減衰している。

根岸臨海地区では堆積層が薄く、ひずみも最大 0.2%程度であり非線形特性は表れていない。その結果、最大相対変位は最大 1cm と小さいが、最大加速度は 570cm/s²に増幅している。

京葉臨海中部地区では、深さ10m~20m付近の有楽町層においてひずみ0.5%を超えて 非線形特性が表れているが、最大相対変位は10cm程度にとどまり、最大加速度は 300cm/s²程度に若干減衰した結果となっている。

计在地区	最大加速度(cm/s ²)				
刘家地区	NS	\mathbf{EW}			
京浜臨海地区	130.9	342.3			
根岸臨海地区	242.9	568.5			
京葉臨海中部地区	301.3	86.1			

表 1.6.1 首都直下地震の地表での最大加速度

⁵ 吉田望, 東畑郁生: YUSAYUSA-2 SIMMDL-2 理論と使用法 v2.10, 2003

図 1.6.1 京浜臨海地区の地表面での時刻歴波形と応答スペクトル(h=10%)

図 1.6.2 根岸臨海地区の地表面での時刻歴波形と応答スペクトル(h=10%)

図 1.6.3 京葉臨海中部地区の地表面での時刻歴波形と応答スペクトル(h=10%)

図 1.6.4 京浜臨海地区の深さ方向最大応答分布

図 1.6.5 根岸臨海地区の深さ方向最大応答分布

図 1.6.6 京葉臨海中部地区の深さ方向最大応答分布

2 まとめ

首都直下地震として選定した都心南部直下(Mw7.3)は、フィリピン海プレート内のM 7クラスの地震として、地震の発生場所の想定は難しいが都区部及び首都地域の中核都市 等の直下に想定する地震として設定されたものである。その強震断層モデルはシンプルに 南北に設定されていることから、解析において方位依存性の影響が顕著に表れた結果とな っており、公開波形のNS成分、EW成分のバランスが極端になっていることを考える と、各地域の大きい成分を解析において利用するのが妥当である。図2.1に3地区の最大 成分の比較を示す。

最大加速度で比較すると、根岸臨海地区 > 京浜臨海地区 > 京葉臨海中部地区である。加速度応答スペクトルで比較すると 0.8 秒より短周期成分で根岸臨海地区が大きく、 長周期成分では京浜臨海地区が大きい結果となっている。

京浜臨海地区は震源からも近く、工学的基盤面での入力地震動は最大であったにもかか わらず、地表での最大加速度値などは一番小さくなっている。この結果は前項2.5で示 した地盤モデル、特に工学的基盤の深さや軟弱な粘土層である有楽町層の層厚の影響によ り、地盤の非線形特性が表れている結果である。図2.2に東京湾の海底地形に約2万年前 に古い地層を削った古東京川を示したもの、図2.3に関東地方の海進・海退による地形の 変遷を示す。

屋外タンク貯蔵所の固有周期 0.2 秒~0.8 秒付近の加速度応答値では、根岸臨海地区が 一番大きく、京浜臨海地区、京葉臨海中部地区は同程度であることがわかる。

まとめると、3地区において短周期成分が卓越しタンクの浮き上がりなどに一番厳しい 状況が予想されるのは根岸臨海地区である。また、非線形特性が顕著に表れ地震動の長周 期化や大きな地盤変形が予想されるのは京浜地区である。京葉臨海中部地区は、どの周期 帯をとっても、特徴的な2地区の中間的な地震応答結果を示す。

図 2.1 3地区の最大成分の時刻歴波形と応答スペクトル(h=10%)

図中緑の部分は陸地を表し、茶色の部分は海底地形を表す。 なお、陸地部の地形の凹凸は表現していない。

図 2.2 東京湾の海底地形。

((財)日本水路協会海洋情報センターの海底地形データを参考に作成)

⁶ 社団法人東京都地質調査業協会:技術ノート(No.37)特集東京湾(平成16年11月)

図2a:12.5万年前

図2c:7千年前

図2b:2万年前

図2d:現在

図 2.3 関東地方の海進・海退による地形の変遷(赤線は現在の海岸線を示す。)? (「日本の自然4 日本の平野と海岸」:貝塚爽平他(岩波書店)、に加筆)

7 社団法人東京都地質調査業協会:技術ノート(No.37)特集東京湾(平成16年11月)

第2章 屋外貯蔵タンクの耐震安全性の解析

1 屋外貯蔵タンクの耐震安全性の解析の概要

東北地方太平洋沖地震の再現波形で検証された解析手法及び平成 27 年度に検討されたマル チリニア型非線形ばね特性を使用する質点系モデル(第2部第2章)を用い、首都直下地震 (短周期地震動の水平成分)に対する屋外貯蔵タンクの耐震安全性を解析にて確認する。

1.1 解析の流れ

本調査は図1.1に示す手順により、以下の3種類の解析を実施した。

(1) 質点系モデルによる代表タンクの側板下端部の浮き上がり解析

(2) 2 次元軸対称モデルによる浮き上がりの繰返し挙動を考慮した隅角部の疲労損傷度評価解析

(3)3次元シェルモデルによる底板浮き上がり時の側板の座屈強度評価解析

図1.1 首都直下地震に対する屋外貯蔵タンク耐震安全性確認解析の流れ

1.2 解析対象タンクの検討

首都直下地震の想定地震動の作成対象の3つの特防地区(A地区、B地区、C地区)に設置された屋外タンク貯蔵所のタンクを容量別に整理し、1000 KL、5000 KL~6000 KL、10000 KL、30000 KL、50000 KL、70000 KL~77000 KL、100000 KLの容量のものを検討対象とした。これらの容量をもつ各地区の代表タンクの板厚、材質等は入手データに基づき、表 1.2.1 のとおりとした。

地区	タンク番号	許可容量	内容物	比重	内径	高さ	許可液面	側板板	厚(mm)	アニュラ板厚	材	質
		(KL)			(m)	(m)	(m)	最下段	液高1/3	(mm)	側板	アニュラ板
	1	1000	ヘキサン	0.67	11.60	12.19	10.88	6.0	4.9	10.0	SS41	SM400C
A	2	5000	軽油	0.83	23.24	12.24	11.79	12.0	9.2	9.0	SS41	SS41
(6基)	3	10000	ナフサ	0.74	32.93	15.20	11.70	19.0	14.1	12.0	SM41A	SM400C
	4	30000	原油	0.89	53.60	16.46	12.88	35.0	26.9	12.0	SM41W	SS41
	5	50000	原油	0.89	61.00	20.10	16.16	21.0	17.3	15.0	WELCON2H	SM490C
	6	75000	軽油	0.88	70.00	21.96	19.62	30.0	23.9	18.0	HW50	SPV490Q
	1	1000	潤滑油	1.00	11.63	10.72	9.42	6.0	4.1	6.0	SS41	SS41
В	2	6000	重油	1.00	29.07	10.76	9.07	14.0	8.4	9.0	SS41	SS400
(7基)	3	10000	重油材	1.00	32.94	13.80	11.63	18.0	12.8	8.0	SS41	SS41
	4	30000	重油	1.00	52.33	16.75	13.16	17.0	13.8	12.0	HT60	SPV490Q
	5	50000	原油	0.87	69.77	15.29	12.61	22.1	18.1	11.4	HT60	HT60
	6	77000	原油	0.86	77.27	19.49	16.36	30.0	22.8	12.0	HT60	SM58Q
	7	100000	原油	1.00	81.48	22.57	19.06	36.0	28.0	12.0	HT60	HT60
	1	1000	DIB	0.72	11.62	12.16	10.85	6.0	4.4	9.0	SS41	SS41
С	2	5000	ジェット	0.76	23.25	13.76	12.38	13.0	9.9	12.0	SS41	SM41C
(7基)	3	10000	重油	0.86	32.93	13.76	11.89	18.0	13.5	12.0	SS41	SM400C
	4	30000	ガソリン	0.80	45.76	20.14	16.48	18.0	12.2	12.0	SPV50	SPV50
	5	50000	ナフサ	0.75	67.80	18.28	14.41	26.0	20.9	12.0	2H	2H
	6	70000	原油	0.89	67.80	21.96	19.83	30.0	22.3	12.0	HT60	HT60
	7	100000	原油	1.00	81.60	21.88	18.63	30.0	23.0	12.0	HW50	HW50

表 1.2.1 3 つの地区の代表タンクモデル (合計 20 基)の諸元

1.2 内容液の貯蔵率及び比重

(1) 内容液の貯蔵率

安全側の評価となるよう、質点系解析においては、内容液の貯蔵率を100%として解析を 実施した。

(2) 内容液の比重

今回の検討においては、各検討タンクの実内容液の比重を使用して解析を行った。

1.3 質点系モデルによる側板下端部の浮き上がり解析

首都直下地震の検討地域として選択した A 地区、B 地区及び C 地区での代表タンク 20 基について非線形ばね特性を有する質点系モデルを作成し、それぞれの地区のタンクに設置された地区での想定地震動を作用させる地震応答解析を実施した。

解析には有限要素法非線形構造解析プログラム Abaqus 2016 を用いた。

1.3.1 解析モデル・条件

(1) 解析モデルの設定

浮き上がり解析は図 1.3.1 に示す質点系非線形水平ばねモデルを用い、ばねの復元力特性 は図 1.3.2 に示すような屋外貯蔵タンクの浮き上がり挙動を模擬するマルチリニア型非線 形水平ばね特性(Q-Δ 線図)を使用した。このモデルは平成 27 年度に検討した質点系モデル として定式化したものである。

図 1.3.1 質点系非線形水平ばねモデル

図 1.3.2 水平抵抗力 Qと水平変位 △ の線図(一例)

代表タンク 20 基の質点系モデルの諸元を表 1.3.1 から表 1.3.3 に示す(詳細は添付資料 1 の諸元計算シート参照)。解析条件は、平成 27 年度南海トラフ想定地震動に対する屋外貯 蔵タンクの浮き上がり解析と同様(減衰比一律 0.15、側板重量等(側板、側板の付属品及び 固定屋根の重量を含む)を考慮)とした。

諸元	単位	A-1	A-2	A-3	A-4	A-5	A-6
許可容量	KL	1,000	5,000	10,000	30,000	50,000	75,000
バルジング振動の固有周期 T。	s	0.145	0.179	0.172	0.216	0.349	0.378
補正係数」*1	-	1.1	1.1	1.1	1.1	1.1	1.1
バルジング振動の初期剛性 K _b	N/cm	1.03E+07	2.85E+07	4.29E+07	6.31E+07	4.26E+07	6.13E+07
有効液重量 W ₁	N	5.33E+06	2.27E+07	3.16E+07	7.30E+07	1.29E+08	2.18E+08
減衰係数 C _e	N/cm/s	7.09E+04	2.44E+05	3.53E+05	6.50E+05	7.10E+05	1.11E+06
側板自重による鉛直抵抗力 qt	N/cm	7.02E+01	1.25E+02	2.26E+02	2.80E+02	2.34E+02	3.49E+02
最大静液圧 P ₀	N/mm2	7.00E-02	1.00E-01	8.00E-02	1.10E-01	1.40E-01	1.70E-01
タンク直径と重心高さとの比 D/H1	-	2.22	4.76	7.16	10.96	9.86	9.29

表 1.3.1 A 地区の代表タンクの主な諸元

*1: j は、基礎及び地盤とタンク本体の連成の影響に基づく補正係数である

諸元	単位	B-1	B-2	B-3	B-4	B-5	B-6	B-7
許可容量	KL	1,000	6,000	10,000	30,000	50,000	77,000	100,000
バルジング振動の固有周期 T。	s	0.149	0.179	0.191	0.29	0.293	0.334	0.377
補正係数 j *1	-	1	1	1	1	1	1	1
バルジング振動の初期剛性 K _b	N/cm	1.21E+07	2.85E+07	4.58E+07	4.02E+07	3.74E+07	5.64E+07	7.56E+07
有効液重量 W ₁	N	6.68E+06	2.25E+07	4.14E+08	8.37E+07	7.95E+07	1.56E+08	2.66E+08
減衰係数 C。	N/cm/s	8.62E+04	2.43E+05	4.17E+05	5.55E+05	5.22E+05	8.95E+05	1.36E+06
側板自重による鉛直抵抗力 qt	N/cm	6.57E+01	1.35E+02	1.99E+02	2.64E+02	1.97E+02	3.22E+02	4.10E+02
最大静液圧 Po	N/mm2	9.00E-02	9.00E-02	1.10E-01	1.30E-01	1.10E-01	1.40E-01	1.90E-01
タンク直径と重心高さとの比 D/H1	-	2.68	8.26	7.21	10.43	14.78	12.53	11.27

表 1.3.2 B地区の代表タンクの主な諸元

表 1.3.3 C地区の代表タンクの主な諸元

諸元	単位	C-1	C-2	C-3	C-4	C-5	C-6	C-7
許可容量	KL	1,000	5,000	10,000	30,000	50,000	77,000	100,000
バルジング振動の固有周期 T _b	s	0.143	0.156	0.175	0.32	0.269	0.352	0.41
補正係数 j *1	-	1	1	1	1	1	1	1
バルジング振動の初期剛性 K _b	N/cm	1.13E+07	3.68E+07	4.87E+07	3.56E+07	5.24E+07	7.11E+07	6.04E+07
有効液重量 W ₁	N	5.74E+06	2.23E+07	3.71E+08	9.05E+07	9.39E+07	2.19E+08	2.52E+08
減衰係数 C。	N/cm/s	7.70E+04	2.74E+05	4.07E+05	5.44E+05	6.72E+05	1.20E+06	1.18E+06
側板自重による鉛直抵抗力 qt	N/cm	7.10E+01	1.02E+02	1.76E+02	1.95E+02	2.60E+02	3.38E+02	3.54E+02
最大静液圧 P ₀	N/mm2	8.00E-02	9.00E-02	1.00E-01	1.30E-01	1.10E-01	1.70E-01	1.80E-01
タンク直径と重心高さとの比 D/H1	-	2.24	4.49	7.03	7.05	12.47	8.86	11.56

地震の揺れによるタンク隅角部が片浮き上がりを生じたことと想定し、各時刻 t に発生した浮き上がり変位 $\delta_u(t)$ は近似的に次式で表される。

$$\delta_{u}(t) = \frac{D}{H_{1}} [\Delta(t) - \frac{Q(t)}{K_{b}}]$$
(1.3.1)

ここで、

Δ(t): 質点の水平相対変位(応答変位)(cm)

Q(t): 非線形ばねに発生した水平抵抗力 (N)

D: タンクの直径(cm)

D/H₁: タンクの直径と質点重心高さとの比

K_b(=K_e):バルジング振動における等価ばね定数 (N/cm)

図 1.3.3 に示すように、最大応答変位 Δ_{max} と最大応答変位になる時刻における水平抵抗力 Q_{max} を用いて、最大浮き上がり変位 $\delta_{u \cdot max}$ は以下の式で求められる。

図 1.3.3 浮き上がり変位算出の概念図

最大浮き上がり変位発生時の最大応答水平震度K_{h1}、動液圧P_{h1}及び動液圧比αは、浮き 上がり解析から求めたその時刻における水平抵抗力Q、有効液重量W₁及び静液圧P₀を用い て、以下の式で算定する。

 $K_{h1} \approx Q/W_1 \tag{1.3.3}$

 $p_{h1} \approx K_{h1} C_{10} p_0 \tag{1.3.4}$

$$\alpha = p_{h1} / p_0 \tag{1.3.5}$$

C₁₀は、特定屋外貯蔵タンクの最高液面高さHと直径Dとの比により求めた係数である。 (屋外貯蔵所のタンクの基準による算定、それぞれのタンクの算定値は添付資料1参照)。

(2) 入力地震波

入力に使用したA地区、B地区、C地区の首都直下地震の想定地震動(2方向、合計6本) の最大加速度とその発生時刻を表1.3.4に、各想定地震動の加速度応答スペクトルを図1.3.4 から図1.3.6に示す。また、対象タンクの固有周期近傍の加速度応答スペクトルのピーク周 期及びその値も同図に記す。

바고	地震動の	最大加速度(正)	時刻	最大加速度(負)	時刻
地区	方向	(cm/s/s)	(s)	(cm/s/s)	(s)
А	EW	342.3	24.9	-276.7	25.5
	NS	122.9	25.6	-130.9	24.8
В	EW	568.5	22.0	-527.2	22.9
	NS	237.0	22.0	-242.9	22.8
С	EW	86.1	26.9	-85.5	28.2
	NS	301.3	28.3	-265.0	27.9

表 1.3.4 想定地震動の最大加速度と発生時刻

図 1.3.4 A 地区の想定地震動の加速度応答スペクトル(減衰比:0.15)

8.E+02 EW ピークの周期 0.497 秒、 704 cm/s^2 7.E+02 \mathbf{NS} 6.E+02 加速度応答スペクトJU (cm/s/s) ۱ 5.E+02 4.E+02 ピークの周期 0.387 秒、 3.E+02 194 cm/s^2 2.E+02 1.E+02 0.E+00 0.1 1 10 周期 (sec)

図 1.3.5 B地区の想定地震動の加速度応答スペクトル(減衰比:0.15)

図 1.3.6 C地区の想定地震動の加速度応答スペクトル(減衰比:0.15)

1.3.2 解析結果

各地区の代表タンクの浮き上がり変位と浮き上がり回数の解析結果一覧を表 1.3.5 から 表 1.3.7 に示す。各地区の最大浮き上がり変位発生タンクの解析結果の比較を表 1.3.8 に示 す。また、解析結果を用いて、式(1.3.3)~式(1.3.5)より算定した最大浮き上がり変位発生時 の最大応答水平震度及び動液圧比を表 1.3.9 に示す。

代表タンク20基の浮き上がり変位の時刻歴詳細結果は添付資料2に示す。

タンク	内容物	貯蔵内径	許可容量	A地区	EW	A地区 NS		
番号		(m)	(KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数	
				(cm)	正負合計	(cm)	正負合計	
1	ヘキサン	11.6	1000	2.3	72	0.5	46	
2	軽油	23.2	5000	2.5	66	0.4	17	
3	ナフサ	32.9	10000	1	11	0	0	
4	原油	53.6	30000	1	5	0	0	
5	原油	61.0	50000	2.8	42	0.5	10	
6	軽油	70.0	75000	6.6	42	0.9	8	

表1.3.5 A地区想定地震動による浮き上がり解析結果

表 1.3.6 B 地区想定地震動による浮き上がり解析結果

タンク	内容物	貯蔵内径	許可容量	B地区	EW	B地区 NS		
番号		(m)	(KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数	
				(cm)	正負合計	(cm)	正負合計	
1	潤滑油	11.6	1000	5.6	109	1.2	63	
2	重油	29.1	6000	6.7	79	0.9	18	
3	重油材	32.9	10000	8.8	81	0.9	24	
4	重油	52.3	30000	8.6	48	1.4	6	
5	原油	69.8	50000	14.2	32	0	0	
6	原油	77.3	77000	7.3	37	0.9	3	
7	原油	81.5	100000	6.3	39	0.4	6	

タンク	内容物	貯蔵内径	許可容量	C地区 EW		C地区	C地区 NS	
番号		(m)	(KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数	
				(cm)	正負合計	(cm)	正負合計	
1	DIB	11.6	1000	0.2	15	2.3	101	
2	ジェット	23.3	5000	0.2	4	2.3	113	
3	重油	32.9	10000	0	0	1.6	66	
4	ガソリン	45.8	30000	0.6	10	7.8	72	
5	ナフサ	67.8	50000	0	0	6	11	
6	原油	67.8	70000	0.4	4	8.1	58	
7	原油	81.6	100000	0	0	4.1	43	

表1.3.7 C地区想定地震動による浮き上がり解析結果

表 1.3.8 各地区の最大浮き上がり変位発生タンクの解析結果の比較

	タンク	地震動	地震動の	解	析結果の最大	加速度	タンク周期	
地区	番号	の方向	最大加速度	応答加速度	応答変位	浮き上がり変位	応答倍率	Tb
	(容量)		(cm/s/s)	(cm/s/s)	(cm)	(cm)		(s)
Α	6	EW	342.3	578.4	2.8	6.6	1.7	0.3792
	(75000KL)							
В	5	EW	568.5	739.2	2.4	14.2	1.3	0.3156
	(50000KL)							
С	6	NS	301.3	570.3	2.5	8.1	1.9	0.3509
	(70000KL)							

表 3.2.9 最大浮き上がり変位発生時の最大応答水平震度及び動液圧比

	タンク	地震動	水平抵抗力	最大応答	静液圧	動液圧	動液圧比
地区	番号	の方向	Q	水平震度	Po	Ph1	$\alpha = P_{h1}/P_{0}$
	(容量)		(N)	Kh1	(N/mm2)	(N/mm2)	
Α	6	EW	1.25E+08	0.573	0.169	0.078	0.462
	(75000KL)						
В	5	EW	5.16E+07	0.649	0.107	0.056	0.523
	(50000KL)						
С	6	NS	1.15E+08	0.525	0.174	0.072	0.414
	(70000KL)						

代表的な解析結果の一例として、B 地区の最大浮き上がり変位発生タンク(B-5 タンク、 容量:50000 KL)の解析結果の出力線図を図 1.3.7 から図 1.3.9 に示す。サイクルごとの浮 き上がり変位結果を表 1.3.10 に示す。この代表タンクの最大浮き上がり変位は 14.2 cm と なった。

図 1.3.7 応答変位の時刻歴(B地区想定地震動 EW、B-5 タンク)

図 1.3.8 浮き上がり変位の時刻歴(B地区想定地震動 EW、B-5 タンク)

図 1.3.9 復元力の履歴線図(B地区想定地震動 EW、B-5 タンク)

(B 地区想定地震動 EW、B-5 タンク)								
サイクル	浮き上た	が り 変 位 (cm)						
No.	0度側	180度側						
1	9.4	1.2						
2	2.7	7.3						
3	12.2	4.5						
4	7.1	13.4						
5	0.7	3.8						
6	14.2	9.9						
7	5.7	10.4						
8	9.0	14.2						
9	5.1	7.1						
10	7.8	13.4						
11	7.1	6.7						
12	10.5	3.8						
13	2.3	0.5						
14	4.3	0.5						
15	3.2	0.5						
16	_	0.6						
17	-	2.9						

表 1.3.10 浮き上がり変位結果

1.3.3 解析結果まとめ及び詳細検討タンクの選定

検討した3地区において、想定地震動を受ける代表タンク20基の浮き上がり解析結果から以下のことが確認された。

- (1) 今回検討した想定地震動のうち、B 地区 EW 方向の地震動は加速度応答スペクトルの応答加速度(特に 0.15~0.4 秒あたりのタンク周期近傍)が最も大きく、この地震動によるB-5 タンク(50,000KL)の最大浮き上がり変位14.2 cm が最も大きな浮き上がり変位であった。次に大きいのは C 地区の NS 方向の地震動による C-6 タンク(70,000 KL)の8.1 cm、A 地区の EW 方向の地震動による A-6 タンク(75,000 KL)の 6.6 cm という順である。
- (2) A 地区 EW 方向の想定地震動では、A-6 タンク(75,000 KL)の浮き上がり変位が最も大きく、6.6 cm と算定された。 A 地区 NS 方向の地震動の加速度応答スペクトルは EW 方向の地震動の半分以下であるため、この NS 方向の地震動による代表タンク 6 基の浮き上がり変位は EW 方向の地震動による値より小さく、浮き上がりなしあるいは 1.0 cm 以下という結果となった。
- (3) B地区 EW 方向の想定地震動では、代表タンクの7基はすべて5cm以上浮き上がるという結果となった。その中でもB-5タンク(50,000 KL)の浮き上がり変位は最も大きく、14.2 cmと算定された。また、同タンクの挙動は片側(180 度側)に10 cm以上の浮き上がり回数が4回となることが確認された(表 3.2.5 参照)。
 B地区 NS 方向の地震動の加速度応答スペクトルは EW 方向の地震動の半分以下であるため、この NS 方向の地震動による代表タンク7基の浮き上がり変位は EW 方向の地震動による値より小さく、全ての応答値が1.5 cm 以下という結果となった。
- (4) C 地区 NS 方向の想定地震動では、C-6 タンク(70,000 KL)の浮き上がり変位が最も大 きく、約 8.1 cm と算定された。 C 地区 EW 方向の想定地震動の加速度応答スペクトルは NS 方向の地震動の半分以下 であるため、この EW 方向の地震動による代表タンク 7 基の浮き上がり変位は NS 方

向の地震動による値より小さく、全ての応答値が 1.0 cm 以下という結果となった。

3地区 20 基の代表タンクの中で、最も浮き上がり応答変位が大きいのは B地区の B-5 タンクという結果から、本タンクを FEM 詳細解析による隅角部の疲労損傷評価及び側板下端部の座屈強度評価の対象として選定する。

