屋外タンク貯蔵所の耐震安全性に係る調査検討

報告書

平成29年3月

総務省消防庁危険物保安室

はじめに

危険物を大量に貯蔵する屋外タンク貯蔵所は、危険物が流出した場合の影響が大きいこ とから、過去に発生した地震を教訓に技術基準の見直しを重ね、東北地方太平洋沖地震で も、危険物の流出事故はほとんど報告されておらず、「東日本大震災を踏まえた危険物施設 等の地震・津波対策のあり方に係る検討会」(座長:亀井浅道)においても、現行基準は妥 当なものとされている。

しかしながら、中央防災会議等において、東日本大震災を踏まえて従来の想定を超える ような南海トラフ地震等の想定地震動の検討が進められていたことを踏まえ、消防庁危険 物保安室では平成26年度から「屋外タンク貯蔵所の耐震安全性に係る調査検討会」を開催 し、新たな大規模な地震に対する屋外タンク貯蔵所の耐震安全性について検討を開始した。

平成 26 年度及び平成 27 年度は、内閣府が公開している南海トラフ地震の想定地震動に 対する屋外タンク貯蔵所の耐震安全性について、屋外貯蔵タンク、基礎・地盤及び浮き屋 根に分けて検討を行った。屋外貯蔵タンクについては、大規模地震の挙動をより正確に反 映させるため、従来のものより精緻な 1 質点系モデルを採用して時刻歴応答解析により側 板直下部の浮き上がり変位及び浮き上がり回数を検討し、それを基に 2 次元軸対称モデル による浮き上がりの繰返し挙動を考慮した隅角部の疲労損傷度の評価及び 3 次元シェルモ デルによる底板浮き上がり時の側板の座屈強度の評価を行った。基礎・地盤については、 断面 2 次元非線形有効応力解析によりその変形の評価を行った。浮き屋根については、線 形有限要素法浮き屋根動的応答解析システムを用いて、時刻歴地震応答解析を行いポンツ ーンに発生する応力を評価した。

平成28年度は、同じく内閣府が公開している首都直下地震の想定地震動に対する屋外タ ンク貯蔵所の耐震安全性について検討を行った。この想定地震動は周期が2~3秒よりも短 い領域で強く揺れることを想定したものであることから、短周期地震動の影響を強く受け る屋外貯蔵タンク及び基礎・地盤について検討した。なお、解析手法は平成26年度及び平 成27年度の解析手法を踏襲している。

3ヶ年の検討の結果、南海トラフ地震及び首都直下地震において、概ね致命的な被害は ないとの評価結果が得られたところである。また、各事業者が自ら更なる耐震安全性の向 上を図る上で有効な対策についても取りまとめられた。今後新たな知見を踏まえた地震動 の想定がなされた際等に各事業所等が屋外タンク貯蔵所の耐震安全性の検討を行う上で参 考とされることを期待するものである。

本報告書がとりまとめられたのは、ご多忙中にも関わらず積極的に参加し、専門的な知 見からの貴重な意見により熱い議論をしていただいた委員各位の協力の賜であり、深く感 謝申し上げる次第である。

平成29年3月

屋外タンク貯蔵所の耐震安全性に係る調査検討会

座 長 亀井 浅道

屋外タンク貯蔵所の耐震安全性に係る調査検討報告書

報告書目次

第	1部	調査検討	の概	要・	•	•••	• •	•	••	•	•	•	•	•	•	•	•	•	•	•	• •	•	•	•	• •	•	• 1
1	調査	検討の目	的・	•••	•	••	•••	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	• •		•		•	• 3
2	調査	検討事項	••	••	•	••	•••	•	• •	•	• •	•	•	•	•	•	•	•	•	•	• •	• •		•		•	• 3
3	調査	検討体制	••	•••	•	••	•••	•	• •	•	•	•	•	•	•	•	•	•	•	•	• •	• •		•		•	• 5
4	調査	検討経過	• •	• •	•	•••	•••	•	•••	•	•	•	•	•	•	•	•	•	•	•	• •			•		•	• 6
第	2部	南海トラ	フ地	震に	:対-	する	耐劑	裛安	F全怕	生の	確	認	•	•	•	•	•	•	•	•	•	•	•	•	• •	•	• 7
第	1章 :	地震波形	の作馬	戓																							
1	地震	波形作成	手法の	の検討	証 ·	••	•••	•	•••	•	•	•	•	•	•	•	•	•	•	•	• •	• •			• •	•	• 9
2	地震	波形の作	成・	•••	•	••	•••	•	•••	•	•	•	•	•	•	•	•	•	•	•	• •			•		•	• 72
3	地震	波形作成	のまる	とめ	•	••	•••	•	•••	•	•	•	•	•	•	•	•	•	•	•	• •	• •		•	•	•	• 94
第	2章	屋外貯蔵	タンク	クのア	耐震	安全	と性(の角	屑析																		
1	屋外	貯蔵タン	クのず	耐震:	安全	性0	D解↗	忻ミ	手法(の検	証	•	•	•	•	•	•	•	•	•	• •			•	•	•	• 95
2	屋外	貯蔵タン	クのず	耐震	安全	性の	D解	枖	(平)	式 2	6 年	F度	E)	•	•	• •	•	•	•	•	•	•	•	•	•	•	142
3	屋外	貯蔵タン	クの耐	耐震	安全	性0	の解れ	杤	(平)	式 2	7 年	F度	E)	•	•	•	•	•	•	•	•	•	•	•	•	•	187
4	屋外	貯蔵タン	クの『	耐震⁵	安全	性の	り解れ	折の	りま	とめ		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	238
第	3章	基礎・地	盤の『	耐震	安全	性0	り解	析																			
1	基礎	・地盤の	耐震	安全	生の	解机	斤条	伴の	り設知	定•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	345
2	基礎	 ・地盤の 	耐震	安全	生の	解机	斤結	果	•••		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	373
3	基礎	 ・地盤の 	耐震	安全	生の	解机	斤の	ŧł	とめ		•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	377
第	4章	 浮き屋根	の耐剤		一 全性	の角	. 军析																				
1	浮き	屋根の雨	震安	全性	: の	解析	- の相	既要	互•	•	•		•	•	•	•	•	•		•	•	•	•	•	•	•	381
$\frac{1}{2}$	解析	対象地区	及び	「タン	ククロ	,,,,, の選	定	•••	•••	•	•		•	•	•		•		•	•		•	•	•	•	•	382
3	迎き	局根の館	」 人 「 易 耐	/ F雲砧	唐	逐研		•		•		•	•						•				•	•	•	•	395
1	浮き	屋根の有	服更	表注	·/文 i : 干 [:]	デル	1.7 '	トア	、詳約	田正	 霅	ᇜ	宦	≣亚,	íш.		•				•					•	106
- 5	行こ	屋根の高		:不14	、 L / : の 値	, / ·	い こっぱ	町田	「 「 の 、	山山 上 レ	ふろ	J.R.	•	•	•												130
0	17-6	産低の間	辰女	II	<u>-</u> v)	ነዋወገ	μ	北女	$\zeta v $	+ C	. 0)																430
绺	っ立で	- 大邦市下	圳雪	() , +		ス両	雪□	とく	>.h++ /	わたね	≠言刃																115
分	1 幸 -	中国市市	一地辰の佐山	:(こ入] 士:	194	S III)	辰り	く土		ノ和	ミロン	•	•	•	•	•		•	•	•	•	•	•	•	•	•	440
万	1早,	地長仮形	いアドト	JŲ,														_						_			117
1	地民	波形の作 波形の作	成・ のナ	••	•••	•••	•	•	••	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	447
乙坛	□ 也辰i	仮形作成 昆み ��芽		こめ	- 	·+· /	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	• 一	。。 77十二	•••	•	•	•	•	•	• •	•••	•	•	•	•	•	•	•	•	•	479
	乙早り	座2ト灯廠 ��苺 ない↓	クノン		N辰 セへ	安日	日生(ワ月	件化 わせず	Ŧ																	400
1	屋外り	灯風グ /	クの	Ⅰ辰3	女王	1生0	ノ門牛	灯り	り枕	安・ しい	•	•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	483
Z	全/N	灯廠グ / 甘葉 また	ク の �� の テ	Ⅰ辰3	女王	1生0	ノ門牛	灯り	りよ	E Ø	• (•	•	•	•	•	••	•	•	•	•	•	•	•	•	•	517
,	3早 ;	基礎・地	盛の	时晨3 → へ」	女主	住在のもの	ノ脌/	灯	D +∆=	÷ I.																	500
1	▲ 縦 甘 7世	 ・ 地盤の 	町戻3	女王们	生の	() 第年わ 477-10	T余1 r	4 -0	り使う	• 可	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	598
2	▲ 縦 甘 7世	 ・ 地盤の 	町戻3	女王们	生の	() 第年わ 477-10	Т • Г Ф)	• • 1	•••	•••	•	•	•	•	•	• •	••	•	•	•	•	•	•	•	•	•	632
3	基礎	 ・ ・ 地盤の 		女 至 1	主の)))洋り	TO	よく	20	•••	•	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	636
绺	∕立	ナレめ																									663
が 1	中宅	よこの	1重)~	- - 	- Z 7	计重	空之	, УМ	י ואד	左∋⊼								•	•		-						665
1	1	ドノノ坦	一辰に	·八9	第1章	山辰	:女日 : ムト	土门 止 <i>不</i>	ĽVノ[ヽ で た言	由前	· •	•	•	•	-	- •	•	•	•	•	•	ļ				•	670
2	目郁	一旦「 地房 か へ いっか	ミ(こ)灯	95 :) 小月	長女	王伯	±0.	ノ作用語	心,	•	•	•	•	•	•••	•	•	•	•	•	•	•	•	•	•	013
3	「「一下一下」で	女主性領	派市	••	• •	•	•••	•	••	•	••	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	075
4	おわ	りに・・	•••	• •	•••	•	•••	•	•••	• •	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	677

第1部 調査検討の概要

第1部 調査検討の概要

1 調査検討の目的

危険物を大量に貯蔵する屋外タンク貯蔵所は、危険物が流出した場合の影響が大きいことから、 過去に発生した地震を教訓に技術基準の見直しを重ね、東北地方太平洋沖地震においても危険物 の流出事故はほとんど報告されておらず、平成23年度に開催した「東日本大震災を踏まえた危 険物施設等の地震・津波対策のあり方に係る検討会」においても、現行基準は妥当なものとされ ている。

しかしながら、中央防災会議等において、東北地方太平洋沖地震を踏まえて従来の想定を超え るような南海トラフ地震等の想定地震動の検討が進んでいることから、新たに想定された大規模 な地震に対する屋外タンク貯蔵所の耐震安全性について検討を行うため、「屋外タンク貯蔵所の 耐震安全性に係る調査検討会」(以下「検討会」という。)を開催する。

2 調査検討事項

検討対象の地震は、東北地方太平洋沖地震以降に内閣府が新たに想定した地震動のうち、 検討会開催時点で公開されている西日本を中心に大きな被害が予想されている南海トラフ地 震(短周期地震動及び長周期地震動)及び首都圏に大きな被害が予想されている首都直下地 震(短周期地震動)とした。なお、首都直下地震の長周期地震動の地震波形は検討会開催時 点では公開されていない。

耐震安全性の調査検討にあたっては、消防法令の基準に基づいて設置されている屋外タン ク貯蔵所の各設備等のうち、地震により損傷すれば大規模火災や危険物の大量流出等の致命 的な被害を生じる恐れのある屋外貯蔵タンク、基礎・地盤及び浮き屋根について、それぞれ 分けて検討を行うこととした。その際、タンク本体及び基礎・地盤は主に周期が2~3秒以 下の短周期地震動の影響を強く受けることから、内閣府が公開している工学的基盤の短周期 地震動を基に地表の地震波形を作成して解析を行い、浮き屋根は2秒~10数秒の長周期地震 動の影響を強く受けることから、内閣府が公開している地表の地震波形をそのまま用いて解 析を行った。

調査検討項目は以下のとおりである。

- 地震波形の作成
- (2) 屋外貯蔵タンクの耐震安全性の解析
- (3) 基礎・地盤の耐震安全性の解析
- (4) 浮き屋根の耐震安全性の解析(南海トラフ地震のみ)

- ※ 本検討会で使用する略語は以下のとおり
- ・消防法(昭和23年法律第186号)・・・法
- ・危険物の規制に関する政令(昭和34年政令第306号)・・・政令
- ・危険物の規制に関する規則(昭和34年総理府令第55号)・・・規則
- ・危険物の規制に関する技術上の基準の細目を定める告示(昭和49年自治省告示第99号)・・・ 告示
- ・屋外タンク貯蔵所のタンク本体・・・タンク本体
- ・屋外タンク貯蔵所の基礎・地盤・・・基礎・地盤
- ・危険物の規制に関する政令及び消防法施行令の一部を改正する政令(昭和52年政令第10号) の施行後に設置許可の申請がなされた特定屋外タンク貯蔵所・・・新法タンク
- ・危険物の規制に関する政令及び消防法施行令の一部を改正する政令(昭和52年政令第10号)の施行の際、現に法第11条第1項前段の規定による設置に係る許可を受け、又は当該許可の申請がされていた特定屋外タンク貯蔵所で、その構造及び設備が政令第11条第1項第3号の2又は第4号に定める技術上の基準に適合していなかったもののうち、その構造及び設備が昭和52年政令第10号附則第3項各号に定める技術基準に適合しているもの・・・旧法タンク
- ・石油コンビナート等災害防止法第2条第2号に規定する石油コンビナート等特別防災区 域・・・特防区域

3 調查検討体制

屋外タンク貯蔵所の耐震安全性に係る調査検討会(五十音順敬称略)

※() は前任者

- 座 長 亀井 浅道 元横浜国立大学 安心・安全の科学研究教育センター 特任教授
- 委 員 青木 雅志 石油化学工業協会
 - 今木 圭 電気事業連合会 工務部副部長(平成 27 年度から)
 - (岩岡 覚 電気事業連合会 工務部副部長(平成26年度))
 - 奥村 研一 堺市消防局 予防部 危険物保安課長(平成28年度)
 - (中原 訓史 堺市消防局 予防部 危険物保安課長(平成27年度まで))
 - 河野 和間 元横浜国立大学 客員教授
 - 菅野 浩一 川崎市消防局 予防部 危険物課長(平成28年度)
 - (高橋 俊勝 川崎市消防局 予防部 危険物課長(平成27年度まで))
 - 岸川 有一 石油連盟 設備管理専門委員会 タンク部会長
 - 座間 信作 横浜国立大学 リスク共生社会創造センター 客員教授
 - 寒川 慎也 危険物保安技術協会 タンク審査部長
 - 龍岡 文夫 東京理科大学 理工学部土木工学科 教授
 - 西 晴樹 消防庁消防研究センター 火災災害調査部長
 - 野本 敏治 東京大学名誉教授
 - 畑山 健 消防庁消防研究センター 施設等災害研究室長(平成27年度から)
 - 丸山 裕章 独立行政法人 石油天然ガス・金属鉱物資源機構 備蓄企画部 エンジニアリングチーム チームリーダー
 - 八木 高志 危険物保安技術協会 土木審査部長
 - 山内 芳彦 一般社団法人日本産業機械工業会 タンク部会技術分科会
 - 山田 實 元横浜国立大学 リスク共生社会創造センター 客員教授