選定タンク: <u>B</u>地区の B-5 タンク(50,000 KL) 最大浮き上がり応答変位 14.2 cm

1.4 2次元軸対称ソリッド要素モデルによる隅角部の疲労損傷度評価

選定したタンク(B-5 タンク)の質点系モデルによる浮き上がり変位と回数の解析結果より、隅角部に発生するひずみ量及び疲労損傷に対する強度を確認するため、非線形構造解析 プログラム Abaqus 2016 による有限要素法を用いた静的弾塑性大たわみ解析を行った。

1.4.1 解析モデル

B-5タンク(公称容量50000 KL)の隅角部を対象として解析モデルを作成した。タンクの主な寸法と諸元を表1.4.1に示す。表に示した側板とアニュラ板の板厚は実測板厚である。

B地区 B-5 タンク						
許可容量	50000 KL					
タンク内径	69765 mm					
タンク高さ		15290 mm				
液面高さ]	12608 mm				
液比重		0.866				
側板の板厚と材料						
1段	22.1 mm	HT60				
2段	19.9 mm	HT60				
3段	18.1 mm	HT60				
4段	15.6 mm	HT60				
5段	13.8 mm	HT60				
6段	10.5 mm	HT60				
7段	9.5 mm	HT60				
8段	9.7 mm	HT60				
9段	9.3 mm	SS41				
10段	9.8 mm	SS41				
アニュラ板厚と材料	11.4 mm	HT60				
底板の板厚	8 mm	SS41				
隅角部隅肉溶接部脚長	W1&W2	12 mm				

表1.4.1 解析対象タンクの主な寸法と諸元

最大浮き上がり点の隅角部の挙動は、2次元軸対称ソリッド要素を用いた静的弾塑性大たわみFEM解析法を用いて解析し、変形とひずみ等を算定する。

隅角部モデル化の範囲を図1.4.1(a)、隅角部の一部の要素分割を図1.4.1(b)に示す。図 1.4.1(a)の左端A端部の半径方向変位を拘束し、同図上端B端部は強制変位を与える位置と した。隅角部溶接部近傍はメッシュ分割を約2 mmとした。なお、図に示した寸法はモデ ル上のA端部とB端部までの長さである。地盤との接触部には、圧縮ばね294 N/cm³の力を 有するノンテンションばねを設置した。

図1.4.1 B-5タンクのFEM解析モデル

(1) 解析条件

以下の条件で解析を行った。

ア 荷重

B端部(円周上)に側板重量等(合計4320kN)を負荷する。

イ 強制変位 質点系モデルの片側の浮き上がり変位をB端部に強制的に付与する。 強制的に付与する浮き上がり変位と回数を表4.1.2に示す。

ウ 浮き上がり回数及び浮き上がり変位

質点系モデルの片側の浮き上がり変位が1 cm以上となるサイクルを選択して、その サイクルでの最大浮き上がり変位を求め、表 1.4.2 にまとめた。

サイクル	浮き上がり変位			
No.	δu			
	(mm)			
1	11.7			
2	73.3			
3	44.6			
4	134.5			
5	38.1			
6	98.6			
7	103.8			
8	142.4			
9	70.8			
10	134.2			
11	67.0			
12	38.1			
13	29.0			

表1.4.2 各サイクルにおける浮き上がり変位

エ 液圧

アニュラ板と側板に作用する液圧の組合せは表1.4.3に示すとおりである。アニュラ 板に作用する液圧は一様分布で一定とし、側板に作用する液圧は高さに応じて変化さ せた。

最大応答水平震度Kh1、動液EPh1及び動液圧比αは、浮き上がり解析から求めた水 平抵抗力Qを用いて式(1.3.3)~式(1.3.5)により算定した。算定結果を表1.4.4に示す。

	アニュラ板上面に作用する液圧 P _u	側板内面に作用する	
強制変位作用方向	静液圧:P₀=0.107 N/mm²	液圧	
	動液圧:P _{h1}		
浮き上がり方向	$\mathbf{D} = (\mathbf{D}, \mathbf{D}, \mathbf{v}) = \mathbf{D}_{\mathbf{v}} (1, \mathbf{o}_{\mathbf{v}})$	势法压八左	
(+)	$F_{u} - (F_{0} - F_{h1}) - F_{0} (T - \alpha)$	₩ 門/仪/エカ117	
沈み込み方向(-)	P _u =P ₀	静液圧分布	

表1.4.3 アニュラ板と側板に作用する液圧の組合せ

表1.4.4 最大応答水平震度Kht、動液圧Pht及び動液圧比αの計算結果

タンク No.	最大浮き上がり変位	最大応答水平震度 Kհ₁	動液圧 P _{h1}	動液圧比 α	
	(cm)		(N∕mm²)	(=P _{1h1} /P ₁₀)	
B-5	14.2	0.649	0.056	0.523	

注:消防法式で計算した水平震度Kh1=0.448、動液EPh1=0.039N/mm2(添付資料3参照)

(2) 材料の物性値

1段から8段までの側板の材料はHT60、9段と10段の側板の材料はSS41、アニュラ板の 材料はHT60、底板の材料はSS41であり、それぞれの材料の物性値を表1.4.5に示す。ま た、塑性後の応力-ひずみ線図は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用した(図1.4.2及び添付資料4参照)。硬化 則には移動硬化則を使用した。

材料特性		HT60	SS41
降伏強度(N/mm ²)	Sy	450	245
引張強度(N/mm ²)	Su	570	400
ポアソン比	ν	0.3	0.3
縦弾性係数(N/mm ²)	E	205939.7	205939.7

表1.4.5 材料の物性値

1.4.2 弾塑性ひずみ解析結果

(1) 浮き上がり変位と抵抗力の関係

各サイクルの参照点とB端の浮き上がり変位及びB端部に強制変位をかけた時の算定され た軸方向の抵抗力(単位長さあたりの抵抗力)の数値を表1.4.6に示す。また、その関係を 線図で表示すると図1.4.3のとおりである。(変位出力参照点の位置:図4.1.1(b)参照)

サイクル	浮き上がり	抵抗力	浮き上がり変位 (mm)	
No.	位置	(N/mm)	参照点	B端
	開始	0.0E+00	-1.5	-2.1
1	最高	5.8E+01	12.2	12.0
	最低	6.3E+01	0.6	0.0
2	最高	7.6E+01	73.3	73.0
	最低	6.2E+01	0.6	0.0
3	最高	6.9E+01	45.2	45.0
	最低	6.2E+01	0.6	0.0
4	最高	8.4E+01	134.3	134.0
	最低	4.8E+01	0.6	0.0
5	最高	6.5E+01	38.2	38.0
	最低	4.8E+01	0.6	0.0
6	最高	7.8E+01	99.3	99.0
	最低	4.8E+01	0.6	0.0
7	最高	7.9E+01	104.3	104.0
	最低	4.8E+01	0.6	0.0
8	最高	8.5E+01	142.3	142.0
	最低	4.5E+01	0.6	0.0
9	最高	7.3E+01	71.2	71.0
	最低	4.5E+01	0.6	0.0
10	最高	8.4E+01	134.3	134.0
	最低	4.5E+01	0.6	0.0
11	最高	7.2E+01	67.2	67.0
	最低	4.5E+01	0.6	0.0
12	最高	6.4E+01	38.2	38.0
	最低	4.5E+01	0.6	0.0
13	最高	6.1E+01	29.2	29.0
	最低	4.5E+01	0.6	0.0

表1.4.6 浮き上がり変位と抵抗力の関係

図1.4.3 浮き上がり変位(δ_u)とB端部の算定された抵抗力(q_u)の関係

(2) 隅角部隅肉溶接部のひずみ両振幅

浮き上がり変位を与えた静的応力解析結果の、隅角部隅肉溶接部近傍の注目点(A点、B 点とC点、3つの点の位置を図1.4.4に示す)に発生した全ひずみ(弾性ひずみ+塑性ひず みの和)とひずみ両振幅(浮き上がり最高位置の全ひずみとその前後の最低位置の全ひず みとの差の最大値)の計算結果を表1.4.7に示す。

A点は隅肉溶接部止端部、B点はA点から2mm内側のアニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最も側板に近い位置)であり、両点の半径方向全ひずみを ϵ_{r} とする。C点は側板内面の止端部であり、その鉛直方向全ひずみを ϵ_{z} とする。また、ひずみ両振幅は $\Delta \epsilon_{r}$ 等とする。13サイクルにおける各A~C点の浮き上がり変位と全ひずみとの関係線図を図1.4.5から図1.4.7に示す。

図1.4.4 ひずみ評価位置

サイクル	浮き上がり	ひずみ (%)			ひずみ両振幅(%)		
No.	位置	A点	B点	 C点	A点	B点	C点
		٤r	٤r	εz	Δεr	Δεr	Δεz
	開始	0.17	0.14	0.07		<u> </u>	
1	最高	0.18	0.15	0.06	0.04	0.03	0.01
	最低	0.21	0.17	0.07			
2	最高	0.44	0.43	0.13	0.23	0.26	0.06
	最低	0.28	0.28	0.07			
3	最高	0.37	0.37	0.10	0.08	0.09	0.03
L	最低	0.28	0.28	0.07			
4	最高	0.73	1.12	0.16	0.45	0.84	0.12
	最低	0.43	0.83	0.04	1		
5	最高	0.51	0.93	0.08	0.09	0.10	0.03
	最低	0.43	0.83	0.04	1		
6	最高	0.66	1.07	0.14	0.24	0.24	0.09
L	最低	0.43	0.83	0.04			
7	最高	0.67	1.08	0.14	0.25	0.25	0.10
L	最低	0.42	0.83	0.04			
8	最高	0.77	1.28	0.16	0.34	0.45	0.12
	最低	0.44	0.96	0.04			
9	最高	0.63	1.15	0.11	0.18	0.19	0.07
	最低	0.44	0.96	0.04			
10	最高	0.75	1.27	0.16	0.31	0.31	0.12
	最低	0.44	0.96	0.04			
11	最高	0.61	1.14	0.11	0.17	0.18	0.07
	最低	0.44	0.96	0.04			
12		0.53	1.07	0.08	0.09	0.10	0.04
l[最低	0.44	0.96	0.04	1		
13	最高	0.50	1.04	0.06	0.06	0.08	0.03
i Ī	最低	0.44	0.96	0.04	1		

表1.4.7 各サイクルにおける隅角部隅肉溶接部の全ひずみとひずみ両振幅

図1.4.5 浮き上がり変位とA点に発生した半径方向全ひずみの関係

図1.4.6 浮き上がり変位とB点に発生した半径方向全ひずみの関係

図1.4.7 浮き上がり変位とC点に発生した鉛直方向全ひずみの関係

(3) 隅角部の変形及び全ひずみ分布

最大浮き上がり変位が14.2 cmになるときの隅角部の変形図及び半径方向全ひずみ成分 分布を図1.4.8と図1.4.9に示す。浮き上がり挙動によって隅角部が曲げられ、隅角部の溶接 部の止端部から2 mmの点(B点)に最も大きなひずみが発生した。

図 1.4.9 隅角部の半径方向全ひずみ成分 *ε*_r分布図 (最大浮き上がり 14.2 cm)
1.4.3 低サイクル疲労評価

地震時の浮き上がりに対する隅角部挙動は、低サイクル疲労を生じる。飯田 ※は、溶接 構造用鋼、高張力鋼、一般構造用鋼などの 10 種の鋼のひずみ制御疲労試験を実施し、き 裂発生寿命 Nc をひずみ振幅 Δε(=2 ε_a、ε_aは最適疲労曲線に使用されるひずみ振幅(片振 幅))に対して整理し、次式で最適疲労曲線を表した。図 1.4.10 に飯田の最適疲労曲線及 び設計疲労曲線等を示す。

$$\frac{\Delta\varepsilon}{2} = 0.415 N_c^{-0.606} + 0.00412 N_c^{-0.115}$$
(1.4.1)

図 1.4.10 飯田の最適疲労曲線

マイナー則では、次式の疲労損傷度 D=1.0 のときを疲労寿命としており、式(4.3.2)により隅角部の疲労損傷度の評価 **を実施する。

$$D = \frac{n(\Delta \varepsilon_1)}{N_c(\Delta \varepsilon_1)} + \frac{n(\Delta \varepsilon_2)}{N_c(\Delta \varepsilon_2)} + \frac{n(\Delta \varepsilon_3)}{N_c(\Delta \varepsilon_3)} + \dots < 1.0$$
(1.4.2)

ただし、 D: 疲労損傷度 Δεi: ひずみ両振幅 n(Δεi): ひずみ両振幅 Δεiの繰返し回数 N_c(Δεi): ひずみ両振幅 Δεiの疲労寿命

※出典:日本ガス協会、ガス導管耐震設計指針(1982年) p119

B-5 タンクの浮き上がり回数は最大の浮き上がり変位が算出された側の13回で設定し、 この条件での疲労損傷度 D を算定した。

表 1.4.7 に示した B 点に発生した板表面上のひずみ両振幅に対する、飯田の最適疲労曲 線式(1.4.1)で求めた疲労寿命 Nc を用いた疲労損傷度評価結果を表 1.4.8 に示す。同表よ り、最大浮き上がり変位 14.2 cm となる B 地区 EW 方向の想定地震動に対し、当該タンク は隅角部の溶接部止端部近傍の B 点の疲労損傷度Dは 0.00033 であり、1.0 以下という結 果になった。

サイクル	浮き上がり変位	B点				
No.	δu	ひずみ両振幅	繰り返し回数	許容繰返し回数	疲労損傷度	
	(mm)	Δεr(%)	n	Nc	D	
1	11.7	0.03	1	5.92E+12	0.00000	
2	73.3	0.26	1	1.74E+05	0.00001	
3	44. 6	0.09	1	3.28E+08	0.00000	
4	134. 5	0.84	1	4.23E+03	0.00024	
5	38.1	0.10	1	4.87E+04	0.00002	
6	98.6	0.24	1	2.65E+05	0.00000	
7	103. 8	0.25	1	2.25E+05	0.00000	
8	142. 4	0.45	1	2.24E+04	0.00004	
9	70. 8	0.19	1	8.93E+05	0.00000	
10	134. 2	0.31	1	8.94E+04	0.00001	
11	67.0	0.18	1	1.23E+06	0.00000	
12	38.1	0.11	1	6.83E+07	0.00000	
13	29.0	0.08	1	1.04E+09	0.00000	
				合計	0.00033	

表 1.4.8 B-5 タンクの隅角部 B 点における疲労損傷度評価結果

1.5 3次元シェル要素モデルによる側板の座屈強度評価

非線形構造解析プログラム Abaqus 2016 を用いて、3 次元シェル要素モデルによる弾性 大変形解析を実施した。非線形ばねを持つ質点系モデルの浮き上がり変位解析結果から得 られた最大浮き上がり変位が生じるときに沈み込み側の側板下端に発生する最大軸方向圧 縮応力を求め、側板の限界座屈応力との比較により側板の地震時の座屈強度評価を行った。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみの検討である。

5.1 解析モデル

水平一方向の動液圧による加力によるタンクの浮き上がり側及び沈み込み側の挙動に着 目するため、タンクの解析モデルは3次元シェル要素モデルを作成した。図1.5.1に示すよ うに、タンクの解析モデルは加力方向を切断面とする対称条件を有するタンクの半割リモ デルとした。底板は全て要素分割して作成しているが、タンク半径の70%の位置から中心 部分の底板は一部剛体要素でモデル化し、中心の参照点と連動させている。

B・5 タンク(50000 KL)の解析モデルを図 1.5.1 及び図 1.5.2 に示す。タンクの主な寸法と 諸元は 1.4 節の表 1.4.1 に示す。タンク側板の上端にトップアングル及びウィンドガーダー をモデル化した。また、底板およびアニュラ板と基礎との接触・離間を考慮するため、上下 方向の圧縮のみに 294 N/cm³の力が生じるノンテンションばねを設置した。

図1.5.1 B-5タンクの3次元シェルモデル

図1.5.2 タンクモデルのトップアングル及びウィンドガーダー

側板重量等(合計4320 kN)は側板に均等に分布させて調整(側板の質量密度を増加)した。 材料の物性値は1.4節の表1.4.4に示すとおりである。 1.5.2 荷重条件

(1) 荷重

側板重量等は側板に均等に分布させて調整した。アニュラ板と底板の自重をモデル 上考慮した。

(2) 動液圧の算定

動液圧及び動液圧分布の算定に当っては、消防法で規定されている算出式を用いた。 算出した動液圧は、1/2対称境界面を最大/最小として、側板と底板の周方向に余弦分 布させてモデルに入力した。

消防法における水平方向地震動による側板部に作用する液圧は次式で表される。

$$P_h = P_{h0} + P_{h1} \tag{1.5.1}$$

 P_h は、底部からの高さZにおける側板部に作用する動液圧(N/mm²)である。 P_{h0} 及び P_{h1} は次式のとおり。

$$P_{h0} = \frac{9.80665\,\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{0i} \left(\frac{Z}{H}\right)^{i} \right\} K_{h1} / \nu_{3}$$
(1.5.2)

$$P_{h1} = \frac{9.80665\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{1i} \left(\frac{Z}{H}\right)^{i} \right\} (1 - \frac{1}{v_{3}}) K_{h1}$$
(1.5.3)

ここで、K_{h1}は設計水平震度、pは、貯蔵液の比重、Hは最高液面高さ(m)、v₃は特定 屋外貯蔵タンクの固有周期を考慮した応答倍率(-)、C_{0i}とC_{1i}は、特定屋外貯蔵タンク の最高液面高さと直径との比により、求めた係数である。

上記式により算定されたタンクの動液圧を添付資料3に示す。

(3) 解析ステップ

解析ステップを、次のように2段階に分けて実施した。

ステップ1:通常時荷重(静液圧)

ステップ2:地震時荷重(静液圧+動液圧)

静液圧が負荷されている状態から、動液圧を段階的に増加させ負荷した。

質点系モデルにて算定された最大浮き上がり変位となるときに側板に 発生する応力を確認した。

1.5.3 解析結果

以下にB-5タンクの最大浮き上がり変位14.2 cmになった時点の解析結果を示す。 側板最下端の浮き上がり14.2 cm時の変形を図1.5.3、相当応力分布を図1.5.4、浮き上が り範囲を図1.5.5に示す。

図1.5.5 浮き上がり範囲(14.2 cm浮き上がり時)

側板下端部の半径方向に対応する軸方向(上下)変位を図1.5.6に示す。最大浮き上がり変 位が14.2 cmのとき、沈み込み側の最大沈み込み変位は僅か0.6 cmであることが確認され た。

沈み込み側の軸方向膜応力と側板の高さの関係を図1.5.7に示す。このとき沈み込み側の 側板下端に発生する最大軸方向圧縮応力は4.5 N/mm²であった(図1.5.7参照)。また、沈 み込み側の円周方向膜応力と側板の高さの関係を図1.5.8に示す。このとき沈み込み側の側 板最下段(下端からの高さ:1805 mm)に発生する最大円周方向膜応力は282 N/mm²で あった(図1.5.8参照)。

図1.5.7 側板に発生した軸方向の膜応力と側板高さの関係(沈み込み側)

図1.5.8 側板に発生した円周方向の膜応力と側板高さの関係(沈み込み側)

5.4 座屈強度評価

座屈強度評価においては、以下のような手順で軸圧縮限界座屈応力を評価するが、必要 に応じて内圧を考慮した評価を行う。

一様軸圧縮を受ける内圧のない円筒殻の弾性軸圧縮限界座屈応力は次式で表される。

$$\sigma_{cr} = 0.4E \frac{t_s}{D} \tag{1.5.4}$$

ここで、

ocr: 一様軸圧縮を受ける円筒殻の弾性軸圧縮限界座屈応力 (N/mm²)

E: 側板の縦弾性係数 (N/mm²)

ts: 側板最下端の板厚 (mm)

D: タンクの直径 (mm)

運転時満液状態にある平底円筒形石油貯槽においては、地震時動液圧負荷側(図 1.5.5 の 沈み込み側)の最下段側板の円周方向膜応力が、降伏応力の 0.3 倍を上回っている場合、象 の脚型座屈の評価が要求されている。 ここでは容器構造設計指針において、円周方向膜応力と降伏強度との比が 0.3 以上の場合の限界座屈応力値に着目し、内圧下における側板の象の脚型座屈限界応力を以下に示す。

$$\frac{\sigma_{\phi}}{\sigma_{y}} \ge 0.3 \quad \text{かつ,} \quad \frac{D}{t_{s}} \ge 1.614(\frac{E}{\sigma_{y}}) \quad \text{0場合}$$

$$\sigma_{cr} = 0.96E \frac{t_{s}}{D} (1 - \frac{\sigma_{\phi}}{\sigma_{y}}) \quad (1.5.5)$$

B-5 タンクの側板最下段に発生した最大円周方向膜応力(282 N/mm²)は、降伏強度(450 N/mm²)との比(0.63)が 0.3 以上であるため、象の脚型座屈の評価が必要となる。

表 1.5.1 に示す側板材料の物性値と寸法を用いて、式(1.5.4)と式(1.5.5)より、軸圧縮限界 座屈応力及び象の脚型圧縮の限界座屈応力を算定して同表に示した。

表1.5.1 B-5タンクの側板の座屈強度評価結果

側板材	料物性值	タンク内径	側板最下端	限界座屈属	芯力 σcr	軸圧縮	
縦弾性係数	降伏強度	D	板厚	軸圧縮	象の脚型	膜応力	評価
E (N/mm2)	σy (N/mm2)	(mm)	ts (mm)	(N/mm2)	(N/mm2)	(N/mm2)	
205939.7	450	69765	22.1	26.1	23.2	4.5	合格

解析結果から得られた浮き上がり時側板に発生した軸圧縮膜応力の最大値の4.5 N/mm² は、軸圧縮及び象の脚型の両方の限界座屈応力以下であるため、当該区域の想定地震動に 対して、B-5タンクの最大浮き上がり変位が14.2 cm発生した場合の圧縮応力は、従来評価 手法の限界座屈応力を超えない評価結果となった。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみでの検討である。

2 まとめ

今年度は首都直下地震の発生を想定し、代表とする3地区のタンク20基の浮き上がり挙動と耐震安全性を解析により検討した。想定する入力地震動により、最も浮き上がりの影響を受けるタンクにおいて隅角部の疲労損傷及び側板の座屈強度の評価を実施し、許容値以下であることを確認した。

2.1 質点系モデルによる浮き上がり解析結果

マルチリニア型非線形ばね特性を持つ質点系モデルを用いて時刻歴地震応答解析を行い、特防区域代表 3 地区の代表タンク合計 20 基の浮き上がり量を検討した。検討した代表タンクのうち、B 地区の B-5 タンク(50000 KL)が最も大きな浮き上がり変位(14.2 cm) を生じる結果となり、当該タンクを FEM 詳細解析による隅角部疲労損傷度評価、側板座 屈評価の対象に選定した。

2.2 2次元軸対称ソリッド要素モデルによる隅角部の疲労損傷度評価

選定した B-5 タンクの質点系モデルでの浮き上がり履歴を使用して、2 次元軸対称ソ リッド要素モデルによる静的弾塑性大たわみ解析を実施した。タンク隅角部に発生したひ ずみ両振幅と飯田の最適疲労曲線式から算定した疲労寿命、及びその繰り返し回数から求 めた疲労損傷度 D は 0.00033 となり、許容値以内であった。

2.3 3次元シェル要素モデルによる側板の座屈強度評価

選定した B-5 タンクの 3 次元シェル要素モデルによる静的弾性解析を実施した。選定 した B-5 タンクが 14.2 cm の浮き上がりを発生する時の側板沈み込み側の最大軸圧縮応 力(4.5N/mm2)は、軸圧縮限界座屈応力(26.1N/mm2)及び象の脚型限界座屈応力 (23.2N/mm2)以内であることを確認した。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみでの検討である。

添付資料1

代表タンクの質点系モデルの入力諸元の計算シート

(1) A地区(代表タンク:合計6基、A-1~A-6)

付表 1.1-1 A-1 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

<u>、質点系モデルによる側板下端の浮き</u>	(赤字:入力値)		
[諸元]			
公称容量	VOL (kl)	1000	(kl)
貯槽内径	D	11600	(mm)
側板高さ	Hmax	12190	(mm)
最下段側板厚	t _s	6	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	4.87	(mm)
アニュラ板厚	t _b	10	(mm)
鋼材のヤング率(SM400C)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	u	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	10882	(mm)
液密度	r	6.67E-07	(kg/mm3)
直径/液高さ比	D/H	1.07	(-)
液高さ/直径比	H/D	0.94	(-)
消防法/有効液重量率 f _{wo}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.75	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.67	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.42	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.48	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.07	(N/mm2)

側板重量	Ws0	2.56E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.62E+02	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.56E+05	(N)

付表 1.1-2 A タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:Nom)