事務局 秋葉 洋 消防庁危険物保安室長(平成28年度)

(白石 暢彦 消防庁危険物保安室長(平成27年度))

(鈴木 康幸 消防庁危険物保安室長(平成26年度))

七條 勇佑 消防庁危険物保安室課長補佐(平成27年度から)

(大嶋 文彦 消防庁危険物保安室課長補佐(平成26年度))

- 松坂 竜男 消防庁危険物保安室パイプライン係長(平成 27 年度から)
- (工藤 守 消防庁危険物保安室パイプライン係長(平成 26 年度))
- 佐々木 隆行 消防庁危険物保安室総務事務官(平成28年度)

(賣井坂 常幸 消防庁危険物保安室総務事務官(平成27年度まで))

4 調査検討経過

検討の経過は以下のとおりである。

○平成 26 年度

第1回検討会	平成 26 年 12 月 2 日
第2回検討会	平成 27 年 3 月 19 日

○平成 27 年度

第1回検討会	平成27年7月3日
第2回検討会	平成 28 年 3 月 17 日

○平成 28 年度

第1回検討会	平成 28 年 7 月 14 日
第2回検討会	平成 29 年 2 月 27 日
第3回検討会	平成 29 年 3 月 23 日

第2部 南海トラフ地震に対する耐震安全性の確認

第1章 地震波形の作成

1 地震波形作成手法の検証

南海トラフ地震に対する屋外タンク貯蔵所のタンク本体及び基礎・地盤の耐震安全性の検証を 行うため、平成24年に内閣府から公開された工学的基盤における南海トラフ地震の想定地震動 (短周期地震動)から地震応答解析により地表における地震波形を作成するにあたって、この解 析手法の妥当性を確認する必要があることから、まずは東北地方太平洋沖地震における観測地震 波形から工学的基盤における地震波形を作成し、それを基にして地表における地震波形の再現を 行い、元の観測地震波形と比較、検証を行った。

1.1 東北地方太平洋沖地震の概要

気象庁による東北地方太平洋沖地震の概要を、表 1.1.1 に示す。

発生日時	平成 23 年 3 月 11 日 14 時 46 分
震央地名	三陸沖(北緯 38.1 度、東経 142.9 度)
震源の深さ	24 km
規模	モーメントマグニチュード 9.0
特防区域	震度6強:宮城県仙台市、宮城県塩竃市
付近の震度	震度 6 弱:福島県広野町

表1.1.1 東北地方太平洋沖地震の概要

1.2 検証を行う地区

1.2.1 検証を行う地区の選定の考え方

検証を行う地区は、東北地方太平洋沖地震の地震動が大きかった特防区域から選定する。 地震動の大きさを示す指標には、計測震度、最大加速度、最大速度等があるが、最大加速度 や最大速度は、周期帯に限らず地震動の時刻歴におけるある瞬間のピーク値を示したものであ り、実際の地震において当該ピーク値により屋外タンク貯蔵所の本体や基礎・地盤が振動され 続けるわけではない。一方、計測震度は、加速度波形をフィルター処理することにより、概ね 0.1 秒から 1 秒までの周期帯を強調した指標であり、屋外貯蔵タンク本体の固有周期と比較的 一致することから、屋外タンク貯蔵所の本体や基礎・地盤の振動の強さと比較的相関があると 考えられる。このことから、解析対象地区の選定基準として計測震度を採用する。

1.2.2 検証を行う地区の選定

独立行政法人防災科学技術研究所(以下「防災科研」という。)の地震観測網(「K-NET」及び「KiK-net」)が観測した東北地方太平洋沖地震の計測震度からリストアップした特防区域近傍の観測点を、図 1.2.1 に示す。

仙台地区及び塩釜地区(以下「仙台・塩釜地区」という。)は比較的距離が近いことからひと つにまとめて考え、計測震度上位2地区の仙台・塩釜地区と広野地区を対象として検証を行う。

24-00	=== (1)	(百丁) :=	則震度0	기도1꼬	3 刀 所)			
5回度 <u>データ</u> 種別	記載(11) <u>観測点</u> <u>コード</u>	記録開始時刻	<u>観測点</u> 北緯	<u>観測点</u> 東経	最大加速度	<u>計測</u> <u>震央</u> 震度▼ 距離	<u>観測</u> 点名	
K-NET -Kik- K-NET K-NET	MYG004 TCGH16 IBR003 IBR013	2011/03/11-14:46:5 2011/03/11-14:47:0 2011/03/11-14:47:0 2011/03/11-14:47:0 2011/03/11-14:47:1	1 38.73N 8 36.55N 5 36.59N 7 86.19N	141.02E 140.08E 140.65E 140.49E	2933.2gal 1304.8gal 1845.2gal 1762.3gal	6.6 0175k 6.5 0301k 6.4 0258k 6.4 0201k	m 築館 m 芳賀 m 日立 m 辞田 n	
K-NET -K-K-K -K-K-K K-NET K-NET K-NET K-NET K-NET K-NET K-NET K-NET K-K K-K K-K K-K K-K K-K K-K K-K K-K K-	MYG013 TCG014 IBR111 FKSH20 TCG009 MYG006 IBR005 TCGH13 FKS016 MYG012 IDR004 FKSN18 FKS017 FKSH10 FKSN10	2011/03/11-14:46:5 2011/03/11-14:47:0 2011/03/11-14:47:1 2011/03/11-14:46:4 2011/03/11-14:46:5 2011/03/11-14:46:5 2011/03/11-14:47:0 2011/03/11-14:47:0 2011/03/11-14:46:5 2011/03/11-14:46:5 2011/03/11-14:46:5 2011/03/11-14:47:0 2011/0	0 38.27N 3 36.37N 0 36.37N 0 37.49N 0 38.58N 0 38.58N 0 38.58N 0 38.32N 6 37.12N 8 37 94N 0 38.32N 0 38.32N 5 37.49N 2 37.28N 4 37.16N	140.93E 140.17E 140.14E 140.99E 140.97E 140.24E 140.18E 140.18E 140.19E 140.84E 140.49E 140.37E 140.02E 140.37E 140.07E	1807.8gal 123.9gal 1223.9gal 0663.0gal 1444.0gal 0585.7gal 0996.0gal 1425.3gal 1136.8gal 2018.9gal 0613.2gal 0684.4gal 1335.4gal 0914.0gal	6.3 0170k 6.3 0234k 6.2 0309k 6.2 0178k 6.1 0174k 6.1 02174k 6.1 0282k 6.1 0229k 6.1 0259k 6.0 0174k 6.0 0163k 6.0 0216k 6.0 0216k 6.0 0238k 6.0 0216k 6.0 0216k 6.0 0216k	◎ ■ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎ ◎	
K-NET K-NET K-NET K-NET	MYG015 IBR002 TCG006 IWT010 察記錄一	2011/03/11-14:46:4 2011/03/11-14:47:0 2011/03/11-14:47:1 2011/03/11-14:46:5 覧 記録間始告時初日	9 38.10N 5 36.71N 3 36.76N 2 38.93N	140.87E 140.71E 140.13E 141.12E	0433.6gal 0683.7gal 0436.0gal 1225.8gal	5.9 0175k 5.9 0246k 5.9 0284k 5.9 0178k	mm 岩沼 mm 高萩 mm 一関 <u>観測</u>	Ŧ
セント 様ーNE KーNE KーNE KーNE KーNE	<u><u> </u></u>	2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:47: 2011/03/11-14:47:	<u>北緯</u> 52 38.931 57 37.501 52 39.321 52 39.321 44 38.431 38 35.101 57 37 291	<u>東経</u> N 141.12 N 140.76 N 141.14 N 141.28 H 129.29 N 141.00	E 1225.8ga E 0633.6ga E 0627.7ga E 0487.5ga E 0287.5ga E 0287.5ga	<u>震</u> 度▼ 距離 1 5.9 0178 1 5.9 0197 1 5.9 0202 1 5.9 0456 1 5.9 0456 1 5.9 0450 1 5.9 0450	_ <u>点名</u> km 一関 km 名尾 km 北上 km 石巻 km 中野	
	T FKS01 - FKS11 - FKS11 T FKS02 T FKS02 T FKS02 T FKS02 T FKS02 T FKS02 T FKS02 T FKS00 T F	2011/03/11-14:46: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:46: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47: 2011/03/11-14:47:	37, 23 87, 49 55 37, 201 50 37, 791 50 37, 781 50 37, 781 50 37, 781 50 37, 781 50 37, 781 53 59 59 37, 201 47 38, 591 23 36, 841 55 37, 411 15 36, 561 51, 37, 641	 140.98 140.97 140.92 140.92 139.93 140.32 140.34 140.34	E 1233.3ga E 1110.5ga E 0481.4ga E 0584.7ga E 0582.8ga E 0357.9ga E 0357.9ga E 0504.7ga E 0505.0ga E 0695.0ga E 0695.0ga E 0695.2ga E 0782.4ga E 0880.6ga E 0465.3ga E 0741.6ga E 0741.7ga	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	************************************	

特防区域近倖の計測震度防災利研(K-NFT KiK-net)

図 1.2.1 検証を行う地区

1.3 仙台・塩釜地区における検証

1.3.1 地表の地震波形の作成及び検証の流れ

図 1.3.1 の手順により、K-NET や国立研究開発法人海上・港湾・航空技術研究所港湾空港技術研究所(以下「港湾研」という。)等が観測した東北地方太平洋沖地震の地震波形を用いて仙台・塩釜地区における東北地方太平洋沖地震の地震波形を再現する。

図1.3.1 地表の地震波形の再現解析の流れ

1.3.2 仙台・塩釜地区近傍の地震観測地点

仙台・塩釜地区における特防区域の位置及び特防区域近傍の地震観測地点の位置を図 1.3.2 に示す。

また、地震波形の観測地点の一覧を表 1.3.1 に示す。

図1.3.2 仙台・塩釜地区及び近傍の地震観測地点の位置()

観測機関	地点名	地点コード	設置位置
	塩釜	MYG012	地表
	仙台	MYGO13	地表
洪亦四	加云	仙台 G	地表
1仓1950	ΪЩΞ	仙台 GB	地中 (GL-10.4m)

表1.3.1 仙台・塩釜地区近傍の地震観測地点(仙台・塩釜地区)

1.3.3 仙台・塩釜地区の観測地震波形

仙台・塩釜地区近傍の地震観測地点で観測された東北地方太平洋沖地震の最大加速度の一覧 を表 1.3.2 に示す。

また、観測された地震波形及びスペクトルを、図 1.3.3 から図 1.3.5 に示す。

表1.3.2 東北地方太平洋沖地震の観測地震波形(仙台・塩釜地区)

年日:日川 大松 月月	地上夕	地点	扒罢 莅罢	最大法	最大加速度(cm/s/s)		
110.01001戌(关)	地总石	コード	改但位但	NS	EW	UD	
K_NET	塩釜	MYGO12	地表	760. 5	1969. 5	500.8	
	仙台	MYG013	地表	1515. 3	977. 2	290. 2	
		仙台 G	地表	623. 8	393. 0	225. 9	
港湾研	仙台	仙台 GB	地中 (GL-10.4m)	217. 7	252. 2	144. 0	

図 1.3.3 東北地方太平洋沖地震の観測地震波形の比較(仙台・塩釜地区:NS成分)

図1.3.4 東北地方太平洋沖地震の観測地震波形の比較(仙台・塩釜地区:EW成分)

図 1.3.5 東北地方太平洋沖地震の観測地震波形の比較(仙台・塩釜地区:UD 成分)

1.3.4 仙台・塩釜地区の地盤構成の検討

工学的基盤の地震波形から地表の地震波形の作成を行う地震応答解析については、地盤構成、 物理特性及び動的変形特性等の定数を適切に考慮して設定することが重要である。したがって、 地盤調査資料等を詳細に吟味するとともに、既往調査や各種文献などのデータも参考にしなが ら定数を設定する。

仙台・塩釜地区の地盤情報を検討した結果、工学的基盤の深さについては、仙台地区の海側 で深く(50m~)なっている。これに対して塩釜地区や仙台地区の陸側では浅く(10m~30m 程度)なっている。このため、地震応答解析の地盤モデルとして、以下の2種類を想定した。

① 工学的基盤が深いケース

② 工学的基盤が浅いケース

仙台・塩釜地区及び地震観測地点について、設定した地盤構成及び物理特性を表 1.3.3 及び 表 1.3.4 並びに図 1.3.6 から図 1.3.8 に示す。

No.	深さ (G.Lm)		土質	V _{.s} (m/s)	ρ (g/cm ³)
1	2. 70	FI	(埋土)	120	1.6
2	14. 05	As	(沖積砂質土)	130	1.8
3	25.65	As	(沖積砂質土)	130	1.8
4	40.00	Dc	(洪積粘性土)	170	1.6
5	47.00	Ds	(洪積砂質土)	180	1.9
6	55.75	Ds	(洪積砂質土)	180	1.9
7	-	R	(基盤)	850	2. 2

表 1.3.3 地盤モデル(仙台・塩釜地区・工学的基盤が深いケース)

※ 土質区分及び深さについては、地盤調査資料から設定。

※ S波速度及び密度については、地震観測地点の地盤情報を参考に設定。

表1.3.4 地盤モデル(仙台・塩釜地区・工学的基盤が浅いケース)

No.	深さ (G.Lm)		土質	V _s (m/s)	ρ (g/cm³)
1	2. 70	FI	(埋土)	120	1.6
2	14. 05	As	(沖積砂質土)	130	1.8
3	25.65	As	(沖積砂質土)	130	1.8
4	35.50	Dc	(洪積粘性土)	170	1.6
5	-	R	(基盤)	850	2. 2

※ 土質区分及び深さについては、地盤調査資料から設定。

※ S波速度及び密度については、地震観測地点の地盤情報を参考に設定。

図 1.3.6 地震観測地点の地盤モデル (MYG012)

No.	深さ (G.Lm)	土質	Vp (m/s)	V _{.s} (m/s)	ρ (g/cm ³)
1	0. 85	FI (埋土・盛土)	260	70	1.6
2	3.00	Ac(沖積粘性土)	650	100	1.6
3	5. 15	Ac(沖積粘性土)	1600	170	1.8
4	6.50	Dg(洪積礫質土)	1600	170	1.8
5	14.00	Dg(洪積礫質土)	1900	440	2.0
6	15.00	R (基盤)	1900	440	2.0

土質図

図 1.3.7 地震観測地点の地盤モデル (MYG013)

No.	深さ (G.Lm)	土質	Vp (m/s)	V _{.s} (m/s)	<i>р</i> (g/cm ³)
1	0.50	Ag(沖積礫質土)	1100	130	1. 75
2	3.00	As(沖積砂質土)	1100	130	1. 75
3	7.00	As(沖積砂質土)	1100	180	1.85
4		R (基盤)	2100	820	2.40