		<u>(</u> 単位:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1445	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2375	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	7.52E+06	(N)
合計重量(W+Wsr)	W+Wsr	7.78E+06	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	5.62E+06	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	5.33E+06	(N)
消防法/有効液重量率	f _{w0}	0.75	(-)
	f _{w1}	0.67	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	456.94	(cm)
$H_1 = f_{h1} * H$	H1	521.50	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.48	(-)
側板自重による鉛直抵抗力qt	qt	70.17	(N/cm)
ばね係数	K♭	1.03E+07	(N/cm)
浮き上がり抵抗力	qу	340.97	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	411.14	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.67E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.16	(cm)
減衰係数	Ce	7.09E+04	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	2 2 2	(-)

Point T	QRt	2.84E+05	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.27	-
$Q_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.02	_
$\Delta_{et} = \frac{Q_{Rt}}{K_{L}}$	∆et	0.03	cm
Point Y	mv	4.08E+03	N
$a = \frac{4}{m} \sqrt{m} \frac{m}{p_{a}} \qquad m_{a} = \frac{0}{2} \frac{y}{y} t^{2}$	av	2.78E+02	N/cm
$q_y = \sqrt{6} \sqrt{m_y P_0} \qquad \qquad$	QRv	1.13E+06	N
$2\pi R^2 a$ Et_a^3	αν	0.06	_
$Q_{Ry} = \frac{2\pi (q_y)}{m} D_a (= \frac{a}{12(1-v^2)})$	СМ	12.94	-
H_1	Da	1.89E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.44	cm
$\int \int \partial f h h h h h h h h h h h h h h h h h h$	Δey	0.58	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{i})\frac{R^{2}}{H_{1}}]^{4}}$	QRv+Qt	1 41E+06	N
$\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rl}]}{K_b}$		1.412.000	
Point P $\sigma_{y} = 2$ $a = \frac{4}{m} \sqrt{m}$	mp	6.13E+03	N
$m_p = \frac{1}{4} t_a q_p \sqrt{6} \sqrt{m_p P_0}$	qp	3.41E+02	N/cm
$2 - \mathbf{P}^2$ $[O_{\pm}]C_{\pm}$	QRp	1.38E+06	N
$\boldsymbol{Q} = \frac{2\pi \mathbf{R} \ \boldsymbol{q}_p}{\mathbf{m}} \boldsymbol{\alpha}_p = \frac{12\pi \mathbf{R} \ \boldsymbol{q}_p}{(1-2\pi)^2}$	αp	0.07	-
$\mathcal{L}_{Rp} = H_1 \qquad f = (\pi f_{W1} p_0 R^2)$	СМ	12.86	-
$H_{1}[Q_{Rp}]^{4}$	Da	1.89E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	1.02	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_i) \frac{R}{H}]^4$	∆ер	1.18	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.67E+06	Ν
Point 4	m4	8.17E+03	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	3.94E+02	N/cm
$2\pi R^2 a \qquad Q_{R4} C_{10}$	QR4	1.60E+06	Ν
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{\pi (m + n)}{(m + n)^2}$	α4	0.08	_
H_1 $(9_{W1}p_0R)$	СМ	12.79	-
$\Lambda_{L} = \frac{H_1[Q_{R4}]^4}{1}$	Da	1.89E+06	N.cm
$\frac{4}{RD} n^{3} [C (\alpha + \alpha)] \frac{R^{2}}{R^{2}} [14]$	$\Delta 4$	1.85	cm
$\frac{RD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{Q_{10} + Q_{10}} H_1$	∆e4	2.03	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{K_b}$	QR4+QRt	1.88E+06	N
Point 5 4	m5	1.02E+04	N
$q_5 = \frac{1}{\sqrt{m_5 p_0}}$	q5	4.40E+02	N/cm
$\sqrt{6}$	QR5	1.78E+06	Ν
	α5	0.09	-
	СМ	12.73	_
	Da	1.89E+06	N.cm
	Δ5	2.95	cm
	∆ e5	3.15	cm
		2 07E+06	N

付表 1.1-3 A-1 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

付表 1.2-1 A-2 タンクの質点系モデルの諸元計算シート(No.1計算シート)

公称容量	VOL (kl)	5000	(kl)
貯槽内径	D	23240	(mm)
側板高さ	Hmax	12235	(mm)
最下段側板厚	t _s	12	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	9.2	(mm)
アニュラ板厚	t _b	9	(mm)
<u>鋼材のヤング率(SS41)</u>	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.1663	(N/mm2)
最高液高さ	Н	11790	(mm)
液密度	r	8.32E-07	(kg/mm3)
直径/液高さ比	D/H	1.97	(-)
液高さ/直径比	H/D	0.51	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$			
	D	0.55	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 (\frac{H}{D})^4 + 0.9653 (\frac{H}{D})^3 - 2.2807 (\frac{H}{D})^2 + 2.3017 (\frac{H}{D}) - 0.1634$			
	2	0.53	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0$	$207(\frac{H}{D}) + 0.3644$	0.41	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.10	(N/mm2)

質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)

側板重量	Ws0	6.37E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	2.75E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	9.12E+05	(N)

付表 1.2-2 A-2 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N. cm)

		(半世.11,011)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \text{ sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1790	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3250	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	4.08E+07	(N)
合計重量(W+Wsr)	W+Wsr	4.17E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.25E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W1	2.27E+07	(N)
消防法/有効液重量率	f _{w0}	0.55	(-)
	f _{w1}	0.53	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	476.57	(cm)
$H_1 = f_{h1} * H$	H1	488.20	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.41	(-)
側板自重による鉛直抵抗力qt	qt	124.88	(N/cm)
ばね係数	Kb	2.85E+07	(N/cm)
浮き上がり抵抗力	qy	356.87	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	481.75	(N/cm)
保有水平耐力(降伏耐力)	Qy	8.37E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.29	(cm)
減衰係数	Ce	2.44E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	4.76	(-)

Point T	QRt	2.17E+06	Ν
$Q = \frac{2\pi R^2 q_t}{\alpha} \qquad \alpha = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.63	_
$\mathcal{Q}_{Rt} = \underbrace{\mathcal{H}_{t}}_{H_{t}} \qquad \mathcal{H}_{t} \qquad (\pi f_{W1} p_0 R^2)$	αt	0.06	_
$\int_{A} Q_{Rt} Q_{Rt}$	Δet	0.08	cm
$\Delta_{et} - \overline{K_h}$			
Point Y σ	my	3.31E+03	N
$q_{y} = \frac{4}{2} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{2}{2} \sqrt{t_{z}^{2}}$	qy	2.91E+02	N/cm
$\int \sqrt{6^{y}} \sqrt{6^{y}}$	QRy	5.06E+06	Ν
$2\pi R^2 q_{\mu} = E t_a^3$	αγ	0.15	_
$Q_{Ry} = \frac{1}{12} D_a (= \frac{1}{12(1-v^2)})$	СМ	12.13	-
$\begin{bmatrix} & \mathbf{n}_1 \\ & 0 & 0 \end{bmatrix}$	Da	1.37E+06	N.cm
$\alpha_{y} = \frac{12 \alpha_{y} \Gamma_{10}}{2}$	Δy	0.18	cm
$f_{W1} p_0 R^2$)	∆ey	0.43	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	7.23E+06	N
Point P σ_{y} a = $\frac{4}{m}$	mp	4.96E+03	N
$m_p = \frac{1}{4} t_a \mathcal{A}_p \sqrt{6} \sqrt{m_p P_0}$	qp	3.57E+02	N/cm
$1 - 2 - p^2 = [0, 1]C$	QRp	6.20E+06	Ν
$\int q_p = \frac{2\pi K^{-} q_p}{(1 - 2\pi K^{-} q_p)} \qquad \alpha_p = \frac{12 \epsilon_{Rp} \Gamma^{-} q_p}{(1 - 2\pi K^{-} q_p)}$	αp	0.18	
$\overset{\simeq}{=} H_1 \qquad \overset{r}{=} (\pi f_{W1} p_0 R^2)$	СМ	11.94	
$H_1[Q_{Rp}]^4$	Da	1.37E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	0.43	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\alpha_l}{H}]^4$	∆ер	0.72	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	8.37E+06	N
Point 4	m4	6.62E+03	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	4.12E+02	N/cm
$2\pi R^2 a$ $Q_{R4}C_{10}$	QR4	7.16E+06	Ν
$Q_{R4} = \frac{2\pi \alpha q_4}{\mu} \alpha_4 = \frac{1}{(\pi f_{m} n_c R^2)}$	α4	0.21	
$\Pi_1 \qquad (\mathcal{Y}_{W1}\mathcal{P}_0\mathcal{N})$	СМ	11.77	
$\Lambda_{1} = \frac{H_{1}[Q_{R4}]^{*}}{1}$	Da	1.37E+06	N.cm
$\int_{-4}^{-4} RD n^3 [C (\alpha + \alpha) R^2]^4$	Δ4	0.80	cm
$\begin{bmatrix} \mathbf{K} D_a p_0 [\mathbf{C}_M (\alpha_4 + \alpha_t) \overline{H_1}] \\ \mathbf{K} D_a \mathbf$	∆e4	1.13	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Ri}}{V}$			
K_{h}	QR4+QRt	9.33E+06	IN

付表 1.2-3 A-2 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

付表 1.3-1 A-3 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>_ 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[諸元]			
公称容量	VOL (kl)	10000	(kl)
貯槽内径	D	32930	(mm)
側板高さ	Hmax	15195	(mm)
最下段側板厚	t _s	19	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	14.11	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SM400C)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11697	(mm)
液密度	r	7.35E-07	(kg/mm3)
直径/液高さ比	D/H	2.82	(-)
液高さ/直径比	H/D	0.36	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.42	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.41	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 (\frac{H}{D})^4 - 0.1493 (\frac{H}{D})^3 + 0.204 (\frac{H}{D})^2 - 0.0807 (\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.39	(-)
底板に作用する最大静液圧			
$P_0=g \gamma H$		0.08	(N/mm2)

側板重量	Ws0	1.60E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	8.56E+01	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	7.37E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.34E+06	(N)

付表 1.3-2 A-3 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N.cm)

		(半世.N, CIII)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1722	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3619	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	7.18E+07	(N)
合計重量(W+Wsr)	W+Wsr	7.41E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	3.02E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	3.16E+07	(N)
消防法/有効液重量率	f _{w0}	0.42	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	468.57	(cm)
$H_1 = f_{h1} * H$	H1	459.92	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	225.75	(N/cm)
ばね係数	Kb	4.29E+07	(N/cm)
浮き上がり抵抗力	qу	445.31	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	671.05	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.49E+07	(N)
降伏変位 (=Qy/K♭)	Δy	0.58	(cm)
減衰係数	Ce	3.53E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	7.16	(-)

Point T	QRt	8.36E+06	Ν
$ \qquad \qquad$	C10	0.75	_
$\mathcal{Q}_{Rt} = \underbrace{\mathcal{H}_{t}}_{H_{t}} \qquad \mathcal{H}_{t} \qquad (\pi f_{W1} p_0 R^2)$	αt	0.22	_
$\int_{A} Q_{Rt}^{-1}$	Δet	0.19	cm
$\Delta_{et} - \overline{K_h}$			
Point Y σ	my	5.88E+03	Ν
$q_{y} = \frac{4}{2} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{3}{2} \frac{y}{t_{0}}^{2}$	qy	3.64E+02	N/cm
$\int \sqrt{6^{y}} \sqrt{6^{y}}$	QRy	1.35E+07	Ν
$2\pi R^2 q_{\mu} = E t_a^3$	αγ	0.35	-
$Q_{Ry} = \frac{1}{\mu} \frac{1}{\mu} D_a (= \frac{1}{12(1-\nu^2)})$	СМ	10.02	-
$\begin{bmatrix} \mathbf{n}_1 \\ 0 \end{bmatrix} \mathbf{C}$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{12 \alpha_{y} J^{2} J^{2}}{(10 - 2)^{2}}$	Δy	0.39	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.89	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{RD r^3 [C (\alpha + \alpha) R^2]^4}$			
$\left[\frac{\kappa D_a p_0 [C_M (\alpha_y + \alpha_t)]}{H_1} \right]$	QRy+Qt	2.18E+07	Ν
$[Q_{Ry} + Q_{Rt}]$			
$\Delta_{ey} = \Delta_y + \frac{1}{K_h}$			
		0.005.00	
$ \begin{array}{c} \textbf{Point P} \\ m_{p} = \frac{\sigma_{y}}{T_{p}} t_{p}^{2} q_{p} = \frac{4}{\sqrt{c}} \sqrt{m_{p} p_{0}} \end{array} $	mp	8.82E+U3	IN
$p 4^{a} \sqrt{6}$	db OD-	4.45E+02	
$2\pi R^2 q_{\pi}$ $[Q_{Rp}]C_{10}$		1.00E+U/	
$ Q_{Rp} = \frac{\alpha_{P}}{\mu} \qquad \alpha_{p} = \frac{\alpha_{p}}{(\pi f_{m}, n, R^{2})}$		0.43	
$H_1 \qquad (9_{W1}P_0K)$		9.00	
$\Lambda = \frac{H_1[Q_{Rp}]}{1}$		3.20E+U0	IN.CM
$\int_{-p}^{-p} RD n^{3} [C (\alpha + \alpha) R^{2}]^{4}$	Др	1.05	cm
$\prod_{a} \mathcal{P}_0[\mathcal{C}_M(\alpha_p + \alpha_t)] = \frac{1}{H_1}$	Дер	1.03	cm
$O_{\rm p} + O_{\rm p}$		0.405.07	
$\Delta_{ep} = \Delta_p + \frac{\boldsymbol{z}_{Kp} + \boldsymbol{z}_{Kt}}{K}$	QRp+Qt	2.49E+07	N
$\begin{array}{c} \mathbf{A}_{b} \\ \mathbf{B}_{a} \\ \mathbf{A}_{b} \\ \mathbf{A}$			N
$q_{A} = \frac{4}{\sqrt{m_{A}p_{0}}}$	1114 a 1		
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$		<u>3.14E+UZ</u> 1.00E±07	
$Q_{14} = \frac{2\pi R^2 q_4}{\alpha_4} \alpha_4 = \frac{Q_{R4} C_{10}}{\alpha_4}$		1.90E+07	
$\varkappa_{R4} = H_1 \qquad (\pi f_{W1} p_0 R^2)$		0.49	
$H_{\cdot}[O_{-\cdot}]^4$		9.17	
$\Delta_4 = \frac{1}{D^2}$		3.26E+U6	IN.CM
$RD_a p_0^3 [C_M (\alpha_4 + \alpha_t) \frac{\kappa}{m}]^4$		2.21	cm
$Q_{PA} + Q_{Pt} + H_1$	<u>∆ e4</u>	2.85	cm
$\Delta_{e4} = \Delta_4 + \frac{\Sigma_{K4} - \Sigma_{Kl}}{K}$		0745.07	
Λ _b	QR4+QRt	2./4E+07	IN

付表 1.3-3 A-3 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

付表 1.4-1 A-4 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>.質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[諸元]			
公称容量	VOL (kl)	30000	(kl)
貯槽内径	D	53600	(mm)
側板高さ	Hmax	16455	(mm)
最下段側板厚	t _s	35	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	26.89	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SS41)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.1663	(N/mm2)
最高液高さ	Н	12875	(mm)
液密度	r	8.85E-07	(kg/mm3)
直径/液高さ比	D/H	4.16	(-)
液高さ/直径比	H/D	0.24	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.29	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0.27	(-)
消防法/有効液の重心高さ係数 f _{ho}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.11	(N/mm2)

側板重量	Ws0	4.71E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.67E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.71E+06	(N)

付表 1.4-2 A-4 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N, cm)

		<u>(半匹.N, UN)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.2159	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3918	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	2.52E+08	(N)
合計重量(W+Wsr)	W+Wsr	2.57E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	7.22E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	7.30E+07	(N)
消防法/有効液重量率	f _{w0}	0.29	(-)
	f _{w1}	0.27	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	515.06	(cm)
$H_1 = f_{h1} * H$	H1	489.25	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	279.63	(N/cm)
ばね係数	Kb	6.31E+07	(N/cm)
浮き上がり抵抗力	qу	512.83	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	qy+qt	792.46	(N/cm)
保有水平耐力(降伏耐力)	Qy	7.31E+07	(N)
<u>降伏変位 (=Qy/Kb)</u>	Δy	1.16	(cm)
減衰係数	Ce	6.50E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	10.96	(-)

付表 1.4-3 A-4 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

非線形ロ	ッキン	・グばお	い特性	線図計	笡
フロッパハノ 🗖	////	1010	> 1 L	小小ビロロ	-

Point T	QRt	2.58E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{Q_{t}}$ $\alpha_{t} = \frac{Q_{Rt} C_{10}}{Q_{t}}$	C10	0.81	_
$Q_{Rt} - \frac{1}{H_1} - \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.31	_
$\Lambda - \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.41	cm
$\Delta_{et} - K_{b}$			
Point Y σ	my	5.88E+03	Ν
$q_{y} = \frac{4}{2} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{4}{2} t_{a}^{2}$	qy	4.19E+02	N/cm
$\sqrt{6}\sqrt{910}$ $\sqrt{6}$	QRy	3.86E+07	Ν
$2\pi R^2 q_{\mu} = D \left(\frac{Et_a^3}{2} \right)$	αγ	0.46	_
$Q_{Ry} = \frac{1}{12} D_a (= \frac{1}{12(1-v^2)})$	СМ	8.83	_
H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}$	Δy	0.32	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	1.34	cm
$H_1[Q_n]^4$			
$\Delta_y = \frac{1}{R^2} \frac{1}{R^2$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^4$	QRv+Qt	644F+07	N
$[O_{p_{1}} + O_{p_{1}}]$			
$\Delta_{ey} = \Delta_y + \frac{c \omega_{Ry} - \omega_{Ri}}{K}$			
κ _b			
Point P σ_{y} , $a = \frac{4}{m}$, m , n_{0}	mp	8.83E+03	N
$m_p = \frac{1}{4} t_a q_p \sqrt{6} \sqrt{m_p P_0}$	qp	5.13E+02	N/cm
$2 p^2 [0] l^2$	QRp	4.73E+07	N
$Q = \frac{2\pi R q_p}{m} \qquad \alpha_p = \frac{12 q_p \sigma_{10}}{\sigma_{10}}$	αp	0.56	-
$\mathcal{L}_{Rp} = H_1 \qquad f = (\pi f_{W1} p_0 R^2)$	CM	8.22	-
$H_{1}[Q_{Rp}]^{4}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	0.95	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ер	2.11	cm
$\Delta = \Delta + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	7.31E+07	N
e^{p} p K_{b}			
Point 4	m4	1.18E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	5.92E+02	N/cm
$2\pi R^2 a \qquad Q_{RA}C_{10}$	QR4	5.46E+07	Ν
$Q_{R4} = \frac{2\pi \alpha q_4}{\mu} \alpha_4 = \frac{2\pi \alpha q_4}{(\pi r_1 - \mu R^2)}$	α4	0.65	_
$H_1 \qquad (y_{W1}p_0K)$	СМ	7.70	-
$\Lambda = \frac{H_1[Q_{R4}]^4}{1}$	Da	3.26E+06	N.cm
R^{2}	∆4	2.19	cm
$KD_a p_0 [C_M (\alpha_4 + \alpha_t) \overline{H_1}]$	∆e4	3.46	cm
$\Lambda_{L} = \Lambda_{L} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$L_{e4} L_{4} K_{b}$	QR4+QRt	8.04E+07	N

付表 1.5-1 A-5 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>, 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[[諸元]			
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	61000	(mm)
側板高さ	Hmax	20095	(mm)
最下段側板厚	t _s	21	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	17.31	(mm)
アニュラ板厚	t _b	15	(mm)
鋼材のヤング率(SM490C)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	325	(N/mm2)
最高液高さ	Н	16163	(mm)
液密度	r	8.85E-07	(kg/mm3)
直径/液高さ比	D/H	3.77	(-)
液高さ/直径比	H/D	0.26	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.32	(-)
消防法/有効液重量率 f _{w1}			
$f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.30	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.14	(N/mm2)

側板重量	Ws0	4.49E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.94E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.49E+06	(N)

付表 1.5-2 A-5 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N.cm)

	1		
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3489	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3852	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	4.10E+08	(N)
合計重量(W+Wsr)	W+Wsr	4.14E+08	(N)
减衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	1.30E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	1.29E+08	(N)
消防法/有効液重量率	f _{w0}	0.32	(-)
	f _{w1}	0.30	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	646.44	(cm)
$H_1 = f_{h1} * H$	H1	618.39	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	234.37	(N/cm)
ばね係数	Kb	42639506.26	(N/cm)
浮き上がり抵抗力	qу	826.95	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1061.32	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.00E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.35	(cm)
減衰係数	Ce	710374.38	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	9.86	(-)

付表 1.5-3 A-5 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

|--|

Point T	QRt	2.22E+07	Ν
$ Q_{Rt} = \frac{2\pi R^2 q_t}{\alpha_t} \qquad \alpha_t = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\mathcal{Q}_{Rt}} $	C10	0.80	-
$Q_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.14	-
$ Q_{Rt} = Q_{Rt} $	∆et	0.52	cm
$\Delta_{et} - \frac{1}{K_h}$			
Point Y σ	my	1.22E+04	Ν
$q_{y} = \frac{4}{2} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{2}{2} \frac{y}{2} t_{a}^{2}$	qy	6.75E+02	N/cm
$\sqrt{6^{\sqrt{y}}} \sqrt{6^{\sqrt{y}}} \sqrt{6^{-y}} \sqrt{6^{-1}}$	QRy	6.38E+07	Ν
$2\pi R^2 q$ Et_a^3	αγ	0.41	-
$Q_{Ry} = \frac{1}{U} \frac{1}{V} D_a (= \frac{1}{12(1-v^2)})$	СМ	10.08	-
H_1	Da	6.36E+06	N.cm
$\alpha_{ij} = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δy	0.36	cm
$(\pi f_{W1} p_0 R^2)$	Δey	2.38	cm
$H_1[Q_{y}]^4$			
$\Delta_y = \frac{1}{R^2} \frac{1}{R^2}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^4$	QRv+Qt	8 60F+07	N
$[Q_{P_{1}}+Q_{P_{1}}]$		01002 07	
$\Delta_{ey} = \Delta_y + \frac{\mathcal{Z}_{Ky} - \mathcal{Z}_{K}}{K}$			
κ _b			
Point P σ_{y} , $a = \frac{4}{\sqrt{m}}$, m_{z}	mp	1.83E+04	N
$m_p = \frac{1}{4} t_a q_p \sqrt{6} \sqrt{m_p F_0}$	qp	8.27E+02	N/cm
$\mathbf{D} \mathbf{D}^2$ [0] [C	QRp	7.82E+07	N
$ Q = -\frac{2\pi K}{2\pi R} \frac{q_p}{q_p} \qquad \alpha_p = \frac{12 q_p C_{10}}{(1 - q_p)^2 C_{10}} $	αp	0.50	-
$\mathcal{L}_{Rp} = H_1 \qquad f (\pi f_{W1} p_0 R^2)$	СМ	9.53	-
$H_{1}[Q_{Rp}]^{4}$	Da	6.36E+06	N.cm
$\Delta_p = \frac{1}{R^2}$	Δp	1.02	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ер	3.37	cm
H_1			
$\Delta_{rr} = \Delta_{rr} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.00E+08	N
e^{p} p K_{b}			
Point 4	m4	2.44E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	9.55E+02	N/cm
$2\pi R^2 q \qquad Q_{R4}C_{10}$	QR4	9.03E+07	Ν
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{2\pi (q_4)}{(\pi (p_1 - p_2)^2)}$	α4	0.58	_
$H_1 \qquad (\mathcal{Y}_{W1}\mathcal{V}_0\mathcal{K})$	СМ	9.06	_
$A_{1} = \frac{H_{1}[Q_{R4}]^{4}}{H_{1}[Q_{R4}]^{4}}$	Da	6.36E+06	N.cm
$\Delta_4 = \frac{1}{R^2} \frac{1}{R^2}$	Δ4	2.21	cm
$KD_a p_0^{-} [C_M (\alpha_4 + \alpha_t) \frac{1}{H_1}]^{-1}$	∆e4	4.85	cm
$\Lambda_{1} = \Lambda_{1} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
K_{b}	QR4+QRt	1.12E+08	Ν

付表 1.6-1 A-6 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>_ 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[諸元]			
公称容量	VOL (kl)	75000	(kl)
貯槽内径	D	70000	(mm)
側板高さ	Hmax	21958	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23.89	(mm)
アニュラ板厚	t _b	18	(mm)
鋼材のヤング率(SPV490Q)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	19618	(mm)
液密度	r	8.80E-07	(kg/mm3)
直径/液高さ比	D/H	3.57	(-)
液高さ/直径比	H/D	0.28	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.34	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2$	$.3017(\frac{H}{D}) - 0.1634$	0.32	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	$0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	0.38	(-)	
底板に作用する最大静液圧			
P ₀ =gγH		0.17	(N/mm2)

側板重量	Ws0	7.68E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	2.45E+03	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.68E+06	(N)