Site Information

仙台-G, GB

所在地: 宮城県多賀城市明月1-4-6

図 1.3.8 地震観測地点の地盤モデル(仙台-G、GB)

1.3.5 仙台・塩釜地区の動的変形特性の検討

地震応答解析に必要な物性値のうち、動的変形特性については仙台・塩釜地区の地盤資料からは得られなかったため、既往の文献資料を基に設定を行った。

動的変形特性に関する文献として、古山田(2003)を採用した。これは比較的近年に、全国 の動的試験結果を収集して土質別に設定したものである。しかし、図 1.3.9 に「〇」で示すよ うに試験値にはばらつきがあるため、港湾研の工学的基盤の観測地震波形を入力として、動的 変形特性曲線を試験値のばらつきの範囲で変化させて等価線形計算を行い、地表波形をよく再 現できるような動的変形曲線の設定を試みた。

採用した動的変形特性曲線を図 1.3.9 の赤の破線で示した。(黒の破線は平成 12 年建設省告示 1457 号の値)また、地震応答解析による地表の計算波形と観測地震波形を比較したものを、表 1.3.5 並びに図 1.3.10 から図 1.3.12 に示す。

地震応答解析と観測地震波形との比較の結果、波形の形状や最大値、スペクトルから周期や 増幅特性などの再現性が高いことが確認できた。

図1.3.9 採用した動的変形特性曲線

表13.5 地震心答解析と観測地震波形との最大加速度及び最大速度の比

(港湾研仙台G、GB)

地震波形	設置位置	最大加速度	度(cm/s/s)	最大速度(cm/s)		
		NS	EW	NS	EW	
観測地震波形(仙台 G)	地表	623. 8	393. 0	24. 49	28. 56	
解析地震波形	地表	595. 7	484. 5	27. 38	32.65	
観測地震波形(仙台 GB)	基盤	217. 7	252. 2	19. 47	19. 53	

図 1.3.10 観測地震波形と解析地震波形との比較(仙台G:NS成分)

図 1.3.11 観測地震波形と解析地震波形との比較(仙台 G、GB:EW 成分)

図 1.3.12 地震応答解析による深さ方向の最大加速度等の値(港湾研観測地点)

1.3.6 地震応答解析による工学的基盤における地震波形の作成

仙台・塩釜地区近傍の地表の観測地震波形(MYG012、MYG013)から、地震応答解析により工学的基盤における地震波形(時刻歴波形)を作成した。この地震応答解析には、周波数領域の等価線形解析法を採用し、プログラムコードは、A computer program for DYNamic response analysis of level ground by Equivalent linear method (以下「DYNEQ」という。)を採用した。これは、後述する「YUSAYUSA-2」(注1)は、逐次積分による計算であり、観測地震波形をそのまま入力することはできないためである。

解析結果を港湾研の工学的基盤における観測地震波形(仙台 GB)と比較したものを、表 1.3.6 並びに図 1.3.13 から図 1.3.18 に示す。

地表観測地震波形と解析した基盤波形とを比較すると、以下のことがいえる。

- 仙台 G(地表)と GB(工学的基盤)の応答スペクトルを比較した場合、1 秒以下の短 周期成分のみが増幅していることを確認している。(図 1.3.3 から図 1.3.4)
- ② MYG012、MYG013の地表における観測地震波形から等価線形解析法により工学的基盤 における地震波形を作成して比較すると、同様に1秒以下の短周期成分のみが減衰する結果となった。(図 1.3.13 から図 1.3.18)

このように、MYG012、MYG013の地表における観測地震波形及びそれから作成した工学的 基盤における地震波形と仙台 G 及び仙台 GB について、同様の傾向を示していることが確認さ れた。 しかし、等価線形解析法で作成した工学的基盤の地震波形及び仙台 GB の観測地震波形の最 大振幅は、それぞれで大きく異なる。(表 1.3.6)

このため、平成23年3月9日の東北地方太平洋沖地震の前震について同様の解析を行い比 較検討した上で、対象地区の入力波形としてどの波形を採用するかを決めることとする。

表 1.3.6 仙台・塩釜地区近傍の工学的基盤の解析地震波形と観測地震波形との比較 (東北地方太平洋沖地震)

·배 卢 ㄱ ㅡ ヾ	設置位置	最大加速度(cm/s/s)			
		NS	EW	UD	
解析波形(MYG012)	基盤	393. 6	900. 4	307. 9	
解析波形(MYGO13)	基盤	684. 6	365.6	158. 6	
観測地震波形(仙台 GB)	基盤	217. 7	252. 2	144. 0	

図 1.3.13 地表の観測地震波形と工学的基盤の解析地震波形の比較(MYG012・NS 成分)

図 1.3.14 地表の観測地震波形と工学的基盤の解析地震波形の比較(MYG012・EW 成分)

図 1.3.15 地表の観測地震波形と工学的基盤の解析地震波形の比較(MYG012・UD 成分)

図 1.3.16 地表の観測地震波形と工学的基盤の解析地震波形の比較(MYG013・NS 成分)

図 1.3.17 地表の観測地震波形と工学的基盤の解析地震波形の比較(MYG013・EW 成分)

(注1) FUSAFUSAは、東京大学・土木工学科・土質研究室(石原研而、東畑郁生)により開発 された一次元有効応力地震応答解析プログラムである。その後、石原と佐藤工業(株)・吉田 望により新しい応力ひずみ関係がつけ加えられる等の改良が行われ、それをYUSAYUSA-2と呼ん でいる。

図 1.3.18 地表の観測地震波形と工学的基盤の解析地震波形の比較(MYG013・UD 成分)

1.3.7 東北地方太平洋沖地震の前震の地震応答解析

1.3.6 で述べたように、仙台・塩釜地区近傍には3か所の地震観測記録が残っている。このう ちふたつは、防災科研の MYG012、MYG013 の観測地震波形であり、地表の最大加速度で約 2,000 cm/s/s や約 1,500 cm/s/s を示している。一方、残る一つの港湾研の観測地震波形(仙台 G、GB)では、地表の最大加速度が約 600 cm/s/s、工学的記基盤が約 250 cm/s/s を示している。

防災科研と港湾研における観測記録に大きな差がみられることから、本検証において、どの 観測点の観測地震波形を採用するのが適当であるか、東北地方太平洋沖地震以外の観測地震波 形について検討する。

平成23年3月9日の三陸沖地震(M7.3)においては、先に示した東北地方太平洋沖地震の 観測点に加えて、消防研究センター(以下「消防研」という。)の仙台コンビナート観測点にお いても、地表の観測地震波形が記録されている。この地震は2日後の東北地方太平洋沖地震の 前震と考えられており、東北地方太平洋沖地震と伝播特性が類似していると考えられる。この ため、この地震についても、これまでの手順と同様の手法で工学的基盤の地震波形を求め、観 測点毎の波形の特性について比較を行う。

1.3.7.1 地震の概要

気象庁による平成23年3月9日の東北地方太平洋沖地震の前震の概要を、表1.3.7に示す。

発生日時	平成 23 年 3 月 9 日 11 時 45 分
震央地名	三陸沖(北緯 38.3 度、東経 141.3 度)
震源の深さ	8 km
規模	マグニチュード 7.3
特防区域付近の震度	震度 4 : 宮城県仙台市、宮城県塩竃市

表 1.3.7 平成 23 年 3 月 9 日 三陸沖地震の概要

1.3.7.2 観測地点

3月9日の前震における仙台・塩釜地区近傍の地震波形の観測地点を、表 1.3.8 及び図 1.3.19 に示す。

	観測機関	地点名	地点コード	設置位置
		塩釜	MYGO12	地表
		仙台	MYGO13	地表
	进冰皿		仙台 G	地表
<i>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</i>	仙古	仙台 GB	地中 (GL-10.4m)	
	消防研	仙台	仙台コンビ	地表

表1.3.8 平成23年3月9日 三陸沖地震の地震波形観測地点(仙台・塩釜地区)

図 1.3.19 平成 23 年 3 月 9 日 三陸沖地震の観測地点の位置 (仙台・塩釜地区)

1.3.7.3 観測地震波形

平成 23 年 3 月 9 日の三陸沖地震の観測地震の一覧を表 1.3.20 に示す。また、地震波形及び スペクトルを図 1.3.20 から図 1.3.23 に示す。

観測機関	地点名	地点コード		最大加速度(cm/s/s)		
			の自び自	NS	EW	UD
K-NET	塩釜	MYG012	地表	34. 9	45.6	23. 8
	仙台	MYG013	地表	30. 7	42. 2	17.5
港湾研	仙台	仙台 G	地表	17. 0	19. 2	6.8
		仙台 GB	地中(GL-10.4m)	8. 0	8. 0	5. 7
消防研	仙台	仙台コンビ	地表	36.8	31.9	15. 1

表1.3.20 平成23年3月9日 三陸沖地震の観測地震(仙台・塩釜地区)

図 1.3.20 平成 23 年 3 月 9 日 三陸沖地震の地表における観測地震波形の比較(NS 成分)

図 1.3.21 平成 23 年 3 月 9 日 三陸沖地震の地表における観測地震波形の比較(EW 成分)

図 1.3.22 平成 23 年 3 月 9 日 三陸沖地震の地表における観測地震波形の比較(UD 成分)

図 1.3.23 平成 23 年 3 月 9 日 三陸沖地震の工学的基盤における観測地震波形 (港湾研 仙台 GB)

1.3.7.4 地盤モデル

仙台・塩釜地区の地表観測地震波形を基盤に戻す解析に用いる地盤モデルについては、1.3.5 で設定した対象地区の地盤モデルを参照して、表 1.3.21 のように設定した。動的変形曲線に ついては、1.3.5 で設定したものを用いた。

No.	深さ (G.Lm)	土質	V _s (m/s)	<i>р</i> (g/cm ³)
1	3.00	FI (c) (埋土 (粘性土主体))	120	1.6
2	19.60	As (沖積砂質土層)	130	1.8
3	28. 20	Dc (洪積粘性土層)	170	1.6
4	-	R (基盤)	850	2. 2

表 1.3.21 仙台・塩釜地区の地盤モデル

1.3.7.5 解析結果

1.3.6 と同様に DYNEQ を用いて、等価線形解析により工学的基盤の波形を計算した。計算 結果を表 1.3.22 及び図 1.3.24 から図 1.3.26 に示す。

3成分のいずれも仙台コンビと比較すると以下のような傾向が読み取れる。

・MYG012は、屋外貯蔵タンク本体の固有周期である 0.5 秒から 2 秒のやや長周期が同じ程度。

・MYG013は、0.5秒から5秒の周期が大きい。

・仙台 GB は、0.1 秒から 5 秒の周期が小さい。

また、加速度振幅を比較すると、仙台コンビ、MYG012 及び MYG013 と比較して、仙台 GB は非常に小さくなっている。

これらの違いを、観測点における工学的基盤までのサイト特性と考え、東北地方太平洋沖地 震の解析の入力波として、仙台コンビと傾向が概ね同じである MYG012 を採用することとす る。

表1.3.22 平成23年3月9日 三陸沖地震の工学的基盤の地震波形の比較

·	む 罟位罟	最大加速度(cm/s/s)			
	故道位道	NS	EW	UD	
解析波形(仙台コンビ)	基盤	29. 5	27.9	13. 3	
解析波形(MYGO12)	基盤	20. 9	22. 8	10.4	
解析波形(MYGO13)	基盤	17. 4	22. 2	9. 2	
観測地震波形(仙台 GB)	基盤	8. 0	8.0	5.7	

図 1.3.24 平成 23 年 3 月 9 日 三陸沖地震の工学的基盤における波形 (NS 成分)

図 1.3.25 平成 23 年 3 月 9 日 三陸沖地震の工学的基盤における波形(EW 成分)

図 1.3.26 平成 23 年 3 月 9 日 三陸沖地震の工学的基盤における地震波形(UD 成分)

1.3.8 地震応答解析による地表における地震波形の作成

これまでの検討結果を踏まえ、MYG012の地表の観測地震波形から作成した工学的基盤の地 震波形を入力波として、地震応答解析により仙台・塩釜地区における地表波形の作成を行った。

この地震応答解析には、仙台・塩釜地区の工学的基盤の深さが約35mから約55mと厚く、 非線形効果が大きいと見込まれるため、全応力逐次非線形解析を採用し、プログラムコードは、 YUSAYUSA-2を採用した。加えて、地震動応答解析の実績が格段に多い、等価線形解析法に よる計算も行い、両者による解析を比較した。

解析地点は、「工学的基盤が深いケース」及び「工学的基盤が浅いケース」の2ケースとした。 (1.3.4 参照)

解析結果を、表 1.3.23 及び図 1.3.27 から図 1.3.34 に示す。

解析結果について、以下に述べる。

・応答スペクトルを比較すると、いずれのケースにおいても短周期(0.2 秒以下)成分が、 非線形効果により大きく減衰しているのに対し、長周期成分(概ね 0.5 秒以上)について は増幅している。

・最大加速度、最大速度を比較すると、非線形計算の方が等価線形計算よりもやや振幅が 小さい。

・工学的基盤が深いケースの方が、工学的基盤の浅いケースよりも、非線形効果が大きく、 やや振幅が小さい。

・以上の結果は、港湾研の観測波形の傾向(図 1.3.10 及び図 1.3.11)と概ね一致しており、 解析結果は妥当であるといえる。

なお、等価線形解析法は解析の利便性などから過去の適用事例、実績が多い手法であり、線 形化したことにより周波数領域で問題を解くことができる。その結果、任意の層で波動(入射 波、反射波、複合波)を取り出すことが可能である。これは逐次積分型の解法では不可能であ り、地表の地震波形から工学的基盤の地震波形を解析する際には、等価線形解析法は多く用い られる手法である。しかし、非線形挙動が卓越する場合などに精度が落ちることが指摘されて いる。一方、逐次積分による非線形解析は、1%を超える大ひずみの適用性に優れており、近 年の大きな地震を対象とした場合、大ひずみ領域を対象とすることになるため、適用すること が多くなっているが、定数などの設定条件が多く、結果のブレが大きいことなどが指摘されて いる。

世界はど	密托手注	最大加速度(cm/s/s)			最大速度(cm/s)		
地辰瓜胶	所们于広	NS	EW	UD	NS	EW	UD
解析波形	等価線形	256.8	344. 3	402. 7	38. 45	40. 25	40.86
(工学的基盤:深い)	非線形	250. 9	336.9	—	36.99	46.69	—
解析波形	等価線形	303.9	485.8	475. 7	42. 09	44. 91	41.26
(工学的基盤:浅い)	非線形	238. 4	361.3	—	39. 01	44. 05	—

表1.3.23 仙台・塩釜地区における地震応答解析結果(東北地方太平洋沖地震・地表)

図1.3.27 地震応答解析による地表の地震波形の再現結果(基盤が深いケース・NS成分)

図1.3.28 地震応答解析による地表の地震波形の再現結果(基盤が深いケース・EW成分)

図1.3.29 地震応答解析による地表の地震波形の再現結果(基盤が深いケース・UD成分)

図1.3.30 地震応答解析による地表の地震波形の再現結果(基盤が浅いケース・NS成分)

図1.3.31 地震応答解析による地表の地震波形の再現結果(基盤が浅いケース・EW成分)

図1.3.32 地震応答解析による地表の地震波形の再現結果(基盤が浅いケース・UD成分)

図1.3.33 地震応答解析による深さ方向の最大加速度等の値(基盤が深いケース)

図 1.3.34 地震応答解析による深さ方向の最大加速度等の値(基盤が浅いケース)

1.3.9 昭和 53 年宮城県沖地震の波形との比較

東北地方太平洋沖地震と近い震源域で起こった昭和 53 年宮城県沖地震(M7.4)の際に、 港湾研の地震観測地点である塩釜工場-S において観測された地表の地震波形と、今回作成 した東北地方太平洋沖地震の地表の地震波形(以下「再現地震波形」という。)とを比較し た。

1.3.9.1 地震の概要

気象庁による昭和53年宮城県沖地震の概要を、表1.3.24に示す。

発生日時	昭和 53 年 6 月 12 日 17 時 14 分
震央地名	宮城県東方沖(北緯 38.2 度、東経 142.2 度)
震源の深さ	40 km
規 模	マグニチュード 7.4
特防区域付近の震度	震度 5: 宮城県仙台市

表 1.3.24 昭和 53 年宮城県沖地震の概要

1.3.9.2 観測地点

昭和53年宮城県沖地震における波形観測地点を、表1.3.25及び図1.3.35に示す。

我 1. 0.	20 阳阳 00 千百%	&宋/千地辰V7 派/// 断	「別で示
観測機関	地点名	地点コード	設置位置
港湾研	仙台	塩釜工場S	地表

表 1.3.25 昭和 53 年宮城県沖地震の波形観測地点

図 1.3.35 昭和 53 年宮城県沖地震の観測地点の位置(仙台・塩釜地区)

1.3.9.3 観測地点の地盤構成

塩釜工場-Sの地盤構成を図 1.3.36 に示す。塩釜工場-S 地点は、地表から深さ 10m まで S 波速度が 100m/s を下回るような非常に軟弱な地盤である。

図 1.3.36 塩釜工場-Sの地盤構成

1.3.9.4 観測地震波形の比較

塩釜工場·S における観測地震波形及びスペクトルを図 1.3.37 から図 1.3.39 に示す。 昭和 53 年宮城県沖地震の観測地震波形のスペクトルは、0.7 秒から 0.9 秒付近にピーク が見られる。これに対して、仙台・塩釜地区における東北地方太平洋沖地震の再現地震波 形のスペクトルは、0.3 秒及び 1.0 秒付近にピークが見られる。ただし、仙台・塩釜地区 の 0.3 秒及び 1.0 秒付近のピークについては、工学的基盤の地震波形のスペクトルにも同 様に見られる(図 1.3.27 から図 1.3.34 参照)ことから、これらのピークは浅部地盤の影 響ではないと考えられる。

また、仙台・塩釜地区の入力波形として MYG012 の地表の観測地震波形から作成した工 学的基盤の地震波形を用いているが、塩釜工場·S と場所が比較的近いことから、震源から 基盤までの伝搬特性についても比較的近いことが考えられる。

以上のことから、仙台・塩釜地区における再現地震波形と昭和 53 年宮城県沖地震の観 測地震波形のスペクトルの周期特性の違いは、地震の震源特性の違いによるものと推測さ れる。

図 1.3.37 塩釜工場-Sにおける昭和 53 年宮城県沖地震の観測波形

図 1.3.38 東北地方太平洋沖地震の解析地震波形と平成 23 年 3 月 9 日三陸沖地震、 昭和 53 年宮城県沖地震の観測波形の比較(NS 成分)

図 1.3.39 東北地方太平洋沖地震の解析波形と平成 23 年 3 月 9 日三陸沖地震、 昭和 53 年宮城県沖地震の観測波形の比較(EW 成分)

1.4 広野地区における検証

1.4.1 地表の地震波形の作成及び検証の流れ

図 1.4.1 の手順により、K-NET が観測した東北地方太平洋沖地震の地震波形を用いて広野地 区における東北地方太平洋沖地震の地震波形を再現する。

1.4.2 広野地区近傍の観測地点

広野地区の位置及び近傍の地震波形の観測地点の位置を図 1.4.2 に示す。 また、地震波形の観測地点を表 1.4.1 に示す。

図1.4.2 広野地区及び近傍の観測地点の位置(広野地区)

観測機関	地点名	地点コード	設置位置	
K-NET	広野	FKS010	地表	

表1.4.1 広野地区近傍の観測地点

1.4.3 収集した観測地震波形

広野地区近傍の観測地点で観測された東北地方太平洋沖地震の最大加速度及び最大速度を表 1.4.2 に示す。

また、観測された波形及びスペクトルを図 1.4.3 に示す。

観測機関	地点名 地点コート		設置位置	最大加速度 (cm/s/s)	最大速度 (cm/s)
K-NET	広野	FKS010	地表	1162. 2	62. 58

表1.4.2 東北地方太平洋沖地震の観測地震波形(広野地区)

図 1.4.3 東北地方太平洋沖地震の観測地震波形 (FKS010)

1.4.4 広野地区の地盤構成の検討

広野地区の地盤情報を収集し、地盤モデルを作成した。

広野地区及び観測地点について、設定した地盤構成及び物理特性を表 1.4.3、表 1.4.4 及び図 1.4.4 に示す。また、図 1.4.5 に地質図を示す。なお、動的変形特性については、仙台・塩釜地 区と同じとした。

表1.4.3 対象地区の地盤モデル(広野地区)

No.	深さ (G.Lm)	土質	V _{.s} (m/s)	<i>р</i> (g/cm ³)
1	5.3	FI1(c) (埋土(粘性土主体))	175	1.7
2	8.3	FI2(c) (埋土(粘性土主体))	160	1.7
3	10. 3	As (沖積砂質土層)	225	1.8
4	-	R (基盤)	480	1. 9

※ 地盤調査資料から設定。

No.	深さ (G.Lm)	土質	V _{.s} (m/s)	ρ (g/cm³)
1	0.9	Fl(c)(埋土・盛土)	100	1.7
2	4.4	Dc(洪積粘性土層)	260	1.7
3	6.9	Ds (洪積砂質土層)	260	1. 9
4	_	R (基盤)	570	2. 0

表 1.4.4 観測地点の地盤モデル(K-NET: FKS010)

※ 地盤調査資料から設定。

図 1.4.5 20 万分の1 日本シームレス地質図に加筆 (出典:産業技術総合研究所 地質調査総合センター)

1.4.5 地震応答解析による工学的基盤の地震波形の作成

広野地区近傍の地表の観測地震波形(FKS010)から、地震応答解析により工学的基盤にお ける地震波形(時刻歴波形)を作成した。

この地震応答解析には、仙台・塩釜地区と同様、周波数領域の等価線形解析法を採用し、プログラムコードは、DYNEQを採用した。

解析結果を表 1.4.5 並びに図 1.4.6 から図 1.4.8 に示す。

表 1.4.5 FKS010 における地震応答解析結果

(東北地方太平洋沖地震・工学的基盤)

地電沈平	扒 栗八栗	最大加速度(cm/s/s)				
地辰次形	改直位直	NS	EW	UD		
解析波形 (FKS010)	基盤	457.7	522. 9	215. 9		

図 1.4.6 工学的基盤の解析地震波形 (NS 成分)

図1.4.7 工学的基盤の解析地震波形(EW成分)

図 1.4.8 工学的基盤の解析地震波形(UD 成分)

1.4.6 地震応答解析による地表の地震波形の作成

これまでの検討結果を踏まえ、FKS010の地表の観測地震波形から作成した工学的基盤の地 震波形を入力波として、広野地区における地表波形の作成を行った。

この地震応答解析は、全応力逐次非線形解析を採用し、プログラムコードとしては、 YUSAYUSA-2 を採用した。加えて、地震動応答解析の実績が格段に多い等価線形解析法によ る計算も行い、両者による解析を比較した。

解析結果を表 1.4.6 並びに図 1.4.9 から図 1.4.12 に示す。

表1.4.6 広野地区における地震応答解析結果(東北地方太平洋沖地震・地表)

生命	む 罟位罟	最大加速度(cm/s/s)			
地辰似心	設直位直	NS	EW	UD	
解析波形	等価線形	1168. 0	1366.0	867. 4	
(広野地区)	非線形	522. 8	574. 1	-	

最大加速度は EW 成分の等価線形結果の約 1,400 cm/s/s であるが、非線形の全応力結果 では約 570 cm/s/s まで低減する。

また、東京電力が公開している東北地方太平洋沖地震における強震記録を表 1.4.7 に示 す。これによると最大約 740gal の揺れであったとされている。加速度のピーク値で比較す ることに問題がないわけではないが、非線形計算の結果と概ね合致していると判断できる。

	衣 1.4.	/ 地衣で	り取入加迷度記録	一頁(単12	; gal)	
番号	設備区分	都県	観測地点名	NS (X)	EW(Y)	UD (Z)
3	火力	福島県	広野火力発電所	528	744	-

表1.4.7 地表での最大加速度記録一覧(単位;gal)

※ 東京電力(株):東北地方太平洋沖地震に伴う電気設備の停電復旧記録、H25.3

図 1.4.9 地表及び工学的基盤における解析地震波形 (NS 成分)

図 1.4.10 地表及び工学的基盤における解析地震波形(EW 成分)

図 1.4.11 地表及び工学的基盤における解析地震波形(UD 成分)

図1.4.12 地震応答解析による深さ方向の最大加速度等の値(広野地区)

1.5 解析手法の確認と課題

今回採用した解析手法は、工学的基盤の地震波形から全応力解析(非線形解析)により地表 の地震波形を作成するものである。この地震応答解析には、地盤の非線形効果を考慮して全応 力逐次非線形解析を採用し、プログラムコードにはYUSAYUSA-2を採用した。 解析手法の妥当性は、以下の手順により確認した。

(1) 地表の観測地震波形から等価線形解析により工学的基盤の地震波形を作成した。仙台・塩釜 地区については、東北地方太平洋沖地震の2日前に起こった前震の観測地震波形と比較を行い、 その妥当性を検証した。

(2)作成した工学的基盤の地震波形から等価線形解析及び非線形解析により地表の地震波形を 再現し、元の地表の観測地震波形と比較を行った。仙台・塩釜地区については、さらに昭和 53年宮城県沖地震の観測地震波形と比較を行い、その妥当性を検証した。

広野地区の解析を例にとると、等価線形解析により地表の地震波形を再現した結果(図 1.5.1 及び図 1.5.2)、加速度波形、応答スペクトルともに観測記録とほぼ完全に一致すること を確認した。また、非線形解析により地表の地震波形を再現した結果(図 1.5.3 及び図 1.5.4)、 NS 成分の加速度の最大値や応答スペクトルの 0.1 秒付近に若干の差はみられるものの、NS 成分、EW 成分ともに概ね観測記録を再現しているといえる。このことから、推定した再現 波は、観測波から工学基盤波を等価線形にて予測する段階で、周期 0.1 秒程度の減衰が大き くなっている可能性が考えられる。一方、タンク等の構造物周期である周期 0.3 秒あたりの 再現性は確認できている。

以上のように、解析手法などに起因する、いくつかの課題はあるものの、以下に示す条件が 整っていれば、本調査で採用した非線形解析を用いた手法は概ね妥当であると考えられる。

- 波形を観測した地盤が、著しい非線形挙動は生じていない。
- 再現波を作成する対象地域が非線形挙動をする可能性が高い。
- ・ 検討対象で議論する卓越周期の再現性が確認できる。

検討した東北地方太平洋沖地震の2地区3波の再現地震波形の時刻歴の想定地震波形を図 1.5.5 に、再現地震波形の応答スペクトル(10%減衰)を図1.5.6 に示す。

No.	深さ (G.Lm)	土質	V _{.s} (m/s)	<i>р</i> (g/cm ³)
1	5.3	FI1(c)(埋土(粘性土主体))	175	1.7
2	8.3	FI 2 (c) (埋土(粘性土主体))	160	1.7
3	10. 3	As (沖積砂質土層)	225	1.8
4	_	R (基盤)	480	1.9

表1.5.1 対象地区の地盤モデル(広野地区)

※ 地盤調査資料から設定。

No.	深さ (G.Lm)	土質	V _{.s} (m/s)	ρ (g/cm ³)
1	0.9	Fl(c)(埋土・盛土)	100	1.7
2	4.4	Dc (洪積粘性土層)	260	1.7
3	6.9	Ds (洪積砂質土層)	260	1.9
4	_	R (基盤)	570	2. 0

表 1.5.2 観測地点の地盤モデル(K-NET: FKS010)

※ 地盤調査資料から設定。

図 1.5.1 K-NET (FKS010 NS) における等価線形計算結果

図 1.5.2 K-NET (FKS010 EW) における等価線形計算結果

図 1.5.3 K-NET (FKS010 NS) における非線形計算結果

図 1.5.4 K-NET (FKS010 EW) における非線形計算結果

図 1.5.5 東北地方太平洋沖地震の再現波加速度時刻歴波形 (NS 成分・EW 成分)

図 1.5.6 東北地方太平洋沖地震の再現波 (NS 成分・EW 成分)

2 地震波形の作成

東北地方太平洋沖地震の観測地震波形を用いた検証結果を踏まえ、2012 年(平成 24 年)に 内閣府から公開された工学的基盤における南海トラフ地震の想定地震動(短周期地震動)を基 に、地表面における地震波形を作成する。

2.1 南海トラフ地震の概要

内閣府(2012)が推計した南海トラフ地震の震源域を、図2.1.1に示す。

図 2.1.1 南海トラフ地震の震源域

2.2 地表における地震波形の作成の流れ

図 2.2.1 に示す手順により、南海トラフ地震の地表の地震波形を作成する。

なお、内閣府が行った南海トラフ地震の震源モデルや震度分布等は既知の歴史地震との比較 分析により妥当性が確認されている。また、今回作成する地震波形については、東北地方太平 洋沖地震の観測地震波形を用いた検証において妥当性が確認できた手法と同様の手法を用いる。 一方、内閣府から公開された工学的基盤における想定地震波形については、統計的グリーン関 数法により検討した一つの結果であり、統計処理上の癖やバラつきが生じている可能性もある ため、これを基に作成した地震波形について、震源特性や地盤特性等以外の要因が問題になっ た場合には、作成した地震波形から工学的基盤の地震波形を再度作成してその妥当性を確認す る。