付表 1.6-2 A-6 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N. cm)

貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3784	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3812	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	6.52E+08	(N)
合計重量(W+Wsr)	W+Wsr	6.59E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	i	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.19E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	2.18E+08	(N)
消防法/有効液重量率	f _{w0}	0.34	(-)
	f _{w1}	0.32	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	784.63	(cm)
$H_1 = f_{h1} * H$	H1	753.86	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	349.15	(N/cm)
ばね係数	K♭	6.13E+07	(N/cm)
浮き上がり抵抗力	qу	1338.61	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1687.76	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.72E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.81	(cm)
減衰係数	Ce	1.11E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	9.29	(-)

Point T	QRt	3.56E+07	N
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{Q_{Rt} C_{10}}$	C10	0.80	-
$Q_{Rt} = \frac{1}{H_1} - \frac{M_1}{M_1} - (\pi f_{W1} p_0 R^2)$	αt	0.13	-
$A = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.58	cm
$\Delta_{et} = \frac{1}{K_{h}}$			
Point Y σ	my	2.65E+04	Ν
$q_{y} = \frac{4}{\pi} \sqrt{m_{y} p_{0}}$ $m_{y} = \frac{4}{\pi} t_{a}^{2}$	qy	1.09E+03	N/cm
$\sqrt{6}\sqrt{9}$	QRy	1.12E+08	Ν
$2\pi R^2 q_{\mu} = D \left(\frac{Et_a^3}{2} \right)$	αy	0.42	—
$Q_{Ry} = \frac{1}{12} D_a (= \frac{1}{12(1-v^2)})$	СМ	10.06	—
$\begin{bmatrix} \mathbf{n}_1 \\ 0 \end{bmatrix} \mathbf{C}$	Da	1.10E+07	N.cm
$\alpha_{y} = \frac{10^{2} \alpha_{Ry} C_{10}}{2}$	Δy	0.88	cm
$\int_{y}^{y} (\pi f_{W1} p_0 R^2)$	∆ey	3.28	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{R^2} \frac{1}{R^2} \frac{1}{R^2}$			
$RD_a p_0 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]$	QRv+Qt	1.47E+08	N
$[Q_{Rv} + Q_{Rt}]$	5		
$\Delta_{ey} = \Delta_y + \frac{1}{K}$			
Point P $\sigma_{y_{t}^{2}} q_{p} = \frac{4}{\sqrt{m_{p}p_{0}}}$	mp	3.97E+04	N
$m_p = \frac{1}{4} \iota_a \qquad 1^p \qquad \sqrt{6} \sqrt{9^{1/6}}$	qp	1.34E+03	N/cm
$2 \pi R^2 a [O_{R_{1}}]C_{10}$	QRp	1.37E+08	N
$O_p = \frac{2\pi (q_p)}{(q_p)} \qquad \alpha_p = \frac{(2\pi q_p)^{1/10}}{(q_p)^{1/10}}$	αp	0.52	-
$\begin{array}{c} \mathcal{L}_{\mathcal{R}} \\ \mathcal{H}_{1} \\ \mathcal{H}_{1} \end{array} \qquad (\pi_{W_{1}} p_{0} \mathcal{K}) \end{array}$	СМ	9.49	-
$H_1[Q_{Rp}]^4$	Da	1.10E+07	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	2.48	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{1}{H}]^4$	∆ер	5.30	cm
n_1			
$\Delta_{ep} = \Delta_{p} + \frac{\mathcal{Q}_{Rp} + \mathcal{Q}_{Rt}}{2}$	QRp+Qt	1.72E+08	N
$K_{p} K_{b}$			
Point 4 4	m4	5.29E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.55E+03	N/cm
$2\pi R^2 q_{,}$ $Q_{R4} C_{10}$	QR4	1.58E+08	N
$Q_{R4} = \frac{1}{H} \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{m}, p_0 R^2)}$	α4	0.60	-
H_1 $(5_W)P_0^{-1}$	СМ	9.02	-
$\Lambda_{4} = \frac{H_{1}[Q_{R4}]^{4}}{1}$	Da	1.10E+07	N.cm
$\frac{1}{2} RD n^{3} [C (\alpha + \alpha)] \frac{R^{2}}{R^{2}}]^{4}$	∆4	5.43	cm
$\begin{bmatrix} \mathbf{n} \mathbf{D}_a p_0 [\mathbf{C}_M (\mathbf{a}_4 + \mathbf{a}_t) \mathbf{H}_1] \\ \mathbf{n} \mathbf{D}_a + \mathbf{n} \mathbf{n} \mathbf{n} \mathbf{H}_1 \end{bmatrix}$	∆e4	8.58	cm
$\Delta_{eA} = \Delta_A + \frac{\mathcal{Q}_{RA} + \mathcal{Q}_{RI}}{\mathcal{Q}_{RA} + \mathcal{Q}_{RI}}$			
K_{b}	QR4+QRt	1.93E+08	N

付表 1.6-3 A-6 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

(2) B地区(代表タンク:合計7基、B-1~B-7)

付表 1.7-1 B-1 タンクの質点系モデルの諸元計算シート(No.1計算シート)

質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力值) [諸元] 公称容量 VOL (kl) 1000 (kl)貯槽内径 D 11630 (mm)<u>側板高さ</u> Hmax 10715 (mm) 最下段側板厚 (mm)t_s 6 (mm) 1/3の最高液高さにおける側板厚 4.1 $t_{1/3}$ アニュラ板厚 (mm)6 tb 鋼材のヤング率 (SS41) Е 205939.65 (N/mm2)鋼材のポアソン比 ν (-) 0.3 降伏応力 σy 245.1663 (N/mm2) 最高液高さ 9421 (mm) Н 液密度 .00E-06 (kg/mm3) γ 直径/液高さ比 D/H 1.23 (-) (-) 液高さ/直径比 H/D 0.81 消防法/有効液重量率 f_{w0} $f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$ (-)0.71 消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$ 0.66 (-) 消防法/有効液の重心高さ係数 f_{b0} $f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$ (-) 0.42 消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ 0.46 (-) 底板に作用する最大静液圧 0.09 (N/mm2) $P_0 = g \gamma H$

<u>タンク本体重量(赤字:入力値)</u>

側板重量	Ws0	1.74E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	6.63E+01	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.40E+05	(N)

付表 1.7-2 B-1 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N.cm)

		(半位.11,011)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1489	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2609	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	9.81E+06	(N)
合計重量(W+Wsr)	W+Wsr	1.01E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	6.95E+06	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	6.68E+06	(N)
消防法/有効液重量率	f _{w0}	0.71	(-)
	f _{w1}	0.66	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	391.22	(cm)
$H_1 = f_{h1} * H$	H1	433.56	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.46	(-)
側板自重による鉛直抵抗力qt	qt	65.66	(N/cm)
ばね係数	Kb	1.21E+07	(N/cm)
浮き上がり抵抗力	qу	233.16	(N∕cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	298.82	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.46E+06	(N)
<u>降伏変位 (=Qy/Kb)</u>	Δy	0.12	(cm)
減衰係数	Ce	8.62E+04	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	2.68	(-)

付表 1.7-3 B-1 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート(No.3 計算シート)

Point T	QRt	3.22E+05	N
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.36	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \mathcal{M}_t \qquad (\pi f_{W1} p_0 R^2)$	αt	0.02	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{L}}$	Δ et	0.03	cm
Point Y	my	1.47E+03	N
$a = \frac{4}{m} \sqrt{m} n_{x}$ $m_{y} = \frac{\sigma_{y}}{m} t_{z}^{2}$	av	1.90E+02	N/cm
$q_y \sqrt{6} \sqrt{m_y p_0} \qquad \qquad$	QRv	9.33E+05	N
$2\pi R^2 a$ Et_a^3	αν	0.05	-
$Q_{Ry} = \frac{2\pi (q_y)}{m} D_a (= \frac{a}{12(1-v^2)})$	СМ	12.96	_
H_1	Da	4.07E+05	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.17	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.27	cm
$\Delta_y = \frac{H_1[Q_y]^4}{RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{R^2}{H_1}]^4}$ $\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rt}]}{K_b}$	QRy+Qt	1.25E+06	Ν
Point P σ 4 $$	mp	2.21E+03	N
$m_p = \frac{q_p}{\sqrt{6}} t_a^2 q_p = \frac{1}{\sqrt{6}} \sqrt{m_p p_0}$	ap	2.33E+02	N/cm
4 [0.10]	QRp	1.14E+06	N
$\int_{\Omega} \frac{2\pi R^2 q_p}{2\pi R^2} \alpha = \frac{[Q_{Rp}]C_{10}}{2\pi R^2}$	αρ	0.06	-
$\mathcal{Q}_{Rp} = \underbrace{\mathcal{H}}_{H_1} \qquad \overset{\mathcal{H}_p}{\longrightarrow} (\pi f_{W1} p_0 R^2)$	СМ	12.89	_
$H_{1}[O_{n}]^{4}$	Da	4.07E+05	N.cm
$\Delta_p = \frac{1}{2} \sum_{Rp} \frac{1}{Rp^2}$	Δρ	0.39	cm
$RD_{\alpha}p_{0}^{3}[C_{M}(\alpha_{n}+\alpha_{t})]^{4}$		0.51	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.46E+06	N
Point 4 4	m4	2.94E+03	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	2.69E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.32E+06	N
$Q_{R4} = \frac{1}{H} \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{m}, p_0 R^2)}$	α4	0.07	_
	СМ	12.84	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]}{2}$	Da	4.07E+05	N.cm
$RD_{1}n_{1}^{3}[C_{1}(\alpha_{1}+\alpha_{2})\frac{R^{2}}{m}]^{4}$	Δ4	0.70	cm
$\frac{1}{2} \frac{1}{2} \frac{1}$	∆e4	0.84	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{K_b}$	QR4+QRt	1.64E+06	N
Point 5 4	m5	5.88E+03	Ν
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	3.81E+02	N/cm
$\sqrt{6}$	QR5	1.87E+06	Ν
	α5	0.10	-
	СМ	12.65	-
	Da	4.07E+05	N.cm
	$\Delta 5$	2.96	cm
	Δe5	3.14	cm
	QR5+QRt	2.19E+06	N

非線形ロッキングばね特性線図計算

付表 1.8-1 B-2 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u> 、 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[諸元]			
公称容量	VOL (kl)	6000	(kl)
貯槽内径	D	29070	(mm)
側板高さ	Hmax	10760	(mm)
最下段側板厚	t _s	14	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	8.4	(mm)
アニュラ板厚	t _b	9	(mm)
鋼材のヤング率 (SS400)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.16625	(N/mm2)
最高液高さ	Н	9074	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	3.20	(-)
液高さ/直径比	H/D	0.31	(-)
消防法/有効液重量率 f_{w0}	Н		
$f_{W0} = -0.1408(\frac{2}{D})^4 + 0.8427(\frac{2}{D})^3 - 1.916(\frac{2}{D})^2 + 2.0933(\frac{2}{D}) - 0.1172$		0.37	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.2807(\frac{H}{D}$	$2.3017(\frac{H}{D}) - 0.1634$	0.36	(-)
────────────────────────────────────		0.00	
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.09	(N/mm2)

側板重量	Ws0	7.32E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	4.99E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.23E+06	(N)

付表 1.8-2 B-2 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値

		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1785	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3729	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	5.91E+07	(N)
<u>合計重量(W+Wsr)</u>	W+Wsr	6.03E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.21E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	2.25E+07	(N)
消防法/有効液重量率	f _{w0}	0.37	(-)
	f _{w1}	0.36	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	363.06	(cm)
$H_1 = f_{h1} * H$	H1	352.01	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	134.86	(N/cm)
ばね係数	Kb	2.85E+07	(N/cm)
浮き上がり抵抗力	qу	343.23	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	478.10	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.80E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.63	(cm)
<u>減衰係数</u>	Ce	2.43E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	8.26	(-)

付表 1.8-3 B-2 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート(No.3 計算シート)

Point T	QRt	5.09E+06	Ν
$\alpha = \frac{2\pi R^2 q_t}{\alpha} \qquad \alpha = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.78	-
$Q_{Rt} = \frac{1}{H_{L}} \qquad $	αt	0.19	_
$A = Q_{Rt}$	∆et	0.18	cm
$\Delta_{et} - \overline{K_{h}}$			
Point Y	my	3.31E+03	Ν
$a = \frac{4}{m_{y}} \sqrt{m_{p_{x}}} \qquad m_{y} = \frac{\sigma_{y}}{m_{y}} t_{a}^{2}$	qy	2.80E+02	N/cm
$\sqrt{6} \sqrt{1} \sqrt{6} \sqrt{1} \sqrt{1} \sqrt{6} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{6} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} 1$	QRy	1.06E+07	N
$2\pi R^2 q$ Et_a^3	αγ	0.39	-
$Q_{Ry} = \frac{2\pi i q_y}{R_y} D_a (= \frac{1}{12(1-v^2)})$	СМ	9.96	-
H_1	Da	1.37E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δy	0.24	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.79	cm
$H_1[Q_{y}]^4$			
$\Delta_y = \frac{1}{R^2 r^4}$			
$RD_a p_0^{-1} [C_M (\alpha_y + \alpha_t) \overline{H_1}]^{-1}$	QRv+Qt	1.57E+07	N
$[Q_{R_{y}}+Q_{R_{t}}]$	-		
$\Delta_{ey} = \Delta_y + \frac{1}{K}$			
		4.005.00	
Point P m = $\frac{\sigma_y}{m_p} t^{-2}$ $q_p = \frac{4}{\sqrt{r}} \sqrt{m_p p_0}$	mp	4.96E+03	N
4^{a} $\sqrt{6}^{b}$	db OD	3.43E+02	N/cm
$2\pi R^2 q$ $[Q_{Rp}]C_{10}$	QRp	1.29E+07	N
$Q_{Rp} = \frac{-\alpha r q_p}{r} \qquad \alpha_p = \frac{-\alpha r q_p}{(\pi f - p R^2)}$	αp	0.47	-
$H_1 \qquad (9_{W1}P_0K)$		9.44	
$\Lambda = \frac{H_1[Q_{R_p}]}{\dots}$		1.37E+00	IN.CM
$P_{p} = \frac{1}{2} \frac{1}$	Др	0.08	cm
$KD_a p_0 [C_M (\alpha_p + \alpha_t)] \overline{H_1}$	Дер	1.01	Cm
$Q_{R_{R}} + Q_{R_{I}}$			N
$\Delta_{ep} = \Delta_p + \frac{1}{K}$	ωπρτωι	1.00E+07	IN
$\mathbf{Point} \mathbf{A} $	m1	6 625+03	N
$q_4 = \frac{4}{\sqrt{m_4 p_0}}$	n14 a4	3.02E+03	N/om
$\sqrt{6}$		1.40E+07	N
$Q_{\rm rel} = \frac{2\pi R^2 q_4}{\alpha_4}$ $\alpha_4 = \frac{Q_{R4} C_{10}}{\alpha_4}$		0.55	
$\sim_{\kappa_4} H_1 \qquad (\pi f_{W1} p_0 R^2)$	CM	<u> </u>	
$H_1[Q_{R^4}]^4$	Da	1.37F+06	Ncm
$\Delta_4 = \frac{1}{R^2} \frac{R^2}{R^2}$	$\wedge 4$	1 46	cm
$RD_a p_0^3 [C_M (\alpha_4 + \alpha_t) \frac{\alpha_4}{H}]^4$	$\Delta e4$	2 16	cm
$\Lambda = \Lambda + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$	<u> </u>	2.10	
$\sim_{e4} \sim_{4} \sim K_b$	QR4+QRt	2.00E+07	N
Point 5 /	m5	1.32E+04	N
$q_5 = \frac{4}{\sqrt{m_5 p_0}}$	a5	5.60E+02	N/cm
$\sqrt{6}^{15}$	QR5	2.11E+07	N
	α5	0.77	-
	CM	7.65	-
	Da	1.37E+06	N.cm
	$\Delta 5$	11.20	cm
	Δe5	12.122	cm
	QR5+QRt	2 62F+07	N

非線形ロッキングばね特性線図計算

付表 1.9-1 B-3 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u> 質点系モデ</u>	<u>ルによる側板</u>	<u>下端の浮き上た</u>	<u> がり変位計算用諸元</u>

元 (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	10000	(kl)
貯槽内径	D	32940	(mm)
側板高さ	Hmax	13795	(mm)
最下段側板厚	t _s	18	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	12.8	(mm)
アニュラ板厚	t _b	8	(mm)
鋼材のヤング率(SS41)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11627	(mm)
液密度	γ	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	2.83	(-)
液高さ/直径比	H/D	0.35	(-)
月防法/月効液里重率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.42	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.41	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.11	(N/mm2)

側板重量	Ws0	1.36E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	7.02E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.06E+06	(N)
付表 1.9-2 B-3 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:Nom)

		<u>(申122:N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1909	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3625	(-)
液重量 W=gγπD ² H/4	w	9.72E+07	(N)
合計重量(W+Wsr)	W+Wsr	9.92E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	4.06E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	4.14E+07	(N)
消防法/有効液重量率	f _{w0}	0.42	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	465.73	(cm)
$H_1 = f_{h1} * H$	H1	456.84	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	199.36	(N/cm)
ばね係数	Kb	4.58E+07	(N/cm)
浮き上がり抵抗力	qy	345.24	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	$q_y + q_t$	544.60	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.03E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.44	(cm)
減衰係数	Ce	4.17E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	7.21	(-)

付表 1.9-3 B-3 タンクの非線形水平ばねの復元力特性とする Q-ム線図の計算シート

(NU.) 計昇ンニト	シート	計算	3	(No.	
-------------	-----	----	---	------	--

非線形ロッキング	ばね特性線図計	算
----------	---------	---

Point T	QRt	7.44E+06	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.76	—
$\mathcal{Q}_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.14	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{t}}$	Δ et	0.16	cm
Point Y	my	2.61E+03	N
$a = \frac{4}{m} \sqrt{m} p_a$ $m_a = \frac{6}{y} t_a^2$	av	2.82E+02	N/cm
$q_y \sqrt{6} \sqrt{m_y P_0} \qquad q_y \qquad 6$	QRv	1.05E+07	N
$2\pi R^2 a$ Et_a^3	αv	0.20	-
$Q_{Rv} = \frac{2\pi a (q_y)}{m} D_a (= \frac{a}{12(1-v^2)})$	СМ	11.33	_
H_1	Da	9.66E+05	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.12	cm
$\overset{\alpha_{y}}{=} (\pi f_{W1} p_0 R^2)$	Δev	0.51	cm
$\Lambda = \frac{H_1[Q_y]^4}{1}$			
$\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Ri}]}{K}$	QRy+Qt	1.80E+07	N
$\begin{array}{c} & & & \\ & & & \\ Point P & \sigma & 4 \end{array}$	mn	3 92E+03	N
$m_{p} = \frac{\sigma_{y}}{4} t_{a}^{2} q_{p} = \frac{\sigma_{p}}{\sqrt{6}} \sqrt{m_{p} p_{0}}$	an	3 45E+02	N/cm
	QRn	1 29E+07	N
$2\pi R^2 q_p = \alpha - \frac{[Q_{Rp}]C_{10}}{[Q_{Rp}]C_{10}}$	0/n	0.25	_
$Q_{Rp} = \frac{1}{H} - \alpha_{p} - (\pi f_{W1} p_{0} R^{2})$	СМ	11.05	_
$H_1 [O_n]^4$	Da	9.66E+05	N.cm
$\Delta_p = \frac{1}{2} \frac{1}{2$	Δρ	0.29	cm
$RD_{\alpha}p_{0}^{3}[C_{M}(\alpha_{n}+\alpha_{t})\frac{\kappa}{m}]^{4}$	∆ep	0.73	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	2.03E+07	N
Point 4	m4	5.23E+03	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	3.99E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.49E+07	N
$Q_{R4} = \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{W1} p_0 R^2)}$	α4	0.29	_
	СМ	10.83	_
$\Delta_4 = \frac{H_1[Q_{R4}]}{2}$	Da	9.66E+05	N.cm
$RD_{1} p_{2}^{3} [C_{11}(\alpha_{1} + \alpha_{1})] \frac{R^{2}}{m}]^{4}$	Δ4	0.56	cm
$A = A + Q_{R4} + Q_{Rt} + H_1$	∆e4	1.04	cm
$\frac{\Delta_{e4} - \Delta_4 + \frac{1}{K_b}}{K_b}$	QR4+QRt	2.23E+07	N
Point 5 4	m5	1.05E+04	N
$q_5 = \frac{1}{\sqrt{m_5}} \sqrt{m_5} p_0$	q5	5.64E+02	N/cm
√0	QR5	2.10E+07	N
	α5	0.40	-
	CM	10.12	-
	Da	9.66E+05	N.cm
		2.91	cm
		3.53	
	QR5+QRt	2.85E+07	IN

付表 1.10-1 B-4 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

.質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	30000	(kl)
貯槽内径	D	52330	(mm)
側板高さ	Hmax	16745	(mm)
最下段側板厚	t _s	17	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	13.8	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SPV490Q)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	13158	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	3.98	(-)
液高さ/直径比	H/D	0.25	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.30	(-)
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$			
	_	0.29	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
	Ц		
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.13	(N/mm2)

_タンク本体重量(赤字:入力値)_____

側板重量	Ws0	2.90E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	1.43E+03	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.34E+06	(N)

付表 1.10-2 B-4 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値

		<u>(</u> 単位 : N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.2896	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3888	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	2.78E+08	(N)
合計重量(W+Wsr)	W+Wsr	2.82E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	8.35E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	8.37E+07	(N)
消防法/有効液重量率	f _{w0}	0.30	(-)
	f _{w1}	0.29	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	526.30	(cm)
$H_1 = f_{h1} * H$	H1	501.53	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	263.88	(N/cm)
ばね係数	Kb	4.02E+07	(N/cm)
浮き上がり抵抗力	qy	779.09	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	qy+qt	1042.97	(N/cm)
保有水平耐力(降伏耐力)	Qy	8.95E+07	(N)
降伏変位 (=Qy/Kb)	Δу	2.23	(cm)
<u>減衰係数</u>	Ce	5.55E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	10.43	(-)

付表 1.10-3 B-4 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

非線形ロッキングばね特性線図計算			
Point T	QRt	2.26E+07	N
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.81	-
$Q_{Rt} - \frac{1}{H_1} - \frac{1}{(\pi f_{W1} p_0 R^2)}$	αt	0.23	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	Δet	0.56	cm
$\Delta_{et} - K_{b}$			
Point Y σ_{1}	my	1.18E+04	Ν
$q_{y} = \frac{4}{\pi} \sqrt{m_{y} p_{0}}$ $m_{y} = \frac{y}{\pi} t_{a}^{2}$	qy	6.36E+02	N/cm
$\sqrt{6}\sqrt{9}$	QRy	5.46E+07	N
$2\pi R^2 q_{\nu}$ $D \left(= \frac{Et_a^3}{2} \right)$	αγ	0.55	-
$Q_{Ry} = \frac{1}{H} D_a (-\frac{1}{12(1-v^2)})$	СМ	8.71	-
$\begin{bmatrix} II_1 \\ IO \end{bmatrix} \begin{bmatrix} IC \end{bmatrix}$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{12 \alpha_{y} C_{10}}{C \alpha_{y} C_{10}}$	Δy	1.22	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	3.14	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{RD}{RD} n^3 [C (\alpha + \alpha)] \frac{R^2}{R^2}]^4$			
$H \mathcal{L}_a \mathcal{P}_0 (\mathcal{L}_M (\mathcal{U}_y + \mathcal{U}_t) H_1)$	QRy+Qt	7.72E+07	Ν
$[Q_{Ry} + Q_{Rt}]$			
$\Delta_{ey} = \Delta_y + \frac{K_b}{K_b}$			
Point P σ 4		1 765+04	N
$m_{p} = \frac{\sigma_{y}}{16} t_{a}^{2} q_{p} = \frac{1}{\sqrt{6}} \sqrt{m_{p} p_{0}}$	an	7 79E+02	N/cm
	OBp	6.68E+07	N
$2\pi R^2 q_p = q_{-10} - \frac{[Q_{R_p}]C_{10}}{[Q_{R_p}]C_{10}}$	0/n	0.68	_
$Q_{Rp} = \frac{P}{H} - \alpha_p - (\pi f_{W1} p_0 R^2)$	CM	7 97	_
H_1 $H_1[O_1]^4$	Da	3 26F+06	Ncm
$\Delta_p = \frac{11122RpJ}{P^2}$	Δρ	3.91	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_r) \frac{\kappa}{\pi}]^4$	∆ер	6.13	cm
$\Delta - \Delta + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	8.95E+07	N
$\Delta_{ep} - \Delta_{p} + K_{b}$			
Point 4 4	m4	2.35E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	9.00E+02	N/cm
$2\pi R^2 a \qquad Q_{RA} C_{10}$	QR4	7.72E+07	Ν
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{2\pi (q_4)}{(\pi (n_R^2))}$	α4	0.78	-
$H_1 \qquad (\gamma g_{W1} P_0 R)$	СМ	7.34	_
$\Lambda_{\perp} = \frac{H_1[Q_{R4}]^4}{(Q_{R4})^4}$	Da	3.26E+06	N.cm
$PD n^{3} [C (\alpha + \alpha) R^{2}]^{4}$	Δ4	9.63	cm
$\frac{KD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{H_1}$	$\Delta e4$	12.12	cm
$\Delta_{A} = \Delta_{A} + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}$			
K_{b}	OR4+ORt	9 98E+07	N