図 2.2.1 地表面地震波形の解析の流れ

2.3 対象地区

内閣府から公開されている南海トラフ地震の震度分布(図 2.3.1)を参照し、全国の特防区域 を管轄する市町村のうち想定震度が震度7となる特防区域を抽出した。これらの特防区域につ いて、コンビナート地域をカバーする3次メッシュの最大計測震度を確認し、最大計測震度の 大きい5地区(A地区からE地区)を抽出した。

図 2.3.1 南海トラフの巨大地震による震度分布 出典:南海トラフの巨大地震モデル検討会(第二次報告) 強震断層モデル編ー強震断層モデルと震度分布について- 平成 24 年 8 月 29 日

これらの 5 地区について、計測震度、地盤構成、液状化対策の状況等を比較して、図 2.4.1 に示した。

5地区を比較した結果、多様な解析を行うため、解析の対象地区として以下の3地区を選定した。

(1) A 地区

計測震度 6.8 であるが、液状化可能性は低い地盤である。

(2) B 地区

計測震度 6.8 であり、液状化対策としてサンドコンパクション及び注入固化が実施されている。

(3) E 地区

計測震度 6.4 であり、動圧密による液状化対策が実施されている。

	A地区	B地区	C地区	D地区	E地区
想定震度階 (計測震度)	7 (6.8)	7 (6.8)	7 (6.5)	6強 (6.4)	6強 (6.4)
液状化可能性 (N値≦15程度の砂・ 砂礫層で高い)	低い N値> 20の砂 礫層が続く	高い N値 <10の砂 と粘土の互層	高い N値4~20の 砂礫層(含む 埋土)	中くらい N値0~30の シルト層に砂 層挟在	高い N値3~30の 砂・砂礫層
解析精度 (既存資料)	非常に良い	良い	良い	良い	非常に良い
地盤改良 (既存資料)	_	サント、コンパ。クション 注入固化 改良後N値	サント、コンパ。クション 一部調査中 改良後N値	パ*イフ*0 コンポーザー 改良後N値	動圧密 改良後N値
地震応答解析の 対象とする地区	対象	対象	_	_	対象

図 2.4.1 特防区域の計測震度・地盤状況等の比較

2.4 南海トラフ地震の工学的基盤における地震波形

解析対象地区の直近の工学的基盤の波形を表 2.4.1 に示す。 また、地震波形及びスペクトルを図 2.4.1 及び図 2.4.2 に示す。

特定可能	最大加速度(cm/s/s)				
何仍区域	NS	EW			
A 地区	1184. 3	1607.1			
B 地区	971.5	891.9			
E 地区	469. 9	476.8			

表 2.4.1 南海トラフ地震の工学的基盤の最大加速度

図 2.4.1 南海トラフ地震の工学的基盤における地震波形 (NS 成分)

図2.4.2 南海トラフ地震の工学的基盤における地震波形(EW成分)

2.5 解析対象地区の地盤構成の検討

地震応答解析を考えた場合、地盤構成、物理特性及び動的変形特性等を適切に考慮して設定 することが重要である。また、屋外貯蔵タンクの基礎地盤については、液状化対策が行われて いることが前提となる。したがって、地盤調査及び液状化対策工に関する資料を詳細に吟味し、 既往調査や各種文献などのデータも参考にしながら定数を設定した。

(1) A 地区

A地区において設定した地盤モデルについて図2.5.1に示す。

A 地区の地盤は、地表から深度 22.8m まで N 値の比較的高い砂礫層が連続し、液状化可能 性の低い地盤構成となっている。このため、原地盤の地盤情報を元にモデル化を行った。

動的変形曲線は、試験値及び高橋ら(2013)(図2.5.2)より設定した。

(2) B地区

B地区において設定した地盤モデルについて図2.5.3に示す。

B 地区の地盤は、地表から粘性土層と砂層が互層になっている。液状化対策としてサンド コンパクションによる地盤改良(SCP 工法)が実施されている。加えて、第二砂質土層を対 象として浸透固化工法による液状化対策工も実施されている。

地盤情報としては、サンドコンパクション施工前後の N 値が得られている。改良前後の実 測 N 値、及び N 値から推定される S 波速度を比較して表 2.5.1 に示す。改良前後の N 値から 推定される S 波速度は、粘性土層で 1.0 倍から 1.1 倍、砂質土層で 1.1 倍から 1.4 倍となった。

また、第二砂質土層の浸透固化による液状化対策効果については、土木学会論文などの報告 を考慮して、S波速度で+20m/s程度の増加を見込み、200m/sとした。

動的変形曲線は、古山田、(2003) (図 2.5.4) による平均値を採用した。

(3) E **地区**

E地区において設定した地盤モデルについて図2.5.5に示す。

E地区においては、動圧密工法による液状化対策が実施されている。

地盤情報としては、モデル化地点において PS 検層、動的変形特性試験等が実施されている。また、モデル化地点の周辺において、地盤改良前後の N 値が計測されている。

B地区と同様に地盤改良前後の実測N値を比較して表2.5.2に示す。改良前後のN値から推定されるS波速度の倍率を土質区分毎に求めたところ、1.2倍から1.4倍程度となった。 得られた倍率をPS検層から把握された改良前のS波速度に乗ずることで、改良後のS波 速度を設定した。

動的変形特性曲線については、試験値より設定した。図 2.5.6 に設定した動的変形曲線 を示す。

					赤字:既	注資料等	により設え	定した物性値
×	深度 (m)	土層 (記号)	平均 N値 (範囲)	湿潤 密度 ρt(g/cm3)	間隙比 e	細粒分 含有率 Fc	内部 摩擦角 φ'(゜)	S波 速度 Vs(m/sec)
	2.0					0.6 3.7	40	160
-	6.0				0.6			300
	10.0	Ag (礫質十)	36	36 1.2~50) 1.90				240
	14.0	(味貞工/	(12~50)					290
	19.0							350
	22.8							300
	25.0	Ds		4 ~28) 1.85	0.867 26.7		35.5	260
	27.0	(砂質土)	24 (19 ~ 28)			7 26.7		290
	32.9							310
	_	Dsg1 (礫混じり 砂)	48 (30~50)	1.91	0.668	設定したご 6.3	⊑学的基∶ 35.4	盤面 350

図 2.5.1 A 地区の地盤モデル

図 2.5.2 A地区で採用した動的変形曲線

			赤字:	既往資料	等により言	设定した物	性値
深度 (m)	土層	平均 N値 (範囲)	湿潤 密度 ρt(g/cm3)	間隙比 e	細粒分 含有率 Fc	内部 摩擦角 φ'(゜)	S波 速度 Vs(m/sec)
0.8	埋土 (B)	10(4~17)	1.65	1.53	96	40	190
2.0	(第一)粘性土 (Ac1)	7(5~9)	1.65	1.53	96	30	190
4.0	(第一)砂質土 (As1)	11(7~20)	1.80	0.9	22	35	180
5.0	(第二)粘性土 (Ac2)	5(3~7)	1.74	1.56	97	30	170
7.0	(第二)砂質土 【注入固化】 (As2)	11(8~14)	1.80	0.9	34	35	200 (180+20)
10.0	(第三)粘性土 (Ac3)	4(2 ~ 7)	1.73	1.27	94	30	160
12.0	(第三)砂質土 (As3)	8(7~9)	1.80	0.9	34	35	160
22.7	(第四)粘性土 (Ac4)	3(1~7)	1.73	1.27	94	30	140
24.2	礫賃土 (g)	38	1.90	0.6	6	40	340
_	岩盤 (R)	50以上	2.00	_設定	した工学	的基盤面	350

図 2.5.3 B 地区の地盤モデル

土層	実測N値		N 値から S 波速度	ら求めた E (m/s)	S波速度の比
	改良前	改良後	改良前	改良後	改良後/改良前
第一粘性土	7	7	191	191	1.0
第一砂層	5	11	132	179	1.4
第二粘性土	4	5	162	167	1.0
第二砂層	6	11	149	178	1. 2
第三粘性土	3	4	145	162	1.1
第三砂層	6	8	149	160	1.1
第四粘性土	3	3	145	140	1.0

表 2.5.1 B地区における地盤改良前後の N値と S波速度の比較

図 2.5.4 B 地区で採用した動的変形曲線(古山田、2003)

深度 (m) 3.5	土層 盛土 (碟·砂)	平均 N値 (範囲)	湿潤 密度 pt(g/cm3)	間隙比 e	細粒分 含有率 Fc	内部 摩擦角 o'(゜)	S波 速度
3.5	盛土 (礫・砂) B	$20(21 \sim 27)$				+()	Vs(m/sec)
	5	29(21~37)	1.90	0.6	11	40	260 (180×1.4)
4.7	砂質土 As1	21(8~34)	1.88	0.9	16	34	260 (220 × 1.2)
10.0	礫質土 Ag	33(20~48)	2.10	0.6	8	40	260 (220×1.2)
14.5	砂質土 As2	21(8~34)	1.80	0.9	30	35	230 (190 × 1.2)
18.4	砂質土 As2下部	21(8~34)	1.94	1.27	20	36	230 (190 × 1.2)
				1	設定したコ	二学的基 督	盤面
	礫質土	50	2.00	-	-	-	380
	4.7 10.0 14.5 18.4	4.7 AS1 10.0 碟質土 Ag 14.5 砂質土 AS2 18.4 砂質土 AS2下部 碟質土	4.7 ASI 10.0 礫質土 Ag 33(20~48) 14.5 砂質土 AS2 21(8~34) 18.4 砂質土 AS2下部 21(8~34) 暖質土 50	4.7 ASI (11) 10.0 梁質土 Ag 33(20~48) 2.10 14.5 砂質土 AS2 21(8~34) 1.80 18.4 砂質土 AS2下部 21(8~34) 1.94 18.4 酸質土 AS2下部 50 2.00	4.7 As1 As1 10.0 噪質± Ag 33(20~48) 2.10 0.6 14.5 砂質± As2 21(8~34) 1.80 0.9 18.4 砂質± As2下部 21(8~34) 1.94 1.27 酸質± 50 2.00 -	4.7 As1 As1 Image: Constraint of the state of	4.7 As1 Image: state s

図 2.5.5 E 地区の地盤モデル

土層	実測 N 亻	値の平均	N 値から S 波速度	ら求めた E (m/s)	S 波速度の比 改良後/改良前	PS 検層 S 波速度	ーによる E (m/s)
	改良前	改良後	改良前	改良後	k	改良前	改良後 *
盛土	10	29	170	246	1.4	180	260
礫質土	20	33	218	257	1. 2	220	260
砂質土	12	21	182	219	1. 2	190	230
粘性土	5	8	171	203	1.2	190	230

表 2.5.2 E 地区における地盤改良前後の N 値と S 波速度の比較

※ 改良前S波速度×k

図 2.5.6 E 地区で採用した動的変形曲線

2.6 地震応答解析による地表の地震波形の作成

これまでの検討結果を踏まえ、南海トラフ地震の工学的基盤の地震波形を入力波として、解析対象地区における地表波形の作成を行った。

地震応答解析は、全応力逐次非線形解析を採用し、プログラムコードは、YUSAYUSA-2 を 採用した。加えて、地震動応答解析の実績が格段に多い等価線形解析法による計算も行い、両 者による解析を比較した。

解析結果を表 2.6.1 並びに図 2.6.1 から図 2.6.9 に示す。

表 2.6.1 対象地区における地震応答解析結果(南海トラフ地震・地表)

性叶豆茸	凯军传军	最大加速度(cm/s/s)		
特防区域	改進12世	NS	EW	
	等価線形	706. 5	1010. 0	
A 地区	非線形	633. 2	767. 1	
B 地区	等価線形	698. 4	435. 4	
	非線形	532. 1	424. 0	
L 북 D	等価線形	414. 9	503. 2	
L 地区	非線形	372. 9	490. 6	

A 地区 22m から 25m 付近で、ひずみが 1%を超えており、スペクトルでは 0.3 秒から 0.5 秒 0.1 秒のところにピークが出てきている。

B地区は10mより深いところで、ひずみが1%を超えており、スペクトルでは0.4秒、1 秒から2秒のところにピークが出てきている。

E 地区は、どの層においても 1%未満のひずみであり、スペクトルでは 0.7 秒、1 秒から 2 秒のところにピークが出てきている。

以上より、今回解析した結果については、震源特性や地盤特性など以外の要因の影響が大 きくなかったため、解析結果は妥当であると考えられる。

検討した南海トラフ地震の3地区3波の時刻歴の想定地震波形を図2.6.10に、再現地震波形の応答スペクトル(10%減衰)を図2.6.11に示す。

図 2.6.1 地表及び工学的基盤における解析地震波形(NS成分)(南海トラフ地震・A地区)

図 2.6.2 地表及び工学的基盤における解析地震波形(EW 成分)(南海トラフ地震・A 地区)

図 2.6.3 地震応答解析による深さ方向の最大加速度等の値(南海トラフ地震・A地区)

図 2.6.4 地表及び工学的基盤における解析地震波形(NS成分)(南海トラフ地震・B地区)

図 2.6.5 地表及び工学的基盤における解析地震波形(EW 成分)(南海トラフ地震・B 地区)

図 2.6.6 地震応答解析による深さ方向の最大加速度等の値(南海トラフ地震・B地区)

図 2.6.7 地表及び工学的基盤における解析地震波形 (NS 成分)(南海トラフ地震・E 地区)

図 2.6.8 地表及び工学的基盤における解析地震波形(EW 成分)(南海トラフ地震・E 地区)

図 2.6.9 地震応答解析による深さ方向の最大加速度等の値(南海トラフ地震・E地区)

図 2.6.10 南海トラフ地震の想定波加速度時刻歴波形 (NS 成分・EW 成分)

図 2.6.11 南海トラフ地震の想定波(NS 成分・EW 成分)

3 地震波形作成のまとめ

3.1 東北地方太平洋沖地震の観測地震波形を用いた地震波形作成手法の検証

東北地方太平洋沖地震における観測地震波形を用い、工学的基盤の地震波形から地表の地震波 形を解析する手法について検証を行った。

この地震応答解析には、地盤の非線形効果を考慮して全応力逐次非線形解析を採用し、プログ ラムコードには YUSAYUSA-2 を採用した。併せて、地震動応答解析の実績が格段に多い、等価 線形解析法による計算も行い、両者による解析と観測地震波形とを比較した。

また、東北地方太平洋沖地震の2日前に起こった前震や昭和53年宮城県沖地震の観測地震波 形と比較し、その妥当性を確認した。

その結果、解析手法などに起因するいくつかの課題はあるものの、以下に示す件が整っていれ ば、非線形解析を用いた提案手法は概ね妥当であると考えられる、

- ・ 波形を観測した地盤が、著しい非線形挙動は生じていない。
- 再現波を作成する対象地域が非線形挙動をする可能性が高い。
- ・ 検討対象で議論する卓越周期の再現性が確認できる。

3.2 南海トラフ地震の地震波形の作成

東北地方太平洋沖地震の観測地震波形を用いて検証された地震波形作成手法により、内閣府か ら公開された工学的基盤における南海トラフ地震の想定地震動を基に、地表の地震波形を作成した。

この地震波形は、震源特性や地盤特性等以外の要因の影響が大きくなかったため、妥当なものであると考えられる。

第2章 屋外貯蔵タンクの耐震安全性の解析

1 屋外貯蔵タンクの耐震安全性の解析手法の検証

屋外貯蔵タンクの耐震安全性の解析手法の検証を行うため、東北地方太平洋沖地震の再現 波形に対するタンク本体の応答を確認し、実際の被害実態との比較を行う。

1.1 検証の流れ

図 1.1.1 に示す手順により、以下の3種類の解析を実施した。

- (1) 質点系モデルによる側板下端部の浮き上がり解析
- (2) 2 次元軸対称モデルによる浮き上りの繰返し挙動を考慮した隅角部の疲労損傷度評価解 析
- (3)3次元シェルモデルによる底板浮き上がり時の側板の座屈強度評価解析

図 1.1.1 東北地方太平洋沖地震の再現波形に対する屋外タンク貯蔵の応答確認の流れ

1.2 質点系モデルによる浮き上がり変位解析

非線形ばね特性を有する質点系モデルを用いて、仙台・塩釜地区及び広野地区の再現地震 波形が作用した場合の側板下端部の浮き上がり変位について、検討対象の屋外貯蔵タンク 13 基(仙台・塩釜地区:10 基の旧法タンク、広野地区:3 基の新法タンク)の地震応答解 析を実施した。

1.2.1 解析モデル・条件

(1) 質点系モデルの諸元

収集したタンクデータ(重量データ、寸法、板厚及び材料の物性値など)に基づき、検 討対象タンク 13 基の質点系モデルの諸元を計算した。各タンクの入力データ及び計算し た諸元は、参考資料1に示すとおりである。なお、側板とアニュラ板の板厚には実板厚値 (不明なものは設計板厚)を使用した。

(2) 入力地震波

第1章で作成された再現地震波形を表 1.2.1 から表 1.2.3 に示す。これらの地震波形を 質点系モデルの地震応答解析に使用した。

表 1.2.1 仙台・塩釜地区 (ケース①) 再現地震波形の詳細

仙台,佑父	再現地震	波形 EW	再現地震	波形 NS
山口・塩玉	加速度	時間	加速度	時間
时间凸域	(cm/s/s)	(秒)	(cm/s/s)	(秒)
最大値	336.87	88.93	250. 85	46.65
最小値	-336. 28	89. 20	-248.30	92. 12

表 1.2.2 仙台・塩釜地区 (ケース②) 再現地震波形の詳細

仙台・塩釜 特防区域	再現地震	波形 EW	再現地震波形 NS		
	加速度	時間	加速度	時間	
	(cm/s/s)	(秒)	(cm/s/s)	(秒)	
最大値	329.04	88.77	238. 41	89.09	
最小値	-361.34	89.07	-226.92	47.07	

表1.2.3 広野地区再現地震波形の詳細

	再現地震	波形 EW	再現地震波形 NS		
広野地区	加速度	時間	加速度	時間	
	(cm/s/s)	(秒)	(cm/s/s)	(秒)	
最大値	574.43	105. 48	456.99	107.55	
最小値	-561.89	106. 25	-522. 55	107. 73	

1.2.2 非線形ばねの特性の設定

剛基礎上の満液円筒形貯槽を質点系でモデル化し、非線形ばねにより質点に作用する水平 復元力と水平相対変位の関係を図示すれば図 1.2.1 に示すとおりである。

この図において、 $Q_0 \ge \Delta_0$ は弾性変形範囲での浮き上がり開始時の水平復元力・水平相対 変位、 $Q_e \ge \Delta_e$ は弾性限界浮き上がり時の水平復元力・水平相対変位、 $Q_p \ge \Delta_p$ は第1塑性 関節発生(静液圧下でタンクを円周にわたって一様に軸対称状態で持上げ隅角部アニュラ板 が全断面塑性化される(降伏耐力に達した)時点、図1.2.2に示す概念図参照)浮き上がり 時の水平復元力・水平相対変位、及び $Q_{pp} \ge \Delta_{pp}$ は第2塑性関節発生(アニュラ板が全断面 塑性化される時点、図1.2.3に示す概念図参照)浮き上がり時の水平復元力・水平相対変位 と定義されている。なお、消防法の終局耐震強度検討では、図1.2.1の太い点線を履歴曲線、 その線上の黒点(Q_p 、 Δ_p)を浮き上がり開始点としている。

この復元カモデルにおける各水平方向復元力範囲でのタンクの応答挙動のイメージは次 の通りとなっている。

図 1.2.1 質点系モデルの水平復元力・水平相対変位関係

図 1.2.2 第1 塑性関節発生浮き上がり状態

今回の検討では質点系モデルの各計算項目(諸元)を最も単純化して考え、解析で使用する弾塑性復元カモデルは図 1.2.1 に示す赤の一点鎖線とし、その線上の赤点(Q_y 、 Δ_y)を 浮き上がり開始点としている。この復元カ特性における初期剛性(第1剛性) K_1 は、液体 と側板の連成振動であるバルジング振動の剛性 K_b とする。この初期剛性は Q_y (= Q_p)ま でとし、 Q_y 以上における第2剛性 K_2 は、 $0 \sim 0.3 \times K_1$ と想定する。なお、本検討では安全 側の結果を与えるため、 $K_2=0$ の復元力モデルを使用する。

1.2.3 解析方法

上述した非線形ばね(弾塑性復元力特性)を有する質点系モデル(図 1.2.4 参照)を用い て時刻歴地震応答解析を実施し、タンクの弾塑性応答(水平方向の相対変位)から側板下端 の浮き上がり変位を算出した。本解析の弾塑性復元力特性は図 1.2.5 に示すような S 字非ル ープ型復元力モデルとした。

図 1.2.4 質点系モデル

図 1.2.5 S字非ループ型復元力線図(水平復元カー水平相対変位)

本解析での質点系モデル諸元の計算式を以下に示す(すべての単位は N と cm で記載す る)。ただし、質点系モデルの諸元計算シートの中、図面から取った入力データ(タンクの 諸元)について、mm 単位を使用しているが、モデルの諸元が加速度の単位(cm/s²)で表 されていることに合わせ、cm の単位を使用している。 (1) バルジング振動の固有周期 T_b

消防法では、円筒形貯槽--内容液連成バルジング振動の固有周期 T_bは、次式で与えられている。

$$T_{b} = \frac{2}{\lambda} \sqrt{\frac{W}{\pi E g t_{1/3}}} j \qquad (1.2.1)$$

$$\lambda = 0.067 (\frac{H}{D})^2 - 0.3 (\frac{H}{D}) + 0.46$$
 (1.2.2)

ここで、

T_b:円筒形貯槽--内容液連成バルジング振動の固有周期(s)

W:内溶液重量(N)

E: 側板材料のヤング率 (N/cm²)

t1/3:1/3液高さにおける側板厚(cm)

j:基礎地盤係数(四種地盤の直接基礎形式:1.1、左記以外:1.0)

g:重力加速度(=980.665 cm/s²)

(2) 質点有効重量 W1と等価水平ばね係数 Kb

図 1.2.4 に示す、液体・貯槽連成バルジング振動質点系モデルにおける質点有効重量と 等価水平ばね係数を用いて式(1.2.1)は以下のように書き表せる。

$$T_b = 2\pi \sqrt{\frac{W_1}{gK_b}} \qquad (\mathrm{s}) \qquad (1.2.3)$$

$$K_b = (\frac{2\pi}{T_b})^2 W_1 / g$$
 (N/cm) (1.2.4)

$$W_1 = f_{W1}W$$
 (N) (1.2.5)

$$f_{W1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$$
(1.2.6)

図 1.2.6 における質点重心高さは、次式で表される。

$$H_{1} = f_{H1}H \quad (cm) \quad (1.2.7)$$

$$f_{H1} = 0.0256(\frac{H}{D})^{4} - 0.1387(\frac{H}{D})^{3} + 0.216(\frac{H}{D})^{2} + 0.0207(\frac{H}{D}) + 0.3644 \quad (1.2.8)$$

(3) 隅角部アニュラ板の保有水平耐力 Qy

通常、特定屋外貯蔵タンクは、アンカーで固定されることなく基礎上に直接設置される。 したがって、内容液に満たされたタンク隅角部は、強い地震動の影響を受けると基礎面か ら浮き上がる現象を繰返して、当該隅角部内側のアニュラ板の隅肉溶接止端部がき裂・破損 にいたるおそれがあると考えられている。このようなき裂・破損にいたる浮き上がり限界

(降伏)耐力状態における浮き上がり抵抗力(円周単位幅当たりの鉛直方向抵抗力)は、 浮き上がり変形が円周方向に緩変化であるとして、次式で表されている。この場合、静液 圧下でタンクを円周にわたって一様に軸対称状態で持上げ隅角部アニュラ板が全塑性モー メントに達したときの浮き上がり抵抗力を用いている。

$$q_{y} = \frac{2}{3} t_{b} \sqrt{1.5\sigma_{y} p_{0}}$$
(1.2.9)

ここで、

qy:浮き上がり抵抗力(N/cm) σy:アニュラ板材料の降伏応力(N/cm²) P₀:静液圧(N/cm²) t_b:アニュラ板厚(cm)

図 1.2.7 に示すように、剛基礎上のタンクが片浮き上がりして、降伏耐力に達したとき、 有効液重量の重心における水平降伏抵抗力(保有水平耐力)は、次式で与えられる。この場 合、有効液重量の重心高さ Hgは式(1.2.7)で計算される H1の値を使用する。また、式 中に側板下端自重(付属品重量及び固定屋根の重量含み)による鉛直方向の抵抗力 V0を 考慮にいれているが、安全側条件での検討時には V0=0 としている。

$$Q_{y} = \frac{M_{y}}{H_{G}} = \frac{1}{H_{G}} \int_{0}^{2\pi} \frac{1}{4} (q_{y} + V_{0}) D^{2} (1 + \cos\phi) d\phi = \frac{\pi D^{2} (q_{y} + V_{0})}{2H_{G}} = \frac{\pi D^{2} (q_{y} + V_{0})}{2H_{1}}$$
(1.2.10)

ここで、

Q_y:水平降伏抵抗力(保有水平耐力)(N)
 V₀:側板下端自重による鉛直方向の抵抗力(N/cm)
 M_y:降伏抵抗モーメント(N.cm)
 H_G(=H₁):有効液重量重心高さ(cm)
 φ:角度(rad.)

図 1.2.7 タンク降伏浮き上がり状態

(4) 側板下端の最大浮き上がり変位 δ_{max}の計算方法

弾塑性応答解析結果から、質点系の最大弾塑性水平変位 Δ_{max} に含まれる塑性変位成分 ($\Delta_{max}-\Delta_y$)を抽出し、この塑性変位成分によって、図 1.2.8 に示すようにタンク側板下 端が片浮き上がりを生じたとすれば、最大浮き上がり変位 δ_{max} は近似的に次式で表わされ る。

$$\delta_{\max} = \frac{D}{H_g} (\Delta_{\max} - \Delta_y) \qquad (1.2.11)$$
$$\Delta_y = \frac{Q_y}{K_b} \qquad (1.2.12)$$

ここで、

Δmax:最大弹塑性水平変位(最大地震応答変位)(cm)

 Δ_{y} :バルジング振動の剛性で復元力が Q_{y} となるときの水平降伏変位(浮き上がり開始変位)(cm)

D:タンク直径 (cm)

H_g (=H₁): 有効液の重心高さ (cm)

図 1.2.8 質点系モデルによる浮き上がり変位の算出

1.2.4 解析結果

非線形ばね特性を有する質点系モデルを用いて、仙台・塩釜地区(ケース①とケース②) ^{*1}及び広野地区の再現地震波形(3 地表波×2 方向)が作用した場合について、検討対象の 屋外貯蔵タンク13基(仙台・塩釜地区:旧法タンク10基の、広野地区:新法タンク3基) の地震応答解析を実施した。

*1 仙台・塩釜地区については、各々タンク設置位置での地盤構成を考慮して、地震加速度波形 (ケース①、又はケース②)を適用した。

なお、減衰比変更及び保有水平耐力の算出には側板自重(側板の付属品及び固定屋根重量 も含む)を考慮した以下の条件で解析を実施した。

(1) 地下逸散減衰 *2

地下逸散減衰の影響を考慮に入れ、15%の減衰比を使用した。各地震加速度の応答スペクトル線図(減衰比15%)を以下に示す。

図 1.2.9 仙台・塩釜地区再現地震波形の 地震加速度の応答スペクトル(減衰比 15%)

加速度の応答スペクトル(減衰比15%)

*2 地下逸散減衰とは、構造物及び基礎の影響のない自由地表面での地震動に対して、構造物及び基礎が存在した場合に動的相互作用の影響で振動エネルギーの一部が地盤に逸散する効果の比率を数値化したものである。構造物及び基礎の影響のない自由地表面では、基盤での地震動が表層地盤によって増幅されるが、構造物や基礎が存在すると、それらと地盤との動的相互作用のために、実際に基礎に入力される地震動は、自由地盤面での地震動とは異なったものとなり、一般的に、構造物及び基礎が存在する地表面での地震動の大きさは、構造物及び基礎の影響のない自由地表面での地震動の大きさと比較すると小さくなる。
(2) 側板の自重による浮き上がり抵抗力の増加分を考慮

従来の質点系モデルの非線形ばね特性算出に使用している保有水平耐力 Q_y の計算においては、安全側評価のため、浮き上がり抵抗力として側板や屋根の自重が加味されていない。本検討ではより実情に近づけるため、側板、側板の付属品及び固定屋根の自重を考慮に入れた保有水平耐力 Q_y を使用した(式 1.2.10 参照)。また、 Q_y 算出には、実際に使用している材料の降伏応力値(ミルシート記載)を使用するのがより正確なものと考えられるが、今回は規格の降伏応力値を使用した安全側の条件としている。

質点系モデルによる対象タンクの浮き上がり解析結果を表 1.2.4 及び表 1.2.5 に示す。

仙台・塩釜地区再現地震波形 FW NS 貯蔵 公称 震災時 震災時 最大浮き 浮き上がり 最大浮き 浮き上がり タンク 内容物 上がり変位 貯蔵率 回数 上がり変位 回数 内径 容量 貯蔵量 No. (m) (KL)(KL)(%) (cm) 正負合計 (cm) 正負合計 1 RG 27.5 1542 1218 79 0.1 3 0 0 2 ガ ソリン 13.5 1570 1262 80 0 0 0 0 3 13 5 1780 1408 79 0 2 5 0 0 軽油 4 LSA 14.6 2272 2040 90 6.3 25 0.2 9 2689 5 灯油 17.1 3425 79 29 10 0 0 ナフサ 5540 5300 96 6 23.2 0.1 1 0 0 7 26 2 10930 8400 77 0 8 0 重油 6 0 8 37.8 17100 76 1.3 0 0 軽油 22450 1 9 ガ ソリン 53620 48200 90 58.1 1.6 1 0 0 10 原油 78.5 98060 86800 89 0 0 0 0