非線形ロッキングばね特性線図計算

(No.3計算シート)

付表 1.11-1 B-5 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

_**質点系モデルによる側板下端の浮き上がり変位計算用諸元** (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	69765	(mm)
側板高さ	Hmax	15290	(mm)
最下段側板厚	t _s	22.1	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	18.1	(mm)
アニュラ板厚	t _b	11.4	(mm)
鋼材のヤング率(HT60)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	450	(N/mm2)
最高液高さ	Н	12608	(mm)
液密度	γ	8.66E-07	(kg/mm3)
直径/液高さ比	D/H	5.53	(-)
液高さ/直径比	H/D	0.18	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$			
" 学时:1 / 专动法委员家 了		0.20	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.18	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心局さ係数 f_{h1} $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.37	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.107	(N/mm2)

側板重量	Ws0	4.32E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.22E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.32E+06	(N)

付表 1.11-2 B-5 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値

		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.2927	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.4080	(-)
液重量 W=gγπD ² H/4	w	4.09E+08	(N)
合計重量(W+Wsr)	W+Wsr	4.14E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	i	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	8.32E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	7.95E+07	(N)
消防法/有効液重量率	f _{w0}	0.20	(-)
	f _{w1}	0.18	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	505.38	(cm)
$H_1 = f_{h1} * H$	H1	472.05	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.37	(-)
側板自重による鉛直抵抗力qt	qt	197.09	(N/cm)
ばね係数	Kb	3.74E+07	(N/cm)
浮き上がり抵抗力	qy	680.12	(N∕cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	877.21	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.42E+08	(N)
降伏変位 (=Qy/Kb)	Δy	3.80	(cm)
減衰係数	Ce	5.22E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	14.78	(-)

付表 1.11-3 B-5 タンクの非線形水平ばねの復元力特性とする Q-∆線図の計算シート (No.3計算シート)

外線がキノインノはなり上線画的チ			
Point T	QRt	3.19E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\mathcal{Q}_{Rt} \mathcal{C}_{10}}$	C10	0.81	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.35	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.85	cm
K_{h}			
Point Y σ_{1}	my	9.75E+03	N
$q_{y} = \frac{4}{\pi} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{y}{\pi} t_{a}^{2}$	qy	5.28E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	8.54E+07	Ν
$2\pi R^2 q_{\nu}$ $D (= Et_a^3)$	αγ	0.92	
$Q_{Ry} = \frac{1}{12} \frac{1}{12(1-v^2)}$	СМ	5.82	-
[O]C	Da	2.79E+06	N.cm
$\alpha_{y} = \frac{10^{2} \alpha_{Ry} C_{10}}{10^{2} \alpha_{Ry}}$	Δy	4.16	cm
$\int (\pi f_{W1} p_0 R^2)$	∆ey	7.30	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{RD p_s^3 [C_y(\alpha + \alpha)]^{\frac{1}{2}}}$			
$H_{aP01} \sim_{M} (\omega_{y} + \omega_{t}) H_{1}$	QRy+Qt	1.17E+08	N
$\Delta = \Delta + \frac{[Q_{Ry} + Q_{Rt}]}{[Q_{Ry} + Q_{Rt}]}$			
$\Delta_{ey} = \Delta_{y} + \frac{1}{K_{b}}$			
Point P σ 4	mn	1 46E+04	N
$m_{p} = \frac{\sigma_{y}}{1} t_{a}^{2} q_{p} = \frac{1}{\sqrt{6}} \sqrt{m_{p} p_{0}}$	an	6.46E+02	N/cm
	0Bp	1.05E+08	N
$2\pi R^2 q_p = [Q_{Rp}]C_{10}$		1 1 2	
$\left \mathcal{Q}_{Rp} \right = \frac{1}{H} \qquad \alpha_{p} = \frac{1}{(\pi f_{W1} p_{0} R^{2})}$	СМ	4 58	_
$H_1 [O_2]^4$	Da	2 79F+06	Ncm
$\Delta_p = \frac{\prod_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^$	Δρ	24.38	cm
$RD_{\alpha}p_{0}^{3}[C_{M}(\alpha_{\alpha}+\alpha_{4})\frac{K^{2}}{m}]^{4}$	Δep	28.04	cm
H_1		20101	
$A = A + Q_{Rp} + Q_{Rt}$	QRp+Qt	1.37E+08	N
$\Delta_{ep} - \Delta_{p} + K_{b}$			
Point 4 4	m4	1.56E+04	N
$q_4 = \frac{1}{\sqrt{\epsilon}} \sqrt{m_4 p_0}$	q4	6.67E+02	N/cm
$\gamma_{\pi R^2 a} \qquad O_{RA} C_{10}$	QR4	1.08E+08	N
$Q_{R4} = \frac{2\pi (q_4)}{u} \alpha_4 = \frac{2\pi (q_4)}{(\pi (p_4)^2)}$	α4	1.17	-
$H_1 \qquad (\mathcal{Y}_{W1}\mathcal{P}_0\mathcal{R})$	СМ	4.36	-
$\Lambda = \frac{H_1[Q_{R4}]^4}{1}$	Da	2.79E+06	N.cm
$R_{4}^{2} = R_{2}^{3} [C_{4} (x_{1} + x_{2}) R_{14}^{2}]^{4}$	Δ4	33.82	cm
$\frac{KD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{H_1}$	∆e4	37.57	cm
$ \Lambda_{A} = \Lambda_{A} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}} $			
$-e_4$ -4 K_1	0R4+0R+	1 40E+08	N

非線形ロッキングばね特性線図計算

付表 1.12-1 B-6 タンクの質点系モデルの諸元計算シート(No.1計算シート)

質点系モデルによる側板下端の浮き	目諸元	(赤字:入力値)	
[諸元]			
公称容量	VOL (kl)	77000	(kl)
貯槽内径	D	77270	(mm)
側板高さ	Hmax	19490	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	22.8	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率 (SM58Q)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	460	(N/mm2)
最高液高さ	Н	16355	(mm)
液密度	r	8.55E-07	(kg/mm3)
直径/液高さ比	D/H	4.72	(-)
液高さ/直径比	H/D	0.21	(-)
消防法/有効液重量率 f _{w0}	Н		
$f_{W0} = -0.1408(\frac{n}{D})^4 + 0.8427(\frac{n}{D})^3 - 1.916(\frac{n}{D})^2 + 2.0933(\frac{n}{D}) - 0.1172$		0.25	(-)
消防法/有効液重量率 f_{w1}	Н		
$f_{W1} = -0.1429(\frac{\pi}{D})^4 + 0.9653(\frac{\pi}{D})^3 - 2.2807(\frac{\pi}{D})^2$	$(\frac{1}{D}) = 0.1634$	0.23	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.14	(N/mm2)

側板重量	Ws0	7.82E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.11E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.82E+06	(N)

付表 1.12-2 B-6 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N.cm)

		<u>(申1u:N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3338	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3995	(-)
液重量 W=g $\gamma \pi D^2$ H/4	w	6.43E+08	(N)
合計重量(W+Wsr)	W+Wsr	6.51E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	1.59E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	1.56E+08	(N)
消防法/有効液重量率	f _{w0}	0.25	(-)
	f _{w1}	0.23	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	654.72	(cm)
$H_1 = f_{h1} * H$	H1	616.90	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	322.12	(N/cm)
ばね係数	Кь	5.64E+07	(N/cm)
浮き上がり抵抗力	qу	778.19	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1100.31	(N/cm)
保有水平耐力(降伏耐力)	Qу	1.67E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.97	(cm)
<u>減衰係数</u>	Ce	8.98E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	12.53	(-)

付表 1.12-3 B-6 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

チャックレントレーター			
Point T	QRt	4.90E+07	Ν
$Q_{Rt} = \frac{Q_{Rt}C_{10}}{Q_{Rt}C_{10}}$	C10	0.81	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \mathcal{M}_t \qquad (\pi f_{W1} p_0 R^2)$	αt	0.27	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{t}}$	Δet	0.87	cm
Point Y	my	1.10E+04	N
$a = \frac{4}{m} \sqrt{m p_c}$ $m_y = \frac{\sigma_y}{m} t_z^2$	qv	6.35E+02	N/cm
$\int \sqrt{6} \sqrt{1 + y + 0} \qquad y \qquad 6 \qquad a$	QRy	9.66E+07	N
$2\pi R^2 a$ Et_a^3	αν	0.53	_
$Q_{Ry} = \frac{2MT}{H} \frac{Q_{ry}}{D_a} = \frac{D_a(=\frac{1}{12(1-V^2)})}{D_a(=\frac{1}{12(1-V^2)})}$	СМ	8.62	_
H_1	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{2}$	Δу	0.87	cm
$y (\pi f_{W1} p_0 R^2)$	∆ey	3.46	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	1.46E+08	Ν
Point P $\sigma_{y} = 2 - \frac{4}{2} \sqrt{m - n}$	mp	1.66E+04	Ν
$m_p = \frac{1}{4} t_a^2 - q_p^2 - \sqrt{6} \sqrt{m_p p_0}$	qp	7.78E+02	N/cm
$[0, 1]^{2}$	QRp	1.18E+08	Ν
$\alpha_{p} = \frac{2\pi R^{2} q_{p}}{\alpha_{p}} \qquad \alpha_{p} = \frac{12 q_{p} r_{10}}{\alpha_{p}}$	αp	0.65	_
$\mathcal{Q}_{Rp} = H_1 \qquad P (\pi f_{W1} p_0 R^2)$	СМ	7.91	-
$H_{1}[Q_{Rp}]^{4}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{R^2}$	Δp	2.77	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ep	5.74	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.67E+08	N
Point 4 4	m4	2.21E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	8.99E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.37E+08	N
$Q_{R4} = \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{m}, p_0 R^2)}$	α4	0.75	-
H_1 $(5W1F0^{-1})$	СМ	7.31	_
$\Delta_{4} = \frac{H_{1}[Q_{R4}]^{4}}{1}$	Da	3.26E+06	N.cm
$\frac{4}{RD} n^{3} [C (\alpha + \alpha)] \frac{R^{2}}{R^{2}}]^{4}$	$\Delta 4$	6.76	cm
$\begin{bmatrix} \mathbf{M}_{a} P_{0} \mathbf{U}_{M} (\mathbf{u}_{4} + \mathbf{u}_{t}) \mathbf{H}_{1} \end{bmatrix}$	∆e4	10.05	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{K_b}$	QR4+QRt	1.86E+08	N

非線形ロッキングばね特性線図計算

(No.3計算シート)

付表 1.13-1 B-7 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u> 質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	100000	(kl)
貯槽内径	D	81480	(mm)
側板高さ	Hmax	22570	(mm)
最下段側板厚	t _s	36	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	28	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(HT60)</u>	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	450	(N/mm2)
最高液高さ	Н	19063	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	4.27	(-)
液高さ/直径比	H/D	0.23	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 0.8427(\frac{H}{D})^3 - 0.916(\frac{H}{D})^2$	$2.0933(\frac{H}{D}) - 0.1172$		
消防法/有効液重量率 f_{w1} $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 0.9653(\frac{H}{D})^3 - 0.0000000000000000000000000000000000$	$2.3017(\frac{H}{D}) - 0.1634$	0.28	(-)
	Н		
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^2 + 0.016(\frac{H}{D})^2 + 0.006(\frac{H}{D})^2 $	$0.0207(\frac{H}{D}) + 0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.19	(N/mm2)

側板重量	Ws0	1.05E+04	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	3.68E+03	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.05E+07	(N)

付表 1.13-2 B-7 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N, cm)

貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3765	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3935	(-)
液重量 W=gγπD ² H/4	w	9.75E+08	(N)
合計重量(W+Wsr)	W+Wsr	9.85E+08	(N)
减衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.71E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	2.66E+08	(N)
消防法/有効液重量率	f _{w0}	0.28	(-)
	f _{w1}	0.26	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	H₀	762.69	(cm)
$H_1 = f_{h1} * H$	Hı	723.19	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	409.84	(N/cm)
ばね係数	Kb	7.56E+07	(N/cm)
浮き上がり抵抗力	qy	898.67	(N/cm)
 浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1308.51	(N/cm)
 保有水平耐力(降伏耐力)	Qy	1.89E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.50	(cm)
減衰係数	Ce	1.36E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	11.27	(-)

付表 1.13-3 B-7 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

(No. 3	計算シー	ト)
--------	------	----

卵脉がロノインノはな竹山脉区的并			
Point T	QRt	5.91E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_{t}}{\alpha_{t}} \qquad \alpha_{t} = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\alpha_{t}}$	C10	0.81	-
$\mathcal{Q}_{Rt} = H_1 \qquad i (\pi f_{W1} p_0 R^2)$	αt	0.19	-
$\Lambda_{L} = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.78	cm
$-et K_b$			
Point Y σ_{1}	my	1.08E+04	N
$q_{y} = \frac{4}{2} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{y}{2} t_{a}^{2}$	qy	7.34E+02	N/cm
$\sqrt{6}\sqrt{9}$	QRy	1.06E+08	N
$2\pi R^2 q_{y} = D \left(-\frac{Et_a^3}{2}\right)$	αy	0.34	-
$Q_{Ry} = \frac{1}{H} D_a (-\frac{1}{12(1-v^2)})$	СМ	10.26	-
$\begin{bmatrix} II_1 \\ IO \end{bmatrix} C$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{12 \varphi_{Ry} 1 \varphi_{10}}{10}$	Δy	0.34	cm
$\int (\pi f_{W1} p_0 R^2)$	∆ey	2.52	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{R^2} \frac{R^2}{R^2}$			
$RD_a p_0 [C_M (\alpha_y + \alpha_t) \overline{H_1}]$	QRv+Qt	1.65E+08	N
$[Q_{Rv} + Q_{Rt}]$	5		
$\Delta_{ey} = \Delta_y + \frac{K}{K}$			
Point P $\sigma_{y} = \sigma_{y} = \frac{4}{\sqrt{m_n p_0}}$	mp	1.62E+04	N
$m_p = \frac{1}{4} \iota_a \qquad \sqrt{6} \sqrt{6} \sqrt{10} \iota_a$	qp	8.99E+02	N/cm
$2\pi R^2 a [O_{R_{\rm p}}]C_{10}$	QRp	1.30E+08	N
$O_{p_{p}} = \frac{2\pi (q_{p})}{(1 - c_{p})^{2}} \qquad \alpha_{p} = \frac{(2\pi p)^{2}}{(1 - c_{p})^{2}}$	αp	0.41	-
$\begin{array}{c} \mathcal{L}_{\mathcal{K}} \\ \mathcal{L}_{K$	СМ	9.82	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{R^2 - 1}$	Δp	0.91	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) - \frac{1}{H}]^4$	∆ер	3.41	cm
$\Delta_{ep} = \Delta_{p} + \frac{\mathcal{Q}_{Rp} + \mathcal{Q}_{Rt}}{2}$	QRp+Qt	1.89E+08	Ν
$K_{p} K_{b}$			
Point 4 4	m4	2.16E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.04E+03	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.50E+08	N
$Q_{R4} = \frac{2\pi \alpha q_4}{\mu} \alpha_4 = \frac{\pi \alpha q_4}{(\pi f_{m} n_2 R^2)}$	α4	0.47	-
$H_1 \qquad (9 W_1 P_0 \cdots)$	СМ	9.44	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]^{\dagger}}{H_{1}[Q_{R4}]^{\dagger}}$	Da	3.26E+06	N.cm
$\int_{-4}^{4} RD n^{3} [C (\alpha + \alpha) R^{2}]^{4}$	∆4	1.90	cm
$\begin{bmatrix} \mathbf{K} \mathcal{D}_a \mathcal{P}_0 [\mathbf{C}_M (\mathbf{a}_4 + \mathbf{a}_t)] \\ \mathbf{M} \mathcal{D}_a + \mathbf{Q} \end{bmatrix}$	∆e4	4.66	cm
$\Delta_{eA} = \Delta_A + \frac{Q_{RA} + Q_{RI}}{Q_{RA} + Q_{RI}}$			
K_b	QR4+QRt	2.09E+08	Ν

非線形ロッキングばね特性線図計算

(3) C地区(代表タンク:合計7基、C-1~C-7)

付表 1.14-1 C-1 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

_質)	<u> 気系モデルによる側板下端の浮き上がり変位計算用諸元</u>
	=

(赤字:入力値)

[諸元]			
公称容量	VOL (kl)	1000	(kl)
貯槽内径	D	11620	(mm)
側板高さ	Hmax	12160	(mm)
最下段側板厚	t _s	6	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	4.4	(mm)
アニュラ板厚	t _b	9	(mm)
鋼材のヤング率(SS41)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.1663	(N/mm2)
最高液高さ	Н	10850	(mm)
液密度	r	7.20E-07	(kg/mm3)
直径/液高さ比	D/H	1.07	(-)
液高さ/直径比	H/D	0.93	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0$	$933(\frac{H}{D}) - 0.1172$	0.75	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3907(\frac{H}{D})^2 + 2.3907(\frac{H}{D}$	$6017(\frac{H}{D}) - 0.1634$	0.67	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.42	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.48	(-)
底板に作用する最大静液圧			
P ₀ =gγH		0.08	(N/mm2)

側板重量	Ws0	1.95E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	6.46E+01	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.59E+05	(N)

付表 1.14-2 C-1 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N.cm)

		<u>(</u> 卑恒:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1432	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2383	(-)
液重量 W=gγπD ² H/4	w	8.12E+06	(N)
合計重量(W+Wsr)	W+Wsr	8.38E+06	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	6.06E+06	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	5.74E+06	(N)
消防法/有効液重量率	f _{w0}	0.75	(-)
	f _{w1}	0.67	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	H₀	455.43	(cm)
$H_1 = f_{h1} * H$	H1	519.28	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.48	(-)
側板自重による鉛直抵抗力qt	qt	70.99	(N/cm)
ばね係数	Кь	1.13E+07	(N/cm)
浮き上がり抵抗力	qy	318.47	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	389.46	(N/cm)
保有水平耐力(降伏耐力)	Qу	1.59E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.14	(cm)
減衰係数	Ce	7.70E+04	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	2.24	(-)

付表 1.14-3 C-1 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

非称形ロッキングはね特性称凶計昇			
Point T	QRt	2.90E+05	N
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\alpha_{t}}$	C10	0.27	-
$\mathcal{L}_{Rt} = \frac{\mathcal{L}_{Rt}}{\mathcal{H}_{1}} \qquad \mathcal{L} \qquad (\pi f_{W1} p_0 R^2)$	αt	0.01	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{h}}$	∆et	0.03	cm
Point Y σ	my	3.31E+03	Ν
$q_{y} = \frac{4}{m_{y}p_{0}}$ $m_{y} = \frac{v_{y}}{m_{z}} t_{a}^{2}$	qy	2.60E+02	N/cm
$\sqrt{6^{\sqrt{y}}} \sqrt{6^{\sqrt{y}}} \sqrt{6^{-y}} \sqrt{6^{-y}}$	QRy	1.06E+06	Ν
$2\pi R^2 q_{y}$ $D (- Et_a^3)$	αy	0.05	-
$Q_{Ry} = \frac{1}{H} D_a (-\frac{1}{12(1-v^2)})$	СМ	12.98	-
$\begin{bmatrix} II_1 \\ IO_2 \end{bmatrix} C_1$	Da	1.37E+06	N.cm
$\alpha_{y} = \frac{12 \epsilon_{Ry} 1^{-10}}{(\epsilon_{Ry} \mathbf{p}^{2})}$	Δy	0.36	cm
$(\pi _{W_1} p_0 K^-)$	Δey	0.48	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	1.35E+06	Ν
Point P $\sigma_{y} = 2 - \frac{4}{m} \sqrt{m}$	mp	4.96E+03	Ν
$m_p = \frac{1}{4} t_a^2 q_p = \sqrt{6} \sqrt{m_p P_0}$	qp	3.18E+02	N/cm
$2 p^2 [0] C$	QRp	1.30E+06	Ν
$Q_{p} = \frac{2\pi K^{2} q_{p}}{\alpha_{p}} \qquad \alpha_{p} = \frac{12 q_{p} r_{10}}{r_{10}}$	αp	0.06	-
$\geq R_{p} - H_{1} \qquad f_{W_{1}} p_{0} R^{2}$	СМ	12.91	-
$H_1[Q_{Rp}]^4$	Da	1.37E+06	N.cm
$\Delta_p = \frac{r}{R^2}$	Δp	0.83	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\alpha_{t}}{H}]^4$	∆ер	0.98	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.59E+06	N
Point 4 4 $\sqrt{2}$	m4	6.62E+03	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	3.68E+02	N/cm
$2\pi R^2 q_4 - Q_{R4} C_{10}$	QR4	1.50E+06	N
$Q_{R4} = \frac{1}{H} \alpha_{4} = \frac{1}{(\pi f_{W1} p_{0} R^{2})}$	α4	0.07	-
H = 14	СМ	12.85	-
$\Delta_4 = \frac{\Pi_1[\mathcal{Q}_{R4}]}{2}$	Da	1.37E+06	N.cm
$RD_{\mu}p_{0}^{3}[C_{\mu}(\alpha_{\mu}+\alpha_{\mu})\frac{R^{2}}{m}]^{4}$	Δ4	1.51	cm
$\frac{\partial P_{a}}{\partial p_{1}} + O_{2} + O_{1} + H_{1}$	∆e4	1.67	cm
$\Delta_{e4} = \Delta_4 + \frac{\boldsymbol{z}_{R4} + \boldsymbol{z}_{Rt}}{K_b}$	QR4+QRt	1.79E+06	N
Point 5 4	m5	1.32E+04	N
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	5.20E+02	N/cm
√6	QR5	2.12E+06	N
	α5	0.11	
	СМ	12.67	-
	Da	1.37E+06	N.cm
	Δ5	6.40	cm
	∆e5	6.61	cm
	QR5+QRt	2.41E+06	N

(No.3計算シート) 非線形ロッキングげわ特性線図計算

付表 1.15-1 C-2 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>、質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			<u>(赤字:入力値)</u>
[諸元]			
公称容量	VOL (kl)	5000	(kl)
貯槽内径	D	23250	(mm)
側板高さ	Hmax	13755	(mm)
最下段側板厚	t _s	13	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	9.93	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SM41C)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.16625	(N/mm2)
最高液高さ	Н	12382	(mm)
液密度	γ	7.59E-07	(kg∕mm3)
直径/液高さ比	D/H	1.88	(-)
液高さ/直径比	H/D	0.53	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$ 消防法/有効液重量率 f_{w1}		0.57	(-)
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.55	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.41	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.42	(-)
底板に作用する最大静液圧			
$ P_0 = g \gamma H$		0.09	(N/mm2)

側板重量	Ws0	7.47E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.42E+02	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.47E+05	(N)

付表 1.15-2 C-2 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値

		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_b = 2 / \lambda \operatorname{sqrt}(W) / (g \pi E * t_{1/3})) * j$		0.1561	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3192	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	3.91E+07	(N)
合計重量(W+Wsr)	W+Wsr	3.99E+07	(N)
减衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.23E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	2.23E+07	(N)
消防法/有効液重量率	f _{w0}	0.57	(-)
	f _{w1}	0.55	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	501.49	(cm)
$H_1 = f_{h1} * H$	Hı	517.31	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.41	(-)
	f _{h1}	0.42	(-)
側板自重による鉛直抵抗力qt	qt	102.30	(N/cm)
ばね係数	Kb	3.68E+07	(N/cm)
浮き上がり抵抗力	qy	465.74	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	568.04	(N/cm)
保有水平耐力(降伏耐力)	Qy	9.32E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.25	(cm)
减衰係数	Ce	2.74E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	4.49	(-)