表1.2.4 仙台・塩釜地区の対象タンクの浮き上がり変位解析結果

注1 検討したタンクはすべて旧法タンク。

注2 地盤構成を考慮し、No.1 から No.8 までのタンクにケース②の地震加速度波形を使用。

注3 地盤構成を考慮し、No.9 と No.10 タンクにケース①の地震加速度波形を使用。

注4 側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)。

表 1.2.5	広野地区の対象タンクの浮き上がり	変位解析結果
---------	------------------	--------

広野地区再現地震波形					E	W	NS		
タンク No.	内容物	貯蔵 内径 (m)	公称 容量 (KL)	震災時 貯蔵量 (KL)	震災時 貯蔵率 (%)	最大浮き 上がり変位 (cm)	浮き上がり 回数 正負合計	最大浮き 上がり変位 (cm)	浮き上がり 回数 正負合計
1	軽油	15.5	2000	1477	74	0.5	6	0.2	10
2	燃料	61	50000	35955	72	0	0	0	0
3	燃料	61	50000	41654	83	4.5	4	0	0

注1:検討したタンクはすべて新法タンク。

注2: 側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)

本解析において、最大の浮き上がり変位は仙台・塩釜地区旧法タンク No.4 で発生し、6.3 cm であった。広野地区で最も浮上りが生じたのは新法タンク No.3 であり、浮き上がり量は 4.5cm であった。また、新法タンク No.2 と No.3 が同サイズであるにもかかわらず浮き上が

り量に差が生じている理由としては、震災時貯蔵量が異なることにより、両タンクのバルジ ング振動の固有周期(No.2: Tb=0.2682(s)、 No.3: Tb=0.2940(s))が違っているため である。新法タンク No.3 の固有周期は広野地区の再現地震波形加速度応答スペクトルのピ ークの周期(0.3063 秒)と近いため、より大きな応答となったと考えられる。

今回解析対象とした全てのタンクについて、関係団体を通じて地震の影響による浮き上が りを確認したが、関係各社から浮き上がりがなかったとの回答が得られており、タンクの浮 き上がりによって生じることが想定される接地(アース線)の破断や雨水浸入防止材の巻き 込みなどといった浮き上がったことを示す事実も確認されなかった。

本解析で示した浮き上がり程度ではこのような痕跡はつかないと考えられ、解析結果は現 実を説明できている。

なお、本解析においては、地下逸散減衰をパラメータとし、1.2.4(1)により15%とした 場合の東日本大震災での被害実態を説明できる結果が得られた。これについては、地下逸散 減衰効果以外の要因が関与している可能性もある。

以下に、旧法タンクで最も浮上りが生じた仙台・塩釜地区の旧法タンク No.4、新法タンク で最も浮き上がりが生じた広野地区の新法タンク No.3 について、応答変位等の詳細を示す。

今回の解析における仙台・塩釜地区の旧法タンク No.4 の応答変位、浮き上がり変位の時 刻歴及びばね復元力履歴図を図 1.2.11 から図 1.2.13 に示す。図 1.2.11 は EW 方向の地震波 形を作用させたときの、質点モデルの水平 E 方向への応答変位を+(プラス)、W 方向への 応答変位を-(マイナス)で示している。また、当該タンクにおいて、浮き上がりが始まる と判定する水平方向の変位(Δy)は±0.11 cm と算定され、図中に緑の線で表示している(こ の緑線を越えるときにタンクは浮き上がると判定)。

また、式 1.2.11 により、水平方向の応答変位からタンクの浮き上がり変位を算定した結果 を図 1.2.12 に、バネ復元力を算定した結果を図 1.2.13 に示す。この図においては、タンク W 側の浮き上がり量を+(プラス)、タンク E 側の浮き上がり量を-(マイナス)で示して いる(注:沈み込み量ではない)。

同様に、広野地区の新法タンク No.3 の応答変位、浮き上がり変位の時刻歴及びばね復元 力履歴図を図 1.2.14 から図 1.2.16 に示す。

図 1.2.11 仙台・塩釜地区の旧法タンク No.4 の質点系モデルの応答変位の時刻歴 (仙台・塩釜地区の再現地震波形:ケース②EW)

図 1.2.12 仙台・塩釜地区の旧法タンク No.4 の質点系モデルの浮き上がり変位の時刻歴 (仙台・塩釜地区の再現地震波形:ケース②EW)

図 1.2.13 仙台・塩釜地区の旧法タンク No.4 の質点系モデルのばね復元力履歴図 (仙台・塩釜地区の再現地震波形:ケース②EW)

図 1.2.14 広野地区の新法タンク No.3 の質点系モデルの応答変位の時刻歴 (広野地区の再現地震波形 EW)

図 1.2.15 広野地区の新法タンク No.3 の質点系モデルの浮き上がり変位の時刻歴 (広野地区の再現地震波形 EW)

図 1.2.16 広野地区の新法タンク No.3 の質点系モデルのばね復元力履歴図 (広野地区の再現地震波形 EW)

1.2.5 詳細解析タンクの選定

質点系モデルによる浮き上がり変位と回数の解析結果を踏まえ、浮き上がり変位の大きな 仙台・塩釜地区の旧法タンク No.4 及び広野地区の新法タンク No.3 について、FEM による 隅角部疲労損傷度評価及び側板座屈強度評価を行うタンクとして選定する。

1.3 2次元軸対称モデルによる隅角部の疲労損傷度評価解析

浮き上がり変位の大きな仙台・塩釜地区の旧法タンク No.4 及び広野地区の新法タンク No.3 について、浮き上がり時に隅角部に発生するひずみ量及び疲労損傷に対する強度を確認 するために、有限要素法を用いた静的応力解析を行った。

1.3.1 解析方法

円筒形タンクの浮き上がり側のみに着目し、図1.3.1(a)に示す軸対称荷重を受ける軸対称変形モデルに置き換え、軸対称問題として静的有限要素解析を行う。このとき、図1.3.1(b)に示す隅角部のみを解析範囲として、軸対称ソリッド要素で要素分割する。モデル化した側板上端には、軸方向の強制変位をかけ、側板下端の浮き上がり変位を制御する。底板およびアニュラ板と基礎との接触・離間を考慮するため、軸方向の圧縮のみに働くばね要素をつける。

図 1.3.1 解析方法のイメージ図

地震時の浮き上がり挙動は、図 1.3.1 に示すように側板上部に強制変位を与えて隅角部を 浮かせることで模擬する。解析は、以下の手順で行う。

- (1) 静液圧(底板に一様分布、側板に高さに応じて変化させる分布)及び自重(側板(付属 品を含む)+屋根(付属品を含む)の重量を考慮)を初期荷重条件とする静解析を行う。
- (2) 設定した繰返し回数1回目の浮き上がり変位 δ_1 になるまで強制変位をかける。
- (3) 強制変位を解除し、浮き上がり変位=0となるようにする。
- (4) 設定した繰返し回数2回目の浮き上がり変位 δ2になるまで強制変位をかける。
- (5) 以後、(3)と(4)を繰返す(繰り返し回数N回目まで)。

1.3.2 解析モデル

1.3.2.1 仙台・塩釜地区の旧法タンク No.4 の解析モデル

仙台・塩釜地区の旧法タンク No.4 (公称容量 2272 KL)の隅角部を対象として解析モデルを作成した。タンクの主な寸法と諸元を表 1.3.1 に示す。

仙台・塩釜地区 旧法タンクNo.4								
許可容量	2272 KL							
タンク内径	14630 mm	1段	9 mm	SS41	5段	6 mm	SS41	
タンク高さ	14632 mm	2段	8 mm	SS41	6段	6 mm	SS41	
液面高さ	12123 mm	3段	7 mm	SS41	7段	6 mm	SS41	
液比重	0.85	4段	6 mm	SS41	8段	6 mm	SS41	
屋根形式	固定屋根	アニュラ板の板厚と材料 9.76 mm SS41				SS41		
隅角部隅肉溶接	W1=W2=	W1=W2=W3=W4 9 mm						

表1.3.1 解析対象タンクの主な寸法と諸元

(1) モデル形状

隅角部モデル化範囲を図 1.3.2 (a) 、隅角部の一部の要素分割を図 1.3.2 (b) に示す。 図 1.3.2 (a) の左端 A 端部の半径方向変位を拘束し、同図上端 B 端は強制変位を与える位 置とした。隅角部溶接部近傍のメッシュ分割サイズは約 2mm とした。

なお、図に示した寸法はモデル上のA端部とB端部までの長さである。

地盤との接触部には非線形ばねを設置し、圧縮方向に 294N/cm³の力が生じるように設 定した。

図 1.3.2 隅角部のモデル

(2) 解析条件

1.3.1で示した解析方法に従い、以下の条件で解析を行った。

荷重:B端部(円周上)に側板+屋根の全重量(=510.9 kN)を負荷する。 液圧:アニュラ板に一様分布の静液圧(=0.101 N/mm²)を作用させた。 側板には高さに応じて液圧(静液圧)を作用させた。 強制変位:表1.3.2に示す各繰返しサイクルの浮き上がり変位を強制的に付与する。

繰返し回数:片側の浮き上がり回数の4回とする。

サイクル No	浮き上がり変位(mm)
1	8.5
2	63.2
3	17.7
4	10.1

表1.3.2 繰返しサイクルにおける浮き上がり変位

(3) 材料モデル

1段から8段の側板と底板の材料はSS41であり、材料の物性値は表1.3.3に示すとおりで ある。また、塑性後の応力-ひずみ特性は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用した(図1.3.3参照)。硬化則 には移動硬化則を使用した。

表1.3.3 材料の物性値

材料の物性値	SS41	
降伏強度(N/mm ²)	Sy	245
引張強度(N/mm ²)	Su	400
ポアソン比	ν	0. 3
ヤング率 (N/mm ²)	E	205939.7

図 1.3.3 弾塑性解析入力用の応力-ひずみカーブ

1.3.2.2 広野地区の新法タンク No.3 の解析モデル

広野地区の新法タンク No.3 (公称容量 50000 KL)の隅角部を対象として解析モデルを作 成した。タンクの主な寸法と諸元を表 1.3.4 に示す。

		広野地	⊠ 新潟	去タング	クNo.3						
許可容量	50000 KL		側板の板厚と材料								
タンク内径	61000 mm	1段	1段 26 mm SPV50 6段 10 mm SPV						SPV50		
タンク高さ	21000 mm	2段	23	mm	SPV50	7段		10	mm	ç	SPV50
液面高さ	14562.35 mm	3段	20	mm	SPV50	8段		10	mm		SS41
液比重	0.95	4段	17	mm	SPV50	9段		10	mm		SS41
屋田町十	シンク゛ルテ゛ッキ	5段	5段 14 mm SPV50 —				_	-		_	
崖根形式	浮き屋根	アニ	アニュラ板の板厚と材料					18 mm		ç	SPV50
	底板0	底板の板厚と材料 12 mm			SS41						
隅角部隅肉溶接部脚長(mm) W1 12 mm W2 14 mm W3 10 mm					W4		10 mm				

表1.3.4 解析対象タンクの主な寸法と諸元

(1) モデル形状

隅角部モデル化範囲を図 1.3.4 (a)、隅角部の一部の要素分割を図 1.3.4 (b) に示す。 図 1.3.4 (a)の左端 A 端部の半径方向変位を拘束し、同図上端 B 端は強制変位を与える位 置とした。隅角部溶接部近傍のメッシュ分割サイズは約 2mm とした。

なお、図に示した寸法はモデル上のA端部とB端部までの長さである。

地盤との接触部には非線形ばねを設置し、圧縮方向に 294N/cm³の力が生じるように設 定した。

図 1.3.4 隅角部のモデル

(2) 解析条件

1.3.1 で示した解析方法に従い、以下の条件で解析を行った。

荷重:B端部(円周上)に側板+屋根の全重量(=11.09E+03 kN)を負荷する。 液圧:アニュラ板に一様分布の静液圧(=0.14 N/mm²)を作用させた。

側板には高さに応じて液圧(静液圧)を作用させた。 強制変位:表1.3.5に示す各繰返しサイクルの浮き上がり変位を強制的付与する。 繰返しサイクル:片側の浮き上がり回数の2回とする。

表1.3.5 繰返しサイクルにおける浮き上がり変位

サイクルNo	浮き上がり変位(mm)
1	45.0
2	25.5

(3) 材料モデル

1 段から 7 段までの側板の材料は SPV50、8 段と 9 段の側板の材料は SS41、アニュラ 板の材料は SPV50、底板の材料は SS41 であり、それぞれの材料の物性値は表 1.3.6 に示 すとおりである。また、塑性後の応力-ひずみ特性は 2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2 に提示される方法で作成したものを使用した(図 1.3.5 参照)。硬化則には移動硬化則を使用した。

表1.3.6 材料の物性値

材料の物性値		SPV50	SS41
降伏強度(N/mm ²)	Sy	490	245
引張強度(N/mm²)	Su	610	400
ポアソン比	ν	0. 3	0. 3
ヤング率(N/mm ²)	E	205939.7	205939.7

図1.3.5 弾塑性解析入力用の応カーひずみカーブ

1.3.2 解析結果

1.3.2.1 仙台・塩釜地区の旧法タンクNo.4の解析結果

各サイクルの参照点の浮き上がり変位とB端部に強制変位をかけた時の算定された軸方向の抵抗力(B端部の断面上節点力の合計値)の数値を表1.3.7に示す。また、その関係を線図で表示すると図1.3.6に示すとおりである。(変位出力参照点の位置:図1.3.2(b)参照)

サイクル	浮き上がり	抵抗力	浮き上がり	変位(mm)
No.	位置	(N)	参照点	B端
	開始	0. 00E+00	-0. 54	-0. 74
1	最高	2. 17E+06	8. 71	8. 50
	最低	1. 49E+06	0. 16	0.00
2	最高	3. 24E+06	63.76	63. 20
2	最低	-3.81E+05	0. 34	0.00
2	最高	2. 01E+05	18. 11	17. 70
3	最低	-3.81E+05	0. 34	0.00
Λ	最高	1. 61E+06	10. 47	10. 10
4	最低	-3. 81E+05	0. 34	0.00

表1.3.7 浮き上がり変位と抵抗力の関係

図1.3.6 浮き上がり変位とB端部の算定された抵抗力の関係

隅角部隅肉溶接部近傍の注目点(A点、B点とC点、3つの点の位置を図1.3.7に示す)に 発生した全ひずみと全ひずみ振幅を表1.3.8に示す。A点は隅肉溶接部止端部で、B点はA点 から2mm内側のアニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最も側 板に近い位置)であり、両点の半径方向全ひずみをerとする。C点は側板内面の止端部であ り、その軸方向ひずみをεzとする。また、全ひずみ振幅はΔεr.等とする。4サイクルにおける各点の浮き上がり変位とひずみとの関係線図を、図1.3.8から図1.3.10に示す。