付表 1.15-3 C-2 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

(No.3計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	1.68E+06	N
$ Q_{t} = \frac{2\pi R^2 q_t}{\alpha_t} \qquad \alpha_t = \frac{\mathcal{Q}_{Rt} \mathcal{Q}_{10}}{\alpha_t} $	C10	0.61	-
$\mathcal{Q}_{Rt} = \frac{H_1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.05	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{b}}$	∆et	0.05	cm
Point Y , G	my	5.88E+03	N
$q_{x} = \frac{4}{\sqrt{m_{x}p_{0}}} \qquad m_{y} = \frac{\sqrt{y}}{2}t_{a}^{2}$	qy	3.80E+02	N/cm
$\sqrt{6}^{\sqrt{10}yF_0}$ y 6^{u}	QRy	6.24E+06	N
$2\pi R^2 q$ Et_a^3	αγ	0.18	-
$Q_{Ry} = \frac{-2(1-V_{y})}{U} D_{a} (= \frac{1}{12(1-V^{2})})$	СМ	12.05	-
H_1	Da	3.26E+06	N.cm
$\alpha_{\mu} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{2}$	Δy	0.27	cm
$y (\pi f_{W1} p_0 R^2)$	∆ey	0.49	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{\pi^{2}}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_r) \frac{R^2}{H_1}]^4$ $[Q_{Ry} + Q_{Rr}]$	QRy+Qt	7.92E+06	N
$\Delta_{ey} = \Delta_y + \frac{1}{K_b}$			
Point P σ_{y} 2 σ - 4 \sqrt{m} p	mp	8.83E+03	N
$m_p = \frac{1}{4} t_a^2 q_p = \frac{1}{\sqrt{6}} \sqrt{m_p p_0}$	qp	4.66E+02	N/cm
$(0, 1)^2$	QRp	7.64E+06	Ν
$Q = -\frac{2\pi R^2 q_p}{\alpha_p} = \alpha_p = \frac{12 q_p C_{10}}{\alpha_p}$	αp	0.22	-
$\mathcal{Q}_{Rp} = H_1 \qquad F (\pi f_{W1} p_0 R^2)$	СМ	11.81	-
$H_{1}[Q_{Rp}]^{4}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	0.66	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{1}{H}]^4$	∆ep	0.91	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	9.32E+06	Ν
Point 4 4	m4	1.18E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	5.38E+02	N/cm
$2\pi R^2 a_{,} \qquad Q_{R4} C_{10}$	QR4	8.83E+06	N
$Q_{R4} = \frac{2\pi a^2 q_4}{\mu} \alpha_4 = \frac{\pi a^2 q_4}{(\pi f_{m} n_0 R^2)}$	α4	0.25	-
	СМ	11.62	-
$\Delta_{4} = \frac{H_{1}[\mathcal{Q}_{R4}]}{2}$	Da	3.26E+06	N.cm
$\frac{1}{2} RD p_{0}^{3}[C_{1}(\alpha_{1} + \alpha_{2})] \frac{R^{2}}{m^{2}} r^{4}$	Δ4	1.25	cm
$A = A + Q_{R4} + Q_{Rt} + H_1$	∆e4	1.53	cm
$\Delta_{e4} - \Delta_4 + \overline{K_b}$	QR4+QRt	1.05E+07	N
Point 5 /	m5	1.77E+04	N
$q_s = \frac{4}{m_s p_0}$	a5	6.59E+02	N/cm
$\sqrt{6}$	QR5	1.08E+07	N
	α5	0.30	_
	СМ	11.28	-
	Da	3.26E+06	N.cm
	Δ5	3.16	cm
	Δe5	3.497	cm
	QR5+QRt	1.25E+07	N

付表 1.16-1 C-3 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

<u>. 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[諸元]			
公称容量	VOL (kl)	10000	(kl)
貯槽内径	D	32930	(mm)
側板高さ	Hmax	13755	(mm)
最下段側板厚	t _s	18	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	13.5	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(SM400C)</u>	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σγ	245	(N/mm2)
最高液高さ	Н	11890	(mm)
液密度	r	8.60E-07	(kg/mm3)
直径/液高さ比	D/H	2.77	(-)
<u>液高さ/直径比</u>	H/D	0.36	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{R})^4 + 0.8427(\frac{H}{R})^3 - 1.916(\frac{H}{R})^2 + 2.$	$0933(\frac{H}{D}) - 0.1172$		
	D	0.43	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2$	$.3017(\frac{H}{D}) - 0.1634$	0.41	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0000000000000000000000000000000000$	$0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0207(\frac{H}{D}) + 0.3644$	0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.10	(N/mm2)

側板重量	Ws0	1.31E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	5.07E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.82E+06	(N)

付表 1.16-2 C-3 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値

		<u>(単位:N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1752	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3604	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	8.54E+07	(N)
合計重量(W+Wsr)	W+Wsr	8.72E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	3.64E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	3.71E+07	(N)
消防法/有効液重量率	f _{w0}	0.43	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	476.41	(cm)
$H_1 = f_{h1} * H$	H1	468.40	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	175.62	(N/cm)
ばね係数	Kb	4.87E+07	(N/cm)
浮き上がり抵抗力	qy	485.65	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	661.26	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.40E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.49	(cm)
減衰係数	Ce	4.07E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	7.03	(-)

付表 1.16-3 C-3 タンクの非線形水平ばねの復元力特性とする Q-∆線図の計算シート

(No. 3	3 計算シー	ト)
--------	--------	----

Point T $O C$	QRt	6.39E+06	Ν
$ \qquad \qquad$	C10	0.75	-
$\mathcal{Q}_{Rt} = H_1 \qquad i (\pi f_{W1} p_0 R^2)$	αt	0.14	-
$\Delta_{et} = \frac{Q_{Rt}}{K}$	∆et	0.13	cm
Point Y	mv	5.88E+03	N
$a = \frac{4}{m} \sqrt{m} \frac{m}{n} \qquad m_{y} = \frac{\sigma_{y}}{m} t^{2}$	av	3.97E+02	N/cm
$q_y \sqrt{6} \sqrt{m_y p_0} \qquad 6$	QRv	1.44E+07	N
$2\pi R^2 a$ Et_a^3	αv	0.31	_
$Q_{Ry} = \frac{2\pi (1-y_y)}{12} D_a (= \frac{1}{12(1-y^2)})$	СМ	10.74	_
H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[\mathcal{Q}_{Ry}]\mathcal{L}_{10}}{[\mathcal{Q}_{Ry}]\mathcal{L}_{10}}$	Δv	0.25	cm
$\int dy (\pi f_{W1} p_0 R^2)$	Δev	0.68	cm
$H_1[Q_n]^4$			
$\Delta_{y} = \frac{1}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	2.08E+07	Ν
Daint D a		0 025+02	N
$m_{p} = \frac{O_{y}}{m_{p}} t_{a}^{2} q_{p} = \frac{1}{\sqrt{6}} \sqrt{m_{p}} p_{0}$	inp an	0.02E+03	
$p 4^{a} \sqrt{0}$	db DB=	4.00E+02	
$2\pi R^2 q_{p} = [Q_{Rp}]C_{10}$		0.20	
$Q_{Rp} = \frac{1}{\mu} \qquad \alpha_p = \frac{1}{(\pi f_{m}, p_0 R^2)}$		10.30	
$H_{1} \qquad \qquad$		2 265+06	Nom
$\Delta_{n} = \frac{H_{1}[Q_{Rp}]}{2}$		3.20E+00	IN.CM
$\frac{p}{RD} n^{3} [C (\alpha + \alpha)] \frac{R^{2}}{R^{2}} [14]$		1.15	
$RD_a p_0 C_M (\alpha_p + \alpha_t) H_1$	Дер	1.10	CIII
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	2.40E+07	Ν
Point 4	m4	1.18E+04	N
$q_4 = -\frac{1}{\sqrt{6}}\sqrt{m_4 p_0}$	q4	5.61E+02	N/cm
$2\pi R^2 a \qquad Q_{PA}C_{10}$	QR4	2.04E+07	N
$Q_{R4} = \frac{2\pi (q_4)}{H} \alpha_4 = \frac{2\pi (q_4)}{(\pi (p_4)^2)}$	α4	0.43	-
H_1 $(\mathcal{Y}_{W1}P_0R)$	СМ	9.99	—
$\Lambda_{1} = \frac{H_{1}[Q_{R4}]^{4}}{1}$	Da	3.26E+06	N.cm
R^{-4}	∆4	1.34	cm
$\begin{bmatrix} KD_a p_0 [C_M (\alpha_4 + \alpha_1)] \\ \hline H_1 \end{bmatrix}$	∆e4	1.89	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{V}$			
κ _b	QR4+QRt	2.68E+07	N
Point 5 4	m5	1.76E+04	N
$q_5 = \frac{1}{\sqrt{\epsilon}} \sqrt{m_5 p_0}$	q5	6.87E+02	N/cm
ν0	QR5	2.50E+07	N
	α5	0.53	-
		9.41	-
	Da	3.26E+06	N.cm
	Δ5	3.84	cm
	<u>∆</u> e5	4.481	cm
	QR5+QRt	3.14E+07	N

付表 1.17-1 C-4 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>, 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[諸元]			
公称容量	VOL (kl)	30000	(kl)
貯槽内径	D	45760	(mm)
側板高さ	Hmax	20143	(mm)
最下段側板厚	t _s	18	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	12.2	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(SPV50)</u>	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σγ	490.3325	(N/mm2)
最高液高さ	Н	16481	(mm)
液密度	r	8.00E-07	(kg/mm3)
直径/液高さ比	D/H	2.78	(-)
液高さ/直径比	H/D	0.36	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.43	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.41	(-)
消防法/有効液の重心高さ係数 f _{ho}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0207(\frac{H}{D}) + 0.3644$	0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.13	(N/mm2)

側板重量	Ws0	2.80E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.30E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.80E+06	(N)

付表 1.17-2 C-4 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値

		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3197	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3606	(-)
液重量 W=gγπD ² H/4	w	2.13E+08	(N)
合計重量(W+Wsr)	W+Wsr	2.15E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	9.04E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	9.05E+07	(N)
消防法/有効液重量率	f _{w0}	0.43	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	660.34	(cm)
$H_1 = f_{h1} * H$	H1	649.06	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	194.95	(N/cm)
ばね係数	Kb	3.56E+07	(N/cm)
浮き上がり抵抗力	qу	780.15	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	q _V +qt	975.10	(N/cm)
保有水平耐力(降伏耐力)	Qy	4.94E+07	(N)
<u>降伏変位(=Qy/Kb)</u>	Δy	1.39	(cm)
減衰係数	Ce	5.44E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	7.05	(-)

付表 1.17-3 C-4 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

(No. 3	計算シー	ト)
--------	------	----

Point T	QRt	9.88E+06	N
$Q_{Rt} Q_{Rt} Q_{t} = \frac{Q_{Rt} C_{10}}{Q_{Rt} C_{10}}$	C10	0.75	-
$Q_{Rt} = \frac{1}{H_{L}} \qquad $	αt	0.08	_
$Q_{Rt} = Q_{Rt}$	∆et	0.28	cm
$\Delta_{et} = \frac{1}{K_{t}}$			
Point Y	mv	1.18E+04	N
$a = \frac{4}{m} m_{p}$ $m_{z} = \frac{O_{y}}{m} t_{z}^{2}$	av	6.37E+02	N/cm
$\int \frac{q_y}{\sqrt{6}} \sqrt{6} \sqrt{m_y p_0} \qquad \qquad$	QRv	3.23E+07	N
$2\pi R^2 a$ Et_a^3	αv	0.28	-
$Q_{Ry} = \frac{2\pi (q_y)}{\pi^2} D_a (= \frac{a}{12(1-v^2)})$	СМ	11.23	_
H_1 H_1 H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.65	cm
$\alpha_{y}^{y} = (\pi f_{w1} p_0 R^2)$	∆ev	1.83	cm
$H_{1}[O_{1}]^{4}$	<u> </u>		
$\Delta_y = \frac{102y^2}{R^2}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^4$	$OB_{V}+Ot$	4 22F+07	N
$[O_{p_1} + O_{p_2}]^{-1}$	Grity Gr	1.222.07	
$\Delta_{ey} = \Delta_y + \frac{12\kappa_y - 2\kappa_l T}{K}$			
K _b			
Point P σ_{y} , $2 = \frac{4}{m_{y}}$, m_{z}	mp	1.77E+04	Ν
$m_p = \frac{1}{4} t_a \qquad q_p \qquad \sqrt{6} \sqrt{m_p p_0}$	qp	7.80E+02	N/cm
$2 - \mathbf{P}^2$ \mathbf{z} $[0_{\mathbf{r}}] \mathbf{C}_{\mathbf{r}}$	QRp	3.95E+07	N
$Q_{p} = \frac{2\pi \kappa q_{p}}{m} \qquad \alpha_{p} = \frac{12\pi \kappa q_{p}}{(\kappa p)^{2}}$	αp	0.34	-
$\overset{\boldsymbol{\mathcal{L}}}{=} \boldsymbol{H}_{1} \qquad (\boldsymbol{\pi}_{W1} \boldsymbol{p}_{0} \boldsymbol{R}^{-})$	СМ	10.86	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{R^2}$	Δp	1.67	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{1}{H}]^4$	∆ер	3.06	cm
$\Delta_{ap} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	4.94E+07	Ν
K_{b}			
Point 4 4	m4	2.35E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	9.01E+02	N/cm
$2\pi R^2 q_{4} - Q_{R4} C_{10}$	QR4	4.57E+07	N
$Q_{R4} = \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{W1} p_0 R^2)}$	α4	0.39	-
	СМ	10.55	_
$\Delta_4 = \frac{H_1[Q_{R4}]}{2}$	Da	3.26E+06	N.cm
$\frac{1}{2} RD n^{3} [C (\alpha + \alpha)] \frac{R^{2}}{R^{2}}]^{4}$	$\Delta 4$	3.34	cm
$\begin{bmatrix} AD_a p_0 [C_M (\alpha_4 + \alpha_i)] \\ O + O \end{bmatrix} H_1$	∆e4	4.90	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{\mathcal{W}}$			
K _b	QR4+QRt	5.55E+07	N
Point 5 4	m5	3.53E+04	N
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	1.10E+03	N/cm
$\sqrt{0}$	QR5	5.59E+07	N
	α5	0.48	
	СМ	10.02	-
	Da	3.26E+06	N.cm
	∆5	9.22	cm
	∆ e5	11.07	cm
	QR5+QRt	6 58E+07	N T

非線形ロッキングばね特性線図計算

付表 1.18-1 C-5 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

.質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	67800	(mm)
側板高さ	Hmax	18275	(mm)
最下段側板厚	t _s	26	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	20.9	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(2H)</u>	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490.3325	(N/mm2)
最高液高さ	Н	14407	(mm)
液密度	r	7.48E-07	(kg/mm3)
直径/液高さ比	D/H	4.71	(-)
液高さ/直径比	H/D	0.21	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.25	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0.23	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0.0207(\frac{H}{D}) + 0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.11	(N/mm2)

側板重量	Ws0	5.53E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	6.59E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	5.53E+06	(N)

付表 1.18-2 C-5 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N cm)

		(甲11-21: N, CM)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.2687	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3993	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	3.82E+08	(N)
合計重量(W+Wsr)	W+Wsr	3.87E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	9.50E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	9.39E+07	(N)
消防法/有効液重量率	f _{w0}	0.25	(-)
	f _{w1}	0.23	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	576.73	(cm)
$H_1 = f_{h1} * H$	H1	543.54	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	259.80	(N/cm)
ばね係数	Kb	5.24E+07	(N/cm)
浮き上がり抵抗力	qу	705.31	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	965.11	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.28E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.45	(cm)
減衰係数	Ce	6.72E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	12.47	(-)

付表 1.18-3 C-5 ンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート(No.3計 算シート)

Point T	QRt	3.45E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}}$ $\alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.81	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.32	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.66	cm
$\Delta_{et} - K_{b}$			
Point Y σ	my	1.18E+04	Ν
$q_{y} = \frac{4}{\pi} \sqrt{m_{y} p_{0}}$ $m_{y} = \frac{4}{\pi} t_{a}^{2}$	qy	5.76E+02	N/cm
$\sqrt{6} \sqrt{9} \sqrt{6} \sqrt{9} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} \sqrt{6} 6$	QRy	7.65E+07	Ν
$2\pi R^2 q_{\mu} = D \left(E t_a^3 \right)$	αγ	0.70	-
$Q_{Ry} = \frac{1}{12} D_a (= \frac{1}{12(1-v^2)})$	СМ	7.29	-
	Da	3.26E+06	N.cm
$\alpha_{ij} = \frac{[\mathcal{Q}_{Ry}]\mathcal{L}_{10}}{2}$	Δy	2.53	cm
$y \qquad (\pi f_{W1} p_0 R^2)$	∆ey	4.64	cm
$H_1[Q_{y}]^4$			
$\Delta_y = \frac{1}{R^2 + 1}$			
$RD_a p_0^{\mathcal{I}} [C_M (\alpha_y + \alpha_t) \overline{H_1}]^{T}$	QRv+Qt	1 11E+08	N
$[O_{p_{1}} + O_{p_{2}}]$			
$\Delta_{ey} = \Delta_y + \frac{2\omega_{Ky} - \omega_{Ky}}{K}$			
Λ _b			
Point P $\sigma_{y} \neq 2 q_{z} = \frac{4}{\sqrt{m_{z} p_{0}}}$	mp	1.77E+04	Ν
$m_p = \frac{1}{4} t_a \qquad 1^p \qquad \sqrt{6} \sqrt{1^p r_0}$	qp	7.05E+02	N/cm
$2 - \mathbf{R}^2$ $(0, 1)$	QRp	9.37E+07	Ν
$Q_{p} = \frac{2\pi \kappa q_{p}}{m} \qquad \alpha_{p} = \frac{12 \kappa p^{-10}}{(\kappa p^{-10})^{10}}$	αp	0.86	-
$\mathcal{L}_{Rp} \qquad H_1 \qquad (\pi_{W1} p_0 R^2)$	СМ	6.35	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	9.88	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\alpha_l}{\mu}]^4$	∆ер	12.33	cm
$\Delta_{en} = \Delta_{n} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.28E+08	Ν
$K_{p} K_{b}$			
Point 4	m4	2.12E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	7.73E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.03E+08	N
$Q_{R4} = \frac{2\pi a q_4}{\mu} \alpha_4 = \frac{\pi a q_4}{(\pi f_{-1} n_1 R^2)}$	α4	0.94	-
\boldsymbol{n}_1 (\boldsymbol{y}_{W1P0})	СМ	5.86	-
$\Lambda_{L} = \frac{H_1[Q_{R4}]^4}{1}$	Da	3.26E+06	N.cm
R^{-4}	Δ4	19.63	cm
$\frac{KD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{H_1}$	∆e4	22.25	cm
$\Delta_{14} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
K_{b}	QR4+QRt	1.37E+08	Ν

非線形ロッキングばね特性線図計算

付表 1.19-1 C-6 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

_質点系モデルによる側板下端の浮き上がり変位計算用諸元______(赤字:入力値)

[諸元]			-
公称容量	VOL (kl)	70000	(kl)
貯槽内径	D	67800	(mm)
側板高さ	Hmax	21960	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	22.3	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(HT60)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	449.99971	(N/mm2)
最高液高さ	Н	19833	(mm)
液密度	γ	8.93E-07	(kg/mm3)
直径/液高さ比	D/H	3.42	(-)
液高さ/直径比	H/D	0.29	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.35	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.34	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1} 			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^$	$0.0207(\frac{H}{D}) + 0.3644$	0.39	(-)
底板に作用する最大静液圧			
P ₀ =g γ H		0.17	(N/mm2)

側板重量	Ws0	7.19E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	2.10E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.19E+06	(N)

付表 1.19-2 C-6 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値

		(甲位:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3523	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3780	(-)
液重量 W=gγπD ² H/4	w	6.27E+08	(N)
合計重量(W+Wsr)	W+Wsr	6.34E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.20E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	W 1	2.19E+08	(N)
消防法/有効液重量率	f _{w0}	0.35	(-)
	f _{w1}	0.34	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	793.31	(cm)
$H_1 = f_{h1} * H$	H1	764.87	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	337.55	(N/cm)
ばね係数	Kb	7.11E+07	(N/cm)
浮き上がり抵抗力	qу	866.21	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	qy+qt	1203.76	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.14E+08	(N)
<u>降伏変位 (=Qy/K₀)</u>	Δy	1.60	(cm)
減衰係数	Ce	1.20E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	8.86	(-)

付表 1.19-3 C-6 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

非線形ロッキングはね特性線図計算			
Point T	QRt	3.19E+07	Ν
$ Q_{Rt} = \frac{2\pi R^2 q_t}{Q_{Rt} C_{10}} $	C10	0.79	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \qquad$	αt	0.12	-
$A = Q_{Rt}$	Δet	0.45	cm
$\Delta_{et} = \frac{1}{K_h}$			
Point Y	my	1.08E+04	N
$a = \frac{4}{m} \sqrt{m} \frac{m}{n_0} \qquad m_{y} = \frac{3}{m} \frac{1}{v} t_{z}^{2}$	av	7.07E+02	N/cm
$\int \frac{4y}{\sqrt{6}} \sqrt{10^{-1}y} \int \frac{y}{\sqrt{6}} \int \frac{d}{\sqrt{10}} \int \frac$	QRy	6.68E+07	N
$2\pi R^2 a$ Et_a^3	αγ	0.25	-
$Q_{Ry} = \frac{2\pi a^2 q_y}{m} D_a (= \frac{a}{12(1-v^2)})$	СМ	11.19	-
H_1	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.33	cm
$(\pi f_{W_1} p_0 R^2)$	Δey	1.72	cm
$H_1[O_n]^4$			
$\Delta_y = \frac{R^2}{R^2}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{\alpha_t}{H_s}]^4$	$OB_{V}+O_{T}$	986F+07	N
$[O_{n} + O_{n}]^{-1}$	Grity Gre	0.002.07	
$\Delta_{ey} = \Delta_y + \frac{\mathcal{L}_{Ky} - \mathcal{L}_{Kt}}{V}$			
κ _b			
Point P σ_{y} , 2 $a = \frac{4}{m}$	mp	1.62E+04	N
$m_p = \frac{1}{4} t_a q_p \sqrt{6} \sqrt{m_p P_0}$	qp	8.66E+02	N/cm
$(0, 1)^2$	QRp	8.18E+07	N
$\alpha_{p} = \frac{2\pi R^{2} q_{p}}{(2\pi R^{2})^{2}} \qquad \alpha_{p} = \frac{12 q_{p} C_{10}}{(2\pi R^{2})^{2}}$	αp	0.31	-
$\mathcal{Q}_{Rp} = H_1 \qquad P (\pi f_{W1} p_0 R^2)$	СМ	10.85	-
$H_{1}[Q_{Rn}]^{4}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{R^2}$	Δp	0.84	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{T}]^4$	∆ер	2.43	cm
H_1			
$\Delta_m = \Delta_n + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.14E+08	N
$\sum_{p} K_{b}$			
Point 4 4	m4	2.16E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.00E+03	N/cm
$2\pi R^2 a \qquad Q_{R4}C_{10}$	QR4	9.44E+07	Ν
$Q_{R4} = \frac{2\pi (q_4)}{U} \alpha_4 = \frac{\pi (q_4)}{(\pi f_{res}, p_1 R^2)}$	α4	0.35	_
H_1 (9) $W_1 P_0 H$	СМ	10.57	-
$\Lambda_{\star} = \frac{H_1[Q_{R4}]^4}{1}$	Da	3.26E+06	N.cm
R^{-4} $RD n^{3}[C (\alpha + \alpha) R^{2}]^{4}$	Δ4	1.65	cm
$\frac{KD_a p_0 [C_M (a_4 + a_t)]}{Q_1 + Q_2} H_1$	∆e4	3.43	cm
$\Delta_{a4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
K_b	QR4+QRt	1.26E+08	N
Point 5 4	m5	5.40E+04	Ν
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	1.58E+03	N/cm
$\sqrt{6}$	QR5	1.49E+08	Ν
	α5	0.56	-
	СМ	9.35	-
	Da	3.26E+06	N.cm
	Δ5	16.85	cm
	Δe5	19.40	cm
	QR5+QRt	1.81E+08	N

(No.3計算シート) 非組NDMはたけにの計算 付表 1.20-1 C-7 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>
質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>
(赤字:入力値)

[[諸元]					
公称容量	VOL (kl)	100000	(kl)		
[•] 槽内径D		81600	(mm)		
則板高さ Hmax Hmax		21880	(mm)		
最下段側板厚 t _s t _s		30	(mm)		
1/3の最高液高さにおける側板厚	t _{1/3}	23	(mm)		
アニュラ板厚	t _b	12	(mm)		
<u>鋼材のヤング率(HW50)</u>	E	205939.65	(N/mm2)		
鋼材のポアソン比	ν	0.3	(-)		
降伏応力	σy	490.3325	(N/mm2)		
最高液高さ	Н	18628	(mm)		
液密度	r	1.00E-06	(kg/mm3)		
直径/液高さ比	D/H	4.38	(-)		
液高さ/直径比	H/D	0.23	(-)		
消防法/有効液重量率 f _{w0}					
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0$	0.27	(-)			
消防法/有効液重量率 f _{w1}					
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3$	0.25	(-)			
消防法/有効液の重心高さ係数 f _{ho}					
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0384(\frac{H}{D})^2 - 0.0384(\frac{H}{D})^$	0.40	(-)			
消防法/有効液の重心高さ係数 f _{h1}					
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.026(\frac{H}{D})^2 + $	0.38	(-)			
底板に作用する最大静液圧					
$P_0 = g \gamma H$	0.18	(N/mm2)			

側板重量	Ws0	9.08E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.78E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	9.08E+06	(N)

付表 1. 20-2 C-7 タンクの質点系モデルの諸元計算シート(No. 2 計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N, cm)

貯槽の固有周期					
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.4097	(sec)		
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3950	(-)		
液重量 W = g $\gamma \pi D^2 H / 4$	w	9.55E+08	(N)		
合計重量(W+Wsr)	W+Wsr	9.64E+08	(N)		
減衰比	ξ	0.15	(-)		
基礎地盤と貯槽本体の連成振動補正係数	i	1	(-)		
有効液重量					
$W_0 = f_{w0} * (W)$	Wo	2.58E+08	(N)		
$W_1 = f_{w1} * (W) + Wsr$	W 1	2.52E+08	(N)		
消防法/有効液重量率	f _{w0}	0.27	(-)		
	f _{w1}	0.25	(-)		
有効液の重心高さ					
$H_0 = f_{h0} * H$	H₀	745.37	(cm)		
$H_1 = f_{h1} * H$	H1	705.63	(cm)		
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)		
	f _{h1}	0.38	(-)		
側板自重による鉛直抵抗力qt	qt	354.15	(N/cm)		
ばね係数	Kb	6.04E+07	(N/cm)		
浮き上がり抵抗力	qу	927.31	(N/cm)		
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1281.46	(N/cm)		
保有水平耐力(降伏耐力)	Qy	1.90E+08	(N)		
降伏変位 (=Qy/Kb)	Δy	3.14E+00	(cm)		
減衰係数	Ce	1.18E+06	(N/(cm/s))		
貯蔵内径と有効液の重心高さの比	D/H1	11.56	(-)		

付表 1.20-3 C-7 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

非称形ロッキングは福特性線図訂昇			
Point T	QRt	5.25E+07	N
$ \qquad \qquad$	C10	0.81	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.18	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.87	cm
$K_{et} = K_{b}$			
Point Y σ	my	1.18E+04	Ν
$q_{y} = \frac{4}{m_{y}p_{0}}$ $m_{y} = \frac{3}{m_{y}}t_{a}^{2}$	qy	7.57E+02	N/cm
$\sqrt{6}^{y}$	QRy	1.12E+08	Ν
$2\pi R^2 q$ Et_a^3	αγ	0.37	-
$Q_{Ry} = \frac{1}{U} D_a (= \frac{1}{12(1-v^2)})$	СМ	10.10	-
H_1	Da	3.26E+06	N.cm
$\alpha_{n} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{2}$	Δy	0.43	cm
$\int_{W_1}^{Y} (\pi f_{W_1} p_0 R^2)$	∆ey	3.15	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{R^2} \frac{1}{R^2}$			
$RD_a p_0^* [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^T$	QRv+Qt	1.65E+08	N
$[Q_{R_v} + Q_{R_t}]$			
$\Delta_{ey} = \Delta_y + \frac{-2K}{K}$			
n b			
Point P $\sigma_{y} = \frac{1}{2} q_{p} = \frac{4}{\sqrt{m_{p}p_{0}}}$	mp	1.77E+04	N
$m_p = \frac{1}{4} l_a \qquad l_p \qquad \sqrt{6} \sqrt{6} \sqrt{2} p l_0$	qp	9.27E+02	N/cm
$2\pi P^2 a$ $[O_{\rm P_{\rm c}}]C_{\rm D_{\rm c}}$	QRp	1.37E+08	N
$Q_p = \frac{2\pi \kappa q_p}{m} \qquad \alpha_p = \frac{\kappa \epsilon_{Rp} r_{10}}{\kappa \epsilon_{Rp} r_{20}}$	αp	0.46	-
$\mathcal{L}_{Rp} \qquad H_1 \qquad (\pi_{W_1} p_0 K)$	СМ	9.60	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	1.18	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{1}{H}]^4$	∆ер	4.32	cm
$\Delta_{ap} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.90E+08	N
K_b			
Point 4 4	m4	2.35E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.07E+03	N/cm
$2\pi R^2 a_1 \qquad Q_{R4} C_{10}$	QR4	1.59E+08	N
$Q_{R4} = \frac{2\pi (q_4)}{\mu} \alpha_4 = \frac{1}{(\pi f_{m_1} p_0 R^2)}$	α4	0.53	-
$II_1 \qquad (5 W I F 0^{-1})$	СМ	9.18	-
$\Delta_{4} = \frac{H_{1}[\mathcal{Q}_{R4}]^{*}}{2}$	Da	3.26E+06	N.cm
$\frac{1}{2} RD n^{3} [C (\alpha + \alpha)] \frac{R^{2}}{m^{2}} l^{4}$	∆4	2.51	cm
$\begin{bmatrix} n \omega_a P_0 (\omega_A + \omega_t) \\ 0 + 0 \end{bmatrix} H_1$	∆e4	6.01	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{L}_{R4} + \mathcal{L}_{Rt}}{\mathcal{L}}$			
K _b	QR4+QRt	2.11E+08	N
Point 5 4	m5	4.71E+04	N
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	1.51E+03	N/cm
√0	QR5	2.24E+08	N
	α5	0.75	-
	СМ	7.87	-
	Da	3.26E+06	N.cm
	Δ5	18.61	cm
	∆e5	23.20	cm
	QR5+QRt	2.77E+08	Ν

(No.3計算シート)

非線形ロッキングばね特性線図計算

代表タンク20基の浮き上がり解析結果のまとめ

以下の代表三地区の代表タンク 20 基の最大浮き上がり変位と回数のまとめを付表 2.1 に 示す。各代表タンクの浮き上がり変位の時刻歴を付図 2.1 から付図 2.34 に示す。

	タンク	タンク	EW			NS			
地区	番号	容量	最大浮き上がり変位	浮き上が	がり回数	最大浮き上がり変位	浮き上た	浮き上がり回数	
		(KL)	(cm)	0度側	180度側	(cm)	0度側	180度側	
	1	1000	2.3	36	36	0.5	21	25	
	2	5000	2.5	32	34	0.4	10	7	
Α	3	10000	1	6	5	0	0	0	
	4	30000	1	2	3	0	0	0	
	5	50000	2.8	19	23	0.5	5	5	
	6	75000	6.6	20	22	0.9	4	4	
	1	1000	5.6	52	57	1.2	29	34	
	2	6000	6.7	41	38	0.9	10	8	
В	3	10000	8.8	43	38	0.9	11	13	
	4	30000	8.6	23	25	1.4	2	4	
	5	50000	14.2	15	17	0	0	0	
	6	77000	7.3	19	18	0.9	1	2	
	7	100000	6.3	20	19	0.4	3	3	
	1	1000	0.2	6	9	2.3	48	53	
	2	5000	0.2	0	4	2.3	53	58	
С	3	10000	0	0	0	1.6	29	37	
	4	30000	0.6	6	4	7.8	34	38	
	5	50000	0	0	0	6	7	4	
	6	70000	0.4	3	1	8.1	27	31	
	7	100000	0	0	0	4.1	21	22	

付表 2.1 代表タンク 20 基の最大浮き上がり変位と回数のまとめ
(1) A地区(代表タンク:合計6基、A-1~A-6)

付図 2.1 浮き上がり変位の時刻歴(A地区 EW、A-1 タンク)

^{2.5} 2.0 1.5 浮き上がり変位 [cm] 1.0 itm v 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 20 25 30 35 40 時間 [秒]

付図 2.2 浮き上がり変位の時刻歴(A地区 NS、A-1 タンク)

付図 2.3 浮き上がり変位の時刻歴(A地区 EW、A-2 タンク)

付図 2.4 浮き上がり変位の時刻歴(A地区 NS、A-2 タンク)

付図 2.5 浮き上がり変位の時刻歴(A地区 EW、A-3 タンク)

付図 2.6 浮き上がり変位の時刻歴(A地区 ES、A-4 タンク)

付図 2.7 浮き上がり変位の時刻歴(A地区 EW、A-5 タンク)

付図 2.8 浮き上がり変位の時刻歴(A地区 NS、A-5 タンク)

付図 2.9 浮き上がり変位の時刻歴(A地区 EW、A-6 タンク)

付図 2.10 浮き上がり変位の時刻歴(A地区 NS、A-6 タンク)

(2) B地区(代表タンク:合計7基、B·1~B·7)

付図 2.12 浮き上がり変位の時刻歴(B地区 NS、B-1 タンク)

付図 2.13 浮き上がり変位の時刻歴(B地区 EW、B-2 タンク)

付図 2.14 浮き上がり変位の時刻歴(B地区 NS、B-2 タンク)

付図 2.15 浮き上がり変位の時刻歴(B地区 EW、B-3 タンク)

付図 2.16 浮き上がり変位の時刻歴(B地区 NS、B-3 タンク)

付図 2.17 浮き上がり変位の時刻歴(B地区 EW、B-4 タンク)

付図 2.18 浮き上がり変位の時刻歴(B地区 NS、B-4 タンク)

付図 2.19 浮き上がり変位の時刻歴(B地区 EW、B-5 タンク)

付図 2.20 浮き上がり変位の時刻歴(B地区 EW、B-6 タンク)

付図 2.21 浮き上がり変位の時刻歴(B地区 NS、B-6 タンク)

付図 2.22 浮き上がり変位の時刻歴(B地区 EW、B-7 タンク)

付図 2.23 浮き上がり変位の時刻歴(B地区 NS、B-7 タンク)

(3) C地区(代表タンク:合計7基、C-1~C-7)

付図 2.24 浮き上がり変位の時刻歴(C地区 EW、C-1 タンク)

付図 2.25 浮き上がり変位の時刻歴(C地区 NS、C-1タンク)

付図 2.26 浮き上がり変位の時刻歴(C地区 EW、C-2 タンク)

付図 2.27 浮き上がり変位の時刻歴(C地区 NS、C-2 タンク)

付図 2.28 浮き上がり変位の時刻歴(C地区 NS、C-3 タンク)

付図 2.29 浮き上がり変位の時刻歴(C地区 EW、C-4 タンク)

付図 2.30 浮き上がり変位の時刻歴(C地区 NS、C-4 タンク)

付図 2.31 浮き上がり変位の時刻歴(C地区 NS、C-5 タンク)

付図 2.32 浮き上がり変位の時刻歴(C地区 EW、C-6 タンク)

付図 2.33 浮き上がり変位の時刻歴(C地区 NS、C-6 タンク)

付図 2.34 浮き上がり変位の時刻歴(C地区 NS、C-7 タンク)

添付資料3

B-5 タンクの動液圧の計算結果

付表 3.1 B-5 タンクの動液圧計算用入力データ

D	69765 mm
Н	12608 mm
Kh1	0.4484
ν3	1.79
ρ	8.66E-07 kg/mm3

H/D	0.180721
分割	100
⊿н	126.08 mm
g	9.8 m/sec2
Z	3.33E+13 mm3

C00	C01	C02	C03	C04	C05
0.818987	-0.13123	0.688	-4.22843	5.706144	-2.85
C10	C12	C12	C13	C14	C15
0.810687	0.254276	-1.46843	0.572191	-0.20929	0.041771

付図 3.1 側板の高さにおける動液圧の分布(B-5 タンク)

付表 3.2 B-5 タンクの動液圧計算結果

			-	P = 2D*Ph(z)*	<u>π/4 より</u>	
Z (mm)	Ph0(Z) (MPa)	Ph1(Z) (MPa)	Ph(Z) (MPa)	P (N∕mm)	M (N.mm)	Q (N)
0.00	0.02195	0.01717	0.03912	4286.90	1.8708E+11	3.8198E+07
126.08	0.02192	0.01722	0.03914	4288.80	1.8230E+11	3.7658E+07
252.16	0.02189	0.01726	0.03915	4290.35	1.7759E+11	3.7117E+07
378.24	0.02186	0.01730	0.03916	4291.50	1.7294E+11	3.6576E+07
504.32	0.02183	0.01733	0.03917	4292.20	1.6836E+11	3.6035E+07
630.40	0.02181	0.01736	0.03917	4292.38	1.6385E+11	3.5494E+07
756.48	0.02179	0.01738	0.03917	4291.99	1.5941E+11	3.4952E+07
882.56	0.02176	0.01740	0.03916	4291.00	1.5504E+11	3.4411E+07
1008.64	0.021/4	0.01/40	0.03914	4289.35	1.50/4E+11	3.38/0E+0/
1134./2	0.02171	0.01741	0.03912	4287.01	1.4650E+11	3.3330E+07
1200.80	0.02169	0.01741	0.03909	4283.95	1.4233E+11	3.2/90E+0/
1380.88	0.02100	0.01740	0.03900	4280.11	1.3823E+11	3.2230E+07
1639.04	0.02103	0.01730	0.03901	4275.46	1.3420E+11 1.3024E+11	3.1/10E+07 3.1172E+07
1765.12	0.02100	0.01734	0.03891	426373	1.3024E+11	3.0634E+07
1891.20	0.02153	0.01731	0.03884	425656	1 2 2 5 1 E + 1 1	3.0096E+07
2017.28	0.02149	0.01728	0.03877	4248.50	1.1875E+11	2.9560F+07
2143.36	0.02145	0.01724	0.03869	4239.53	1.1506E+11	2.9025E+07
2269.44	0.02140	0.01719	0.03860	4229.63	1.1143E+11	2.8491E+07
2395.52	0.02135	0.01714	0.03850	4218.79	1.0787E+11	2.7959E+07
2521.60	0.02130	0.01709	0.03839	4207.00	1.0438E+11	2.7428E+07
2647.68	0.02124	0.01703	0.03827	4194.26	1.0096E+11	2.6898E+07
2773.76	0.02118	0.01697	0.03815	4180.54	9.7599E+10	2.6370E+07
2899.84	0.02112	0.01690	0.03801	4165.86	9.4307E+10	2.5844E+07
3025.92	0.02105	0.01682	0.03787	4150.20	9.1082E+10	2.5320E+07
3152.00	0.02098	0.01674	0.03772	4133.55	8.7922E+10	2.4797E+07
3278.08	0.02090	0.01666	0.03756	4115.93	8.4829E+10	2.4277E+07
3404.16	0.02082	0.0165/	0.03/39	4097.34	8.1800E+10	2.3/60E+0/
3530.24	0.02073	0.01648	0.03/21	4077.76	7.8837E+10	2.3244E+07
3030.32	0.02004	0.01638	0.03702	4037.22	7.3939E+10	2.2/31E+0/
3008.48	0.02033	0.01028	0.03003	4033.70	7.0335E+10	2.2221L+07 2.1714E+07
4034 56	0.02045	0.01606	0.03641	3989.79	6 7630E+10	2.1714E+07
4160.64	0.02024	0.01594	0.03619	3965.40	6.4987F+10	2.0708F+07
4286.72	0.02013	0.01582	0.03595	3940.08	6.2408E+10	2.0209E+07
4412.80	0.02001	0.01570	0.03571	3913.82	5.9891E+10	1.9714E+07
4538.88	0.01990	0.01557	0.03547	3886.63	5.7436E+10	1.9223E+07
4664.96	0.01977	0.01544	0.03521	3858.54	5.5044E+10	1.8734E+07
4791.04	0.01964	0.01530	0.03495	3829.54	5.2712E+10	1.8250E+07
4917.12	0.01951	0.01516	0.03467	3799.64	5.0441E+10	1.7769E+07
5043.20	0.01938	0.01502	0.03439	3768.86	4.8231E+10	1.7292E+07
5169.28	0.01924	0.0148/	0.03410	3/3/.21	4.6081E+10	1.6818E+07
5295.30	0.01909	0.01471	0.03381	3/04.09	4.3990E+10	1.0349E+07
554752	0.01094	0.01430	0.03350	3071.32	4.1956E+10 2.009/E+10	1.3004E+07
5673.60	0.01864	0.01423	0.03287	3602.05	3.8068E+10	1.3424L+07
5799.68	0.01848	0.01406	0.03254	3566.18	3.6210E+10	1 4515E+07
5925.76	0.01832	0.01389	0.03221	3529.49	3.4408F+10	1.4068F+07
6051.84	0.01815	0.01371	0.03187	3491.99	3.2662E+10	1.3625E+07
6177.92	0.01798	0.01353	0.03152	3453.68	3.0972E+10	1.3188E+07
6304.00	0.01781	0.01335	0.03116	3414.58	2.9337E+10	1.2755E+07
6430.08	0.01763	0.01316	0.03079	3374.69	2.7755E+10	1.2327E+07
6556.16	0.01745	0.01297	0.03042	3334.01	2.6228E+10	1.1904E+07
6682.24	0.01727	0.01278	0.03005	3292.55	2.4753E+10	1.1486E+07
6808.32	0.01708	0.01258	0.02966	3250.30	2.3331E+10	1.1074E+07
6934.40	0.01689	0.01238	0.02927	3207.27	2.1961E+10	1.0666E+07
/060.48	0.016/0	0.01217	0.02887	3163.46	2.0641E+10	1.0265E+07
/186.56	0.01650	0.01196	0.02846	3118.8/	1.93/2E+10	9.8088E+06
7312.04	0.01630	0.01150	0.02805	30/3.48	1.8192E+10	9.4/84E+06
7564 00	0.01609	0.01103	0.02702	3027.29	1.0902E+10	9.0938E+06 9.7151E+06
7600.80	0.01568	0.01131	0.02720	2900.30	1.3039E+10	8 3424E+06
7816.96	0.01545	0.01087	0.02070	2883.87	1 3755F+10	7.9757F+06
7943.04	0.01523	0.01064	0.02586	2834.40	1.2772E+10	7.6152E+06

8069.12	0.01500	0.01040	0.02541	2784.07	1.1834E+10	7.2610E+06
8195.20	0.01477	0.01017	0.02494	2732.87	1.0941E+10	6.9132E+06
8321.28	0.01453	0.00993	0.02446	2680.77	1.0091E+10	6.5720E+06
8447.36	0.01429	0.00969	0.02398	2627.75	9.2832E+09	6.2373E+06
8573.44	0.01405	0.00944	0.02349	2573.78	8.5174E+09	5.9094E+06
8699.52	0.01379	0.00919	0.02298	2518.84	7.7926E+09	5.5884E+06
8825.60	0.01353	0.00894	0.02247	2462.88	7.1078E+09	5.2743E+06
8951.68	0.01327	0.00868	0.02195	2405.89	6.4622E+09	4.9674E+06
9077.76	0.01300	0.00843	0.02142	2347.81	5.8548E+09	4.6677E+06
9203.84	0.01272	0.00817	0.02088	2288.61	5.2847E+09	4.3754E+06
9329.92	0.01243	0.00790	0.02033	2228.25	4.7510E+09	4.0907E+06
9456.00	0.01214	0.00763	0.01977	2166.67	4.2527E+09	3.8136E+06
9582.08	0.01183	0.00736	0.01920	2103.83	3.7889E+09	3.5444E+06
9708.16	0.01152	0.00709	0.01861	2039.67	3.3585E+09	3.2832E+06
9834.24	0.01120	0.00681	0.01801	1974.13	2.9605E+09	3.0302E+06
9960.32	0.01087	0.00653	0.01740	1907.14	2.5938E+09	2.7855E+06
10086.40	0.01053	0.00625	0.01678	1838.66	2.2575E+09	2.5494E+06
10212.48	0.01017	0.00597	0.01614	1768.59	1.9504E+09	2.3220E+06
10338.56	0.00981	0.00568	0.01548	1696.88	1.6715E+09	2.1035E+06
10464.64	0.00943	0.00539	0.01481	1623.44	1.4194E+09	1.8942E+06
10590.72	0.00903	0.00509	0.01413	1548.19	1.1932E+09	1.6943E+06
10716.80	0.00863	0.00480	0.01342	1471.05	9.9161E+08	1.5039E+06
10842.88	0.00820	0.00450	0.01270	1391.91	8.1337E+08	1.3234E+06
10968.96	0.00776	0.00420	0.01196	1310.69	6.5725E+08	1.1531E+06
11095.04	0.00731	0.00389	0.01120	1227.29	5.2196E+08	9.9308E+05
11221.12	0.00683	0.00358	0.01042	1141.61	4.0616E+08	8.4375E+05
11347.20	0.00634	0.00327	0.00961	1053.52	3.0851E+08	7.0537E+05
11473.28	0.00583	0.00296	0.00879	962.92	2.2759E+08	5.7825E+05
11599.36	0.00529	0.00264	0.00794	869.69	1.6196E+08	4.6272E+05
11725.44	0.00473	0.00233	0.00706	773.70	1.1015E+08	3.5912E+05
11851.52	0.00415	0.00201	0.00616	674.83	7.0633E+07	2.6781E+05
11977.60	0.00355	0.00168	0.00523	572.93	4.1826E+07	1.8915E+05
12103.68	0.00291	0.00136	0.00427	467.87	2.2115E+07	1.2354E+05
12229.76	0.00225	0.00103	0.00328	359.50	9.8273E+06	7.1378E+04
12355.84	0.00156	0.00070	0.00226	247.67	3.2409E+06	3.3102E+04
12481.92	0.00084	0.00036	0.00121	132.22	5.7706E+05	9.1539E+03
12608.00	0.00009	0.00003	0.00012	12.99	0.0000E+00	0.0000E+00

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2 の算定式による応力-ひずみ線図

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2の算定式で計算した B-5 タンクの側板とアニュラ板(両方の材料:HT60)及び底板(材料:SS41)の応力一ひずみ線図の数値を付表 4.1 と付表 4.2 に示す。

ASME Code の算定式と記号に関する記述文の抜粋を付録 4.1 に示す。

σys	450	N/mm2
σ uts	570	N/mm2
R	0.7894737	
K	0.3381026	
m2	0.1263158	
A2	839.91085	
£р	2.00E-05	
εys	2.00E-03	mm/mm
M1	5.18E-02	
A1	6.22E+02	
Ey	205940	N/mm2

付表 4.1 側板とアニュラ板(材料:HT60)の応力—ひずみ線図の計算値

σt	Н	ε1	ε2	γ1	γ2	εt
N/mm2						mm/mm
450	-2.00E+00	1.92E-03	7.15E-03	1.89E-03	1.29E-04	4.20E-03
500	4.65E-01	1.47E-02	1.65E-02	4.16E-03	1.18E-02	1.84E-02
530	1.94E+00	4.53E-02	2.61E-02	9.11E-04	2.56E-02	2.91E-02
550	2.93E+00	9.27E-02	3.50E-02	2.64E-04	3.49E-02	3.79E-02
600	5.39E+00	4.98E-01	6.97E-02	1.03E-05	6.97E-02	7.27E-02
650	7.86E+00	2.34E+00	1.31E-01	3.49E-07	1.31E-01	1.35E-01
700	1.03E+01	9.78E+00	2.36E-01	1.05E-08	2.36E-01	2.40E-01
750	1.28E+01	3.71E+01	4.08E-01	2.89E-10	4.08E-01	4.12E-01
800	1.53E+01	1.29E+02	6.80E-01	7.27E-12	6.80E-01	6.84E-01

ここに、σ_t:真応力、 ε_t:真ひずみ

σys	245	N/mm2
σ uts	400	N/mm2
R	0.6125	
К	0.3923987	
m2	0.2325	
A2	708.50043	
εр	2.00E-05	
εys	2.00E-03	mm/mm
M1	1.07E-01	
A1	4.77E+02	
Ey	205940	N/mm2

付表 4.2 底板(材料: SS41)の応力—ひずみ線図の計算値

σt	Н	ε1	ε2	γ1	γ2	εt
(N/mm2)						(mm/mm)
245	-2.00E+00	1.96E-03	1.04E-02	1.93E-03	1.87E-04	3.30E-03
270	-1.18E+00	4.87E-03	1.58E-02	4.45E-03	1.37E-03	7.12E-03
300	-1.91E-01	1.30E-02	2.48E-02	7.75E-03	1.01E-02	1.93E-02
350	1.45E+00	5.51E-02	4.82E-02	2.86E-03	4.57E-02	5.02E-02
400	3.10E+00	1.92E-01	8.55E-02	3.92E-04	8.54E-02	8.77E-02
450	4.74E+00	5.79E-01	1.42E-01	4.41E-05	1.42E-01	1.44E-01
500	6.39E+00	1.55E+00	2.23E-01	4.41E-06	2.23E-01	2.26E-01
550	8.03E+00	3.78E+00	3.36E-01	4.01E-07	3.36E-01	3.39E-01
600	9.67E+00	8.54E+00	4.89E-01	3.38E-08	4.89E-01	4.92E-01
650	1.13E+01	1.80E+01	6.90E-01	2.67E-09	6.90E-01	6.93E-01
700	1.30E+01	3.61E+01	9.49E-01	1.99E-10	9.49E-01	9.53E-01

ここに、σ_t:真応力、 ε_t:真ひずみ

付録 4.1

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2の抜粋

3.D.3 Stress Strain Curve

The following model for the stress-strain curve shall be used in design calculations where required by this Division when the strain hardening characteristics of the stress-strain curve are to be considered. The yield strength and ultimate tensile strength in paragraphs 3.D.1 and 3.D.2 may be used in this model to determine a stress-strain curve at a specified temperature.

$$\varepsilon_t = \frac{\sigma_t}{E_y} + \gamma_1 + \gamma_2 \tag{3.D.1}$$

where

$$\gamma_1 = \frac{\varepsilon_1}{2} \left(1.0 - \tanh[H] \right) \tag{3.D.2}$$

$$\gamma_2 = \frac{\varepsilon_2}{2} \left(1.0 + \tanh[H] \right) \tag{3.D.3}$$

$$\varepsilon_1 = \left(\frac{\sigma_t}{A_1}\right)^{\frac{1}{m_i}}$$
(3.D.4)

$$A_{1} = \frac{\sigma_{yz} \left(1 + \varepsilon_{yz}\right)}{\left(\ln\left[1 + \varepsilon_{yz}\right]\right)^{m_{1}}}$$
(3.D.5)

$$m_{1} = \frac{\ln[R] + (\varepsilon_{p} - \varepsilon_{yz})}{\ln\left[\frac{\ln[1 + \varepsilon_{p}]}{\ln[1 + \varepsilon_{yz}]}\right]}$$
(3.D.6)

$$\varepsilon_2 = \left(\frac{\sigma_t}{A_2}\right)^{\frac{1}{m_2}}$$
(3.D.7)

$$A_2 = \frac{\sigma_{uts} \exp[m_2]}{m_2^{m_2}}$$
(3.D.8)

$$H = \frac{2\left[\sigma_t - \left(\sigma_{ys} + K\left\{\sigma_{uts} - \sigma_{ys}\right\}\right)\right]}{K\left(\sigma_{uts} - \sigma_{ys}\right)}$$
(3.D.9)

$$R = \frac{\sigma_{yz}}{\sigma_{ytz}}$$
(3.D.10)

$$\varepsilon_{yz} = 0.002$$
 (3.D.11)

$$K = 1.5R^{1.5} - 0.5R^{2.5} - R^{3.5}$$
(3.D.12)

The parameters m_2 , and ε_p are provided in Table 3.D.1.The development of the stress strain curve should be limited to a value of true ultimate tensile stress at true ultimate tensile strain. The stress strain curve beyond this point should be perfectly plastic. The value of true ultimate tensile stress at true

$$\sigma_{uts,t} = \sigma_{uts} \exp[m_2] \tag{3.D.13}$$

第4部 まとめ

第4部 まとめ

1 南海トラフ地震に対する耐震安全性の確認

1.1 地震波形の作成

1.1.1 地震波形作成手法の検証

東北地方太平洋沖地震における観測地震波形を用い、工学的基盤の地震波形から地表の地 震波形を解析する手法について検証を行った。

この地震応答解析には、地盤の非線形効果を考慮して全応力逐次非線形解析を採用し、プログラムコードには YUSAYUSA-2 を採用した。併せて、地震動応答解析の実績が格段に多い、等価線形解析法による計算も行い、両者による解析と観測地震波形とを比較した。

また、東北地方太平洋沖地震の2日前に起こった前震や昭和53年宮城県沖地震の観測地震 波形と比較し、その妥当性を確認した。

その結果、解析手法などに起因するいくつかの課題はあるものの、以下に示す件が整って いれば、非線形解析を用いた提案手法は概ね妥当であると考えられる、

- ・ 波形を観測した地盤が、著しい非線形挙動は生じていない。
- 再現波を作成する対象地域が非線形挙動をする可能性が高い。
- ・ 検討対象で議論する卓越周期の再現性が確認できる。

1.1.2 地震波形の作成

解析の幅を持たせる観点から計測震度や地盤構成、液状化対策の状況等を勘案して3つの 特防区域(A地区、B地区、C地区)を選定し、東北地方太平洋沖地震の観測地震波形を用 いて検証された地震波形作成手法により、内閣府から公開された工学的基盤における南海ト ラフ地震の想定地震動を基に地表の地震波形をそれぞれ作成した。

この地震波形は、震源特性や地盤特性等以外の要因の影響が大きくなかったため、妥当なものであると考えられる。

1.2 屋外貯蔵タンクの耐震安全性の解析

1.2.1 屋外貯蔵タンクの耐震安全性の解析手法の検証

屋外貯蔵タンクの耐震安全性の解析手法の妥当性を検証するため、東北地方太平洋沖地震 における屋外タンク貯蔵所の実態を再現できることの確認を行った。

今回の解析においては、入力する地震動は、揺れが大きい地区を選定するなど安全側とな るような評価を実施しつつ、このような地震動に対するタンクの挙動を再現し耐震安全性を 確認するという観点から、通常の耐震設計で用いられている簡易な方法ではなく、詳細な解 析手法を採用し、より精緻に耐震安全性を確認した。タンクで通常用いられている耐震設計 と今回の解析の主な違いについては、表1.2.1のとおりである。

	耐震設計	今回の耐震評価
評価手法	静的耐震評価法の1つである修正震度法を 用いて、構造物の固有周期に応じた加速度を構 造物の中心に作用させる。	動的耐震評価法の1つである時刻歴応答法 を用いて、加速度を1/100程度の刻みで構造物 に作用させる。
耐震評価	以下のような簡易的な方法で評価 〇隅角部 保有水平耐力が必要保有水平耐力以上であ ること。 $Q_{dw}=0.15\nu_{.1}.\nu_{.2}.\nu_{.3}.\nu_{p}\cdot D_{s}\cdot W_{0}$ $0.15\nu_{.1}.\nu_{.2}.\nu_{.3}.\nu_{p}\cdot D_{s}\cdot W_{0}$ $0.15\nu_{.1}.\nu_{.2}.\nu_{.3}: 設計水平震度$ $\nu_{p}: 塑性設計係数$ $D_{s}: 構造特性係数$ $W_{0}: 有効液重量$ 〇側板部 発生応力が許容応力以下であること。 (例) 許容圧縮応力 $S'=\frac{0.4E\cdot t}{2.25D}\times 1.5$ D: 直径、E: ヤング率、t: 側板厚	以下のような詳細な方法で評価。 〇隅角部 質点系による浮き上がり量に基づくFEM モデルによる評価 解析モデルのイメージ 〇側板部 質点系による浮き上がり量に基づくFEM モデルによる評価 解析モデルのイメージ

表1.2.1 特定屋外タンク貯蔵所の耐震設計と今回の耐震評価による主な比較

また、今回の解析に用いた解析条件については、表 1.2.1 のとおり、実態に即した形とし ながらも、安全側の評価となるように設定を行った。

項目	解析条件
	特防区域を含む市町村において南海トラフ巨大地震の想定震度
入力地震動	が7の地域を抽出し、その中で特防区域の揺れが大きい地区を選
	定し入力地震動を作成
	容量の違いを考慮した代表的なタンクモデルについて、簡易的に
タンクモデル	浮き上がり量を解析し、浮き上がり量が大きいものを選定し詳細
	解析を実施
応共具 (法方キ)	100%の液高さで解析
町蔵重(液局さ)	(液高さを変化させた場合も解析)
山王	石油類の比重の最大値を想定し 0.95 で解析
「「」「」「」「」「」「」「」「」「」「」」「」「」」「」」「」」「」」「」」	(0.85 の場合も解析)
タンクの弾塑性の	非線形ばね特性の第2剛性のK₂を0として解析
復元カモデルの	(タンクの底部板の全断面が塑性化した以降のばね特性は 0~
非線形ばね特性	0.3の値と想定されるが、安全側となるよう0とした。)
浮き上がり量の	1 質点系モデルにより解析
解析手法	(一般に3質点系より安全側の評価を与える。)
此工资批试查	通常10%であるが、東日本大震災での実態の再現性から、15%を
地下选 队 减技	採用

表 1.2.2 解析に用いた条件

解析の結果、最大の浮き上がり変位は仙台・塩釜地区の旧法タンク No. 4 の 6.3 cm であり、 これ以外のタンクの浮き上がり変位は非常に小さいものであった。

今回解析対象とした全てのタンクについて、関係団体を通じて地震の影響による浮き上が りを確認したが、関係各社から浮き上がりがなかったとの回答が得られており、タンクの浮 き上がりによって生じることが想定される接地(アース線)の破断や雨水浸入防止材の巻き 込みなどにつながるような浮き上がりを示す痕跡も確認されなかった。本解析で示した浮き 上がり程度ではこのような痕跡はつかないと考えられるため、解析結果は現実を説明できて いる。

また、浮き上がり変位が大きい結果が生じたタンク(仙台・塩釜地区の旧法タンク No.4 (2272 KL)及び広野地区の新法タンク No.3 (50000 KL))について、タンク隅角部の疲労強 度及び沈み込み側のタンク側板の座屈強度について有限要素法解析によって評価した。この 2 基のタンクのそれぞれの隅角部の疲労強度において、疲労損傷度Dは 1.0 以下という結果 が、また、最大浮き上がり変位が生じるときの側板の座屈強度の解析結果において、軸圧縮 応力が限界座屈応力以内という結果が得られ、この解析結果は、東北地方太平洋沖地震にお ける実態と矛盾しないことを確認できた。

1.2.2 屋外貯蔵タンクの耐震安全性の解析(平成26年度)

作成した3つの特防区域の地震波形を用いて解析した結果、旧法タンク及び新法タンクの それぞれで最も大きな浮き上がりが生じたタンクは、以下のとおりであった。

- 旧法タンク:A地区No.3 (3万KL) 104.3cm 浮き上がり
- ・ 新法タンク: A地区 No.3 (3 万 KL) 77.5cm 浮き上がり

この2基のタンクについて、タンク隅角部の疲労強度及び沈み込み側のタンク側板の座屈 強度について有限要素法解析によって評価した。この2基のタンクのそれぞれの隅角部の疲 労強度において、旧法 No.3 タンク、新法 No.3 タンクともに疲労損傷度 D は 1.0 以下と いう結果になったが、旧法 No.3 の表 2.4.8 に示した B 点に発生した板表面上の全ひずみ 振幅の一部には約 35%という飯田の最適疲労曲線式のグラフ範囲外の数値が出ており、 適切な評価ができなかった。

また、最大浮き上がり変位が生じるときの側板の座屈強度の解析結果において、軸圧縮応 力が限界座屈応力以内という結果が得られた。

1.2.3 屋外貯蔵タンクの耐震安全性の解析(平成27年度)

平成 26 年度は消防法の終局強度耐震設計法に採用された解析モデルの基本的考え方に沿って作成した1 質点非線形ばね系モデルを用いて時刻歴地震応答解析を行い、南海トラフ巨大地震発生時におけるタンクの浮き上がり量の検討を実施した。当該解析・検討では、非線形水平ばね特性にS 字非ループ型の簡便な弾塑性復元力特性(第2剛性を無視した水平抵抗力Qと水平変位Δの線図を持つ動液圧の影響を無視した簡便な非線形水平ばね(バイリニアQ-Δ特性ばね))を使用したため、検討対象タンクの内、旧法タンクNo.3 では大きな浮き上がり変位を生じる結果となった。そこで、平成27 年度はタンクの浮き上がり量をより適切に評価するため、1 質点系モデルの非線形水平ばね特性を見直し、第2 剛性以降も考慮し、かつ動液圧の影響も考慮した非線形水平ばね(マルチリニア特性ばね)を採用して解析を行った。

採用した非線形ばねは、定式化による Q- Δ 線図の特性(ケース1という)と 3D のシェル モデルから得られた M- θ 線図の特性(ケース2という)であり、それぞれ以下のような違 いがある。

	ケース 1 定式化による特性のばね	ケース 2 3D シェルモデルより 得られる特性のばね
動液圧の影響	考慮	考慮
タンク浮き上がりを繰り返すことにより 2回目以降は浮き上がり易くなる効果	Wozniak ^{※1} モデルを使用繰返しにより 浮き上がり易くなる傾向を考慮	考慮せず
作成されるばね特性	比較的柔らかいばね (保守的な設定)	比較的固いばね
ばね特性作成の簡便さ	作成が容易 (算定式を利用)	時間と手間がかかる (FEM 解析が必要)

表1.2.3 採用した非線形ばね特性の比較

※1 参考文献:

Wozniak, R.S. and Mitchell, W.W. "Basis of Seismic Design provisions for Welded Steel Oil Storage Tanks", API Refining Dept. 43rd Midyear Meeting, Toronto, May 1978

これらの特性を使用して、前年度と同条件である南海トラフの想定地震波形 A 地区 EW 方向を入力地震波形とした旧法タンク No.3の浮き上がり解析を実施した結果は以下となった。

- ・ ケース1:最大75.1cmの浮き上がり
- ・ ケース2:最大45.0cmの浮き上がり
- ・ 参考(平成 26 年度): 最大 104.3cm の浮き上がり

平成 26 年度は、バイリニア $Q-\Delta$ 特性ばねを持つ1 質点系モデルで求めたタンク浮き 上がり履歴を使用して解析した旧法タンク No.3 隅角部のひずみ振幅の一部に飯田の最適 疲労曲線式の範囲外となる大きなひずみ量があり、同値を使用しての疲労損傷評価の妥 当性が懸念された。平成 27 年度はより精緻に検討したばね(ケース1及びケース 2)の 1 質点系モデルでの浮き上がり履歴を使用して解析を実施したところ、ひずみ振幅は飯田 の最適疲労曲線式の範囲内であり、両ケースともに隅角部の疲労損傷度 D は 1.0 以下と なり、許容値以内であった。

評価ケース	最大浮き上がり変位	疲労損傷度
	(cm)	D
ケース 1	75. 1	0. 33
ケース 2	45.0	0. 05

表1.2.4 浮き上がり変位と疲労損傷度の比較

また、最大浮き上がり変位が生じるときの側板の座屈強度の解析結果において、軸圧縮応 力が限界座屈応力以内という結果が得られた。

1.3 地盤・構造物の耐震安全性の解析

南海トラフ地震が発生した場合における、屋外貯蔵タンク本体の直下の液状化対策による 地盤改良効果、仮に液状化が生じた場合における屋外貯蔵タンク本体の周辺地盤が屋外貯蔵 タンク本体に与える影響を確認することを目的とし、断面2次元非線形有効応力解析を実施 した。評価には、加振後(動的解析後)の排水解析や過剰間隙水圧の消散に伴う圧密解析が 可能なプログラムが必要であり、これらの条件を満足するプログラムとして『LIQCA』 を採用した。

解析の幅を持たせる観点から、計測震度や砂層の有無、液状化対策の状況等を勘案して2 つの特防区域を選定(B地区及びE地区)し、解析対象地区とした。

B地区では、液状化対策のため地盤改良された屋外貯蔵タンク本体の直下の地盤で27.7cm の沈下が予測されたが、一様沈下であり、屋外貯蔵タンク本体に大きな応力がかかるような 不等沈下は確認されなかった。また、屋外貯蔵タンク本体直下から外れた未改良地盤につい ては、12.7cmの沈下となっている。未改良地盤の沈下量と屋外貯蔵タンク本体直下の改良地 盤の沈下量との差は25cm程度であり、屋外貯蔵タンク本体や基礎への影響がみられるような 変形は確認されなかった。

E地区では、液状化対策のため地盤改良された屋外貯蔵タンク本体の直下の地盤で 8.7cm の沈下が予測されたが、B地区と同様に一様沈下であり、屋外貯蔵タンク本体に大きな応力 がかかるような不等沈下は確認されなかった。また、屋外貯蔵タンク本体から外れた未改良 地盤については、12.6cmの沈下となっている。未改良地盤の沈下量と屋外貯蔵タンク本体直 下の改良地盤の沈下量との差は5cm程度であり、B地区と同様に屋外貯蔵タンク本体や基礎 への影響がみられるような変形は確認されなかった。

1.4 浮き屋根の耐震安全性の解析

告示第4条の21の3に規定される容量2万キロリットル以上、または第2条の2に規 定する Hc が 2.0m 以上となる一枚板構造で、現行の技術基準を満足するタンクを対象と して、内閣府から示された南海トラフ地震の想定地震動(長周期成分)に対する耐震安全 性を確認するため、本詳細解析の対象とするタンクの浮き屋根を選定して 3 次元 FEM 解 析を行った。

タンク選定の前段階として、三大都市圏の首都圏、中京圏、関西圏近傍の特防区域か ら1カ所ずつ区域(A地区、B地区、C地区)を選定した後、各区域からタンク容量も 考慮して、強度上不利であると考えられるタンクを2基ずつ選定した。また、その中か ら線形 FEM 浮き屋根動的応答解析システム及び消防法告示による算定式を併用して、想 定地震動に対する浮き屋根の耐震強度が最も不利となるタンクと考えられるB地区の No.4 タンクを FEM 解析の対象に選定した。

B地区のNo.4タンクの浮き屋根の詳細FEM解析モデルを作成し、想定地震動を入力と した線形 FEM 浮き屋根動的応答解析システムによる時刻歴応答解析の結果のうち、浮き 屋根の変位が最大になる応答変位(揺動変位①:1次モード卓越)、及び浮き屋根ポンツー ンの断面力が最大になる変位(揺動変位②:2次モード卓越)を選定して、これらの揺動変 位を強制変位入力とした。これらを入力した場合にポンツーン断面に発生する円周方向 面外、水平面内曲げモーメント及び円周方向圧縮力を応力解析結果から求めた。これら の結果を用いて消防法告示の応力評価算定から耐震強度を評価したところ、算定応力値 は、2ケースともに許容応力以下となり、当該浮き屋根のポンツーン断面強度は許容値を 満足していることが確認された。また、許容耐力の算定方法によるポンツーン断面の耐 震強度でも評価したところ、塑性崩壊に対するポンツーン断面強度評価指標値は、2ケー スともに 1.0 以下となり、当該浮き屋根のポンツーン断面強度は許容値を満足している ことが確認された。

2 首都直下地震に対する耐震安全性の確認

2.1 地震波形の作成

内閣府から公開されている首都直下地震による震度分布を参照して、東京湾沿岸の特防区域のうち、大規模な屋外タンク貯蔵所が多数所在し、かつ、想定震度が震度6強となる主な特防区域として、京浜臨海、根岸臨海、京葉臨海中部の3地区を選定し、南海トラフ地震の地震波形作成手法と同様の手法により、内閣府から公開された工学的基盤における首都直下地震の想定地震動を基に地表の地震波形をそれぞれ作成した。

3地区において短周期成分が卓越しタンクの浮き上がりなどに一番厳しい状況が予想 されるのは根岸臨海地区であった。また、非線形特性が顕著に表れ地震動の長周期化や大 きな地盤変形が予想されるのは京浜地区であった。京葉臨海中部地区は、どの周期帯をと っても、特徴的な2地区の中間的な地震応答結果を示した。

2.2 屋外貯蔵タンクの耐震安全性の解析

南海トラフ地震の解析と同様の手法(平成27年度)を用い、首都直下地震の発生を想 定し、代表とする3地区のタンク20基の浮き上がり挙動と 耐震安全性を解析により検 討した。検討した代表タンクのうち、B地区のB-5タンク(50000 KL)が最も大きな浮き 上がり変位(14.2 cm)を生じる結果となり、当該タンクをFEM詳細解析による隅角部 疲労損傷度評価、側板座屈評価の対象に選定した。選定した B-5 タンクの質点系モデル での浮き上がり履歴を使用して、2次元軸対称ソリッド要素モデルによる静的弾塑性大た わみ解析を実施した。タンク隅角部に発生したひずみ両振幅と飯田の最適疲労曲線式か ら算定した疲労寿命、及びその繰り返し回数から求めた疲労損傷度Dは0.00033となり、 許容値以内であった。また、3次元シェル要素モデルによる静的弾性解析を実施した。選 定した B-5 タンクが 14.2 cm の浮き上がりを発生する時の側板沈み込み側の最大軸圧縮 応力(4.5N/mm2)は、軸圧縮限界座屈応力(26.1N/mm2)及び象の脚型限界座屈応力 (23.2N/mm2)以内であることを確認した。

2.3 地盤・構造物の耐震安全性の解析

(審議結果を踏まえ記載)

3 耐震安全性確保策

南海トラフ地震及び首都直下地震に対する屋外タンク貯蔵所の耐震安全性の検討では、 解析のために一定の条件を設定して解析を行っているが、当該検討で前提とした条件を 超えるような場合も否定できないことや、今後、新たな知見を踏まえた地震動の想定も 考えられることから、当該検討結果が今後起こりえる全ての大規模地震に対する屋外貯 蔵タンクの耐震安全性を必ずしも担保するものではないことに留意が必要である。

したがって、新たな知見を踏まえた地震動の想定への対応や個々の屋外タンク貯蔵所 の耐震安全性の確保には、当該検討の手法も参考にして各事業所において検証し、必要 な対策を講ずることが望まれる。

各事業者が自ら地震のリスクを検証して必要な改修を行う上で、一般的に懸念される 事象に対して更なる耐震安全性を確保する上で有効な対策については、以下の内容が考 えられる。

3.1 短周期地震動に対する安全性確保策

3.1.1 隅角部の破断への対策

検討結果では、隅角部の破断は起きないが、かなりの疲労損傷が蓄積するという評価であった。このため、熊本地震のように大きな地震が続けて起こったり、維持管理が不十分で必要な板厚が確保できていなかったりする場合等も考慮する必要がある。

隅角部の疲労強度はアニュラ板の厚さに依ることから、底板の取替えの際に、より 板厚の厚いアニュラ板に更新することが考えられる。

3.1.2 液状化への対策

容量 500KL 以上の屋外タンク貯蔵所については、液状化対策を含む耐震改修が平成 29 年度末までに完了しているところであるが、屋外貯蔵タンク周辺の地盤については、 液状化の可能性も否定できない。以下の対策をとることにより、液状化による被害を 軽減できると考えられる。

3.1.2.1 緊急遮断弁の設置

液状化により配管が損傷する過程の解明が十分にされていないものの、液状化に よりタンクと配管の相対的な位置が大きくずれると、配管を通じて危険物が大量に 流出する可能性がある。現行法令では10,000KL以上の屋外タンク貯蔵所には緊急遮 断弁が義務づけられているが、タンク周辺の液状化が予想される場合には、10,000KL 未満のタンクにも緊急遮断弁を設置することが考えられる。その際、停電時にも確 実に弁の閉鎖を行えるよう必要な対策をとることが望ましい。

なお、緊急遮断弁は津波対策にも有効である。

3.1.2.2 防油堤の補強

液状化により防油堤が損傷する過程の解明が十分にされていないものの、タンク から危険物が流出した場合、防油堤による被害の拡大防止が重要であることから、 液状化対策技術の開発動向を踏まえた防油堤の液状化対策を行うことが考えられる。

3.1.3 配管の耐震対策

配管の支持物について、想定する地震動にも耐えうるよう、基礎部の連結や柱の補 強、ブレースの追加等により耐震補強を図ることが考えられる。

3.2 長周期地震動に対する安全性確保策

一部の特防区域に所在する容量 20,000KL 以上又は Hc=2m 以上のタンクの浮き屋根については、平成 29 年度までに耐震改修が行われることとなっているが、浮き屋根は風雨にさらされやすく、過去に維持管理不十分により沈降する事故やデッキ上に危険物が流出する事故等が数多く起きている。風過重を受けた場合の耐震強度の評価手法については検討が必要であるものの、このような状態にある浮き屋根は、スロッシングに対する強度も落ちていることが推測される。

このことから、耐震改修が行われた浮き屋根についても、維持管理を十分に行うべき である。

3.3 その他

3.3.1 タンク及び危険物の配置

屋外タンク貯蔵所において貯蔵する危険物について見直す場合は、地震や津波等の 自然災害のリスクを低減するため、危険物の危険性に応じて津波や液状化等の被害を 受けにくいタンクに貯蔵することを検討することが考えられる。

3.3.2 地震後の点検

地震の際、安全かつ迅速に被害状況を確認するため、地震動等からスロッシング高 さ等を推測するシステムや監視カメラ等の遠隔から様子を確認できる設備の導入が考 えられる。

4 おわりに

本検討は、従来の想定を超えるような南海トラフ地震及び首都直下地震の想定地震動 に対し、現状の耐震設計基準によって建設された屋外貯蔵タンクの耐震安全性について 詳細な解析手法を採用してより精緻に耐震安全性を確認したものであり、その結果、概 ね致命的な被害はないという結果となった。

しかしながら、当該検討で前提とした条件を超えるような場合も否定できないことや、 今後、新たな知見を踏まえた地震動の想定も考えられることから、当該検討結果が今後 起こりえる全ての大規模地震に対する屋外タンク貯蔵所の耐震安全性を必ずしも担保す るものではないことに留意が必要である。

また、本検討に使用した解析手法や提示した耐震安全性確保策について、各事業所が 新たな知見を踏まえた地震動の想定への対応や個々の屋外タンク貯蔵所の耐震安全性の 確保する上で参考とされることを期待する。