# / / #	浮き上がり	7	ひずみ(%)		ひずみ振幅(%)			
リイクル		A点	B点	C点	A点	B点	C点	
INU.		E.r	E.r	E .z	ΔEr	ΔEr	Δε. _z	
	開始	0.04	0. 02	0. 05				
1	最高	0. 20	0.10	0.16	0. 16	0. 08	0. 11	
	最低	0.07	0. 02	0.06				
0	最高	0.71	0. 42	1.08	0. 64	0. 32	0 66	
2	最低	0.08	0.10	0. 42			0.00	
2	最高	0. 29	0.24	0.66	0.22	0.14	0.24	
3	最低	0.08	0.10	0. 42	0.22	0.14	0. 24	
_	最高	0. 22	0.19	0. 58	0.15	0.00	0.16	
4	最低	0.08	0. 10	0. 42	0.15	0.09	U. 16	

表1.3.8 各繰返しサイクルにおける隅角部隅肉溶接部のひずみとひずみ振幅

図1.3.7 ひずみ評価位置

図1.3.8 浮き上がり変位とA点に発生した半径方向ひずみの関係

図1.3.9 浮き上がり変位とB点に発生した半径方向ひずみの関係

図1.3.10 浮き上がり変位とC点に発生した軸方向ひずみの関係

浮き上がり変位が6.3 cmとなるサイクル2回目の浮き上がり時における隅角部の変形及 び塑性ひずみ分布図を図1.3.11から図1.3.13に示す。

図1.3.13に示す軸方向のひずみ成分の分布図より、浮き上がり挙動によって隅角部が曲げ られ、隅角部の溶接部の止端部(C点)に最も大きなひずみが発生することを確認できた。 この表面上のひずみは局部的なものであり、全断面での平均値は小さいと推察される。

赤形位家,1	
L	

図1.3.11 変形図 (サイクル2回目、最大浮き上がり変位:6.3cm)

図1.3.12 隅角部の半径方向ひずみ成分の分布図 (サイクル2回目、最大浮き上がり変位:6.3cm)

図1.3.13 隅角部の軸方向ひずみ成分の分布図 (サイクル2回目、最大浮き上がり変位:6.3cm)

1.3.2.1 広野地区の新法タンクNo.3の解析結果

各サイクルの参照点の浮き上がり変位とB端部に強制変位をかけた時の算定された軸方 向の抵抗力(B端部の断面上節点力の合計値)の数値を表1.3.9に示す。また、その関係を線 図で表示すると図1.3.14に示すとおりである(変位出力参照点の位置:図1.3.4(b)参照)。

サイクル	浮き上がり	抵抗力	浮き上がり	変位(mm)
No.	位置	(N)	参照点	B端
	開始	0. 0E+00	-1.8	-2.2
1	最高	3. 5E+07	45.4	45.0
	最低	0. 0E+00	-1.8	-2.2
0	最高	3. 2E+07	25. 9	25.5
Z	最低	0. 0E+00	-1.8	-2.2

表1.3.9 浮き上がり変位と抵抗力の関係

図1.3.14 浮き上がり変位とB端部の算定された抵抗力の関係

隅角部隅肉溶接部近傍の注目点(A点、B点とC点、3つの点の位置を図1.3.15に示す)に 発生した全ひずみと全ひずみ振幅を表1.3.10に示す。A点は隅肉溶接部止端部で、B点はA 点から2 mm内側のアニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最も 側板に近い位置)であり、両点の半径方向全ひずみを ϵ_r とする。C点は側板内面の止端部で あり、その軸方向ひずみを ϵ_z とする。また、全ひずみ振幅は $\Delta \epsilon_r$ 等とする。2サイクルにお ける各点の浮き上がり変位とひずみとの関係線図を図1.3.16から図1.3.18に示す。

サイクル No.	浮き上がり 位置	ひずみ(%)			ひずみ振幅(%)		
		A点	B点	C点	A点	B点	C点
		E.r	E .r	\mathcal{E}_{z}	ΔEr	ΔEr	Δε. _z
	開始	0.15	0.11	0. 09	0. 53	0. 24	0. 14
1	最高	0.68	0.35	0. 23			
	最低	0.38	0. 12	0.09			
2	最高	0.60	0. 28	0. 18	0.00	0 16	0.00
	最低	0.37	0. 12	0.09	0.22	0.10	0.09

表1.3.10 各繰返しサイクルにおける隅角部隅肉溶接部のひずみとひずみ振幅

図1.3.15 ひずみ評価位置

図1.3.16 浮き上がり変位とA点に発生した半径方向ひずみの関係

図1.3.17 浮き上がり変位とB点に発生した半径方向ひずみの関係

図1.3.18 浮き上がり変位とC点に発生した軸方向ひずみの関係

浮き上がり変位が4.5 cmとなるサイクル1回目の浮き上がり時における隅角部の変形及 び塑性ひずみ分布図を図1.3.19及び図1.3.20に示す。

図1.3.20に示す半径方向のひずみ成分の分布図より、浮き上がり挙動によって、隅角部が 曲げられ、隅角部の溶接部の止端部(A点)に最も大きなひずみが発生することを確認でき た。この表面上のひずみは局部的なものであり、全断面での平均値は小さいと推察される。

変形倍率:1			
	1		

図1.3.19 浮き上がり時の隅角部の変形図 (サイクル1回目、最大浮き上がり変位:4.5cm)

図1.3.20 隅角部の半径方向ひずみ成分分布図 (サイクル1回目、最大浮き上がり変位:4.5cm)

1.3.3 低サイクル疲労評価

地震時の浮き上がりに対する隅角部挙動は、低サイクル疲労である。飯田 ※は、溶接構造用鋼、高張力鋼、一般構造用鋼などの 10 種の鋼をひずみ制御疲労試験を実施し、き裂発 生寿命 Nc をひずみ振幅 Δc に対して整理し、次式で最適疲労曲線を表した。

$$\frac{\Delta\varepsilon}{2} = 0.415 N_C^{-0.606} + 0.00412 N_C^{-0.115}$$
(1.3.1)

上式を図示すると図 1.3.21 になる。

図 1.3.21 飯田の最適疲労曲線

マイナー則では、次式の疲労損傷度 D=1.0 のときを疲労寿命としており、式(1.3.2) により隅角部の疲労損傷度の評価を実施した。

$$D = \frac{n(\Delta \varepsilon_1)}{N_c(\Delta \varepsilon_1)} + \frac{n(\Delta \varepsilon_2)}{N_c(\Delta \varepsilon_2)} + \frac{n(\Delta \varepsilon_3)}{N_c(\Delta \varepsilon_3)} + \dots < 1.0$$
(1.3.2)

ただし、D:疲労損傷度

 $\Delta \varepsilon_i$: ひずみ振幅 $n(\Delta \varepsilon_i)$: ひずみ振幅 $\Delta \varepsilon_i$ の繰返し回数 $N_c(\Delta \varepsilon_i)$: ひずみ振幅 $\Delta \varepsilon_i$ の疲労寿命

※ 文献: 日本材料学会編、疲労設計便覧、養賢堂、pp.135-136、1995年。

1.3.3.1 仙台・塩釜地区の旧法タンク№4の疲労度損傷評価

仙台・塩釜地区の旧法タンク No.4 の浮き上がりの回数は最大の浮上り変位が算出された 側の4回を使用し、この条件で疲労損傷度 Dを算定した。

表 1.3.8 に示した隅角部溶接止端部の A と B 点に発生した板表面上の全ひずみ振幅に対 する、飯田の最適疲労曲線式(1.3.1)で求めた疲労寿命 Nc を表 1.3.11 に示す。同表より、 最大浮き上がり変位 6.3 cm となる再現地震波形に対し、当該タンクは隅角部の疲労損傷に 全く問題はない結果(疲労損傷度 D <1.0)となった。

サイクル	浮き上がり	A 点			B 点		
No No	変位	ひずみ振幅	繰り返し	疲労損傷度	ひずみ振幅	繰り返し	疲労損傷度
1101	${\cal S}_{ii}$ (mm)	Δε _r (%)	回数 Nc	D	Δε. _r . (%)	回数 Nc	D
1	24.4	0.16	500000	0.000002	0.11	500000	0. 000002
2	33.8	0.64	8365	0.000120	0.66	7722	0. 000130
3	38.8	0. 22	403500	0.000002	0. 24	259100	0. 000004
4	63.2	0. 15	500000	0. 000002	0.16	500000	0. 000002
			合計	0.000126		合計	0. 000137

表 1.3.11 仙台・塩釜地区の旧法タンク No.4の隅角部の疲労損傷度評価結果

表 1.3.11 に示す許容繰り返し回数を用いて、 以下のように A 点と B 点の疲労.損傷度 D (合計)を計算した。

A 点:

$$D = \sum_{i=1}^{4} \frac{1}{Nci} = \frac{1}{500000} + \frac{1}{8365} + \frac{1}{403500} + \frac{1}{500000} = 0.000126$$

B 点:

$$D = \sum_{i=1}^{4} \frac{1}{Nci} = \frac{1}{500000} + \frac{1}{7722} + \frac{1}{259100} + \frac{1}{500000} = 0.000137$$

1.3.3.2 広野地区の新法タンク No.3 の疲労度損傷評価

広野地区の新法タンク No.3 の浮き上がりの回数は最大の浮上り変位が算出された側の2 回を使用し、この条件で疲労損傷度 D を算定した。

表 1.3.10 に示した A と B 点に発生した板表面上の全ひずみ振幅に対する、飯田の最適疲 労曲線式(1.3.1)で求めた疲労寿命 *Nc* を表 1.3.12 に示す。同表より、最大浮き上がり変 位 4.5 cm となる再現地震波形に対し、当該タンクは隅角部の疲労損傷に全く問題はない結 果(疲労損傷度 D <1.0)となった。

表 1.3.12 広野地区の新法タンク No.3 の隅角部の疲労損傷度評価結果

サイクル	浮き上がり	A 点		B 点			
No	変位	ひずみ振幅	繰り返し	疲労損傷度	ひずみ振幅	繰り返し	疲労損傷度
INU.	${\cal S}_{i,i}$ (mm)	Δε.r. (%)	回数 Nc	D	Δε. _r . (%)	回数 Nc	D
1	45.0	0. 53	13989	0.000071	0. 24	259100	0. 000004
2	25.5	0. 22	403500	0.000002	0.16	500000	0. 000002
			合計	0. 000074		合計	0. 000006

表 1.3.12 に示す許容繰り返し回数を用いて、以下のように A 点と B 点の疲労.損傷度 D (合計)を計算した。

A 点:

$$D = \sum_{i=1}^{2} \frac{1}{Nci} = \frac{1}{13989} + \frac{1}{403500} = 0.000074$$

B 点:

$$D = \sum_{i=1}^{2} \frac{1}{Nci} = \frac{1}{259100} + \frac{1}{500000} = 0.000006$$

1.4 3次元シェルモデルによる側板の座屈強度評価解析

質点系非線形ばねモデルの浮き上がり解析結果によって、以下の浮き上がりが発生した2 基のタンクを選定し、3次元シェル要素モデルによる弾性大変形解析を実施し、最大浮き上 がり変位になるときの沈み込み側の側板下端に発生した最大軸方向圧縮応力を求めた(通常 は側板の最下端付近が最大となる)。側板の限界座屈応力との比較により側板の地震時の座 屈強度評価を行った。

- (1) 仙台・塩釜地区の旧法タンク No.4 (2272 KL)
 (算定された最大浮き上がり変位: 6.3 cm)
- (2) 広野地区の新法タンク No.3 (50000 KL)(算定された最大浮き上がり変位: 4.5 cm)

1.4.1 動液圧の算定

3次元シェル要素モデルによる浮き上がり挙動を再現するため、荷重とする側板と底板に 作用する動液圧の算定が必要となる。動液圧の入力地震動は、地震動レベル1の設計水平震 度Kh1を基準として、消防法により規定された以下の算出式で求めた動液圧を静的に作用さ せた。算出した動液圧は、1/2モデルの対称境界面を最大/最小として、側板と底板の周方 向に余弦分布させてモデルに入力した。

水平方向地震動による側板部に作用する動液圧は、次式で表される。

$$Ph = Ph_0 + Ph_1 \tag{1.4.1}$$

Phは、底部からの高さZにおける側板部に作用する動液圧(MPa)である。 Pho及び Ph1は 次式のとおり。

$$Ph_{0} = \frac{9.80665\,\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{0i} \left(\frac{Z}{H}\right)^{i} \right\} Kh_{1} / \nu_{3}$$
(1.4.2)

$$Ph_{1} = \frac{9.80665\,\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{1i} \left(\frac{Z}{H}\right)^{i} \right\} (1 - \frac{1}{\nu_{3}}) Kh_{1}$$
(1.4.3)

ここで、ρは貯蔵液の比重、Hは最高液面高さ(m)、ν₃は特定屋外貯蔵タンクの固有 周期を考慮した応答倍率(-)、C_{0i}と C_{1i}は特定屋外貯蔵タンクの最高液面高さと直径と の比により、求めた係数である(参考資料4参照)。

算定された2基の対象タンクの動液圧を参考資料4に示す。

1.4.2 解析ステップ

3次元シェル要素モデルによる浮き上がり解析ステップを、次のように2段階に分けて実施した。

(1) ステップ1

通常時荷重 (静液圧)

(2) ステップ2

地震時荷重(静液圧+動液圧)

静液圧負荷状態から、動液圧を段階的に付与した。

質点系モデルに算定された最大浮き上がり変位となったときに側板に発生する応力を確認した。

1.4.3 解析モデル

タンクの浮き上がり側及び沈み込み側に着目するため、2基のタンクの3次元シェルモデ ルを作成した。タンク形状は1/2部分であるが、その切断面には対称条件を設定した。底板 は形状として全面作成しているが、タンク半径の70%の位置からの底板の一部を剛体要素で モデル化し、中心の参照点と連動させている。

タンク側板上端のトップアングルのみモデル上には含まれている。上端拘束条件はフリー とした。底板およびアニュラ板と基礎との接触・離間を考慮するため、軸方向の圧縮のみに 294N/cm³の力が生じるようなばね要素を設定した。

1.4.3.1 仙台・塩釜地区の旧法タンクNo.4の解析モデル

仙台・塩釜地区の旧法タンクNo.4の解析モデルを図1.4.1に示す。このタンクの主な寸法 と諸元は表1.3.1に示しているとおりである。

図1.4.1 仙台・塩釜地区の旧法タンクNo.4の解析モデル

側板と付属物の重量分(合計:511 kN)は側板に均等に分布させて調整(側板の質量密度を増加)した。アニュラ板と底板の自重もモデル上考慮した。

全部の材料の物性値は表1.3.3に示すとおりである。

1.4.3.2 広野地区の新法タンクNo.3の解析モデル

広野地区の新法タンクNo.3の解析モデルを図1.4.2に示す。このタンクの主な寸法と諸元 は表1.3.4に示すとおりである。

図1.4.2 広野地区の新法タンクNo.3の3次元シェルモデル

側板と付属物の重量分(合計:11.09E+03 kN)は側板に均等に分布させて調整(側板の 質量密度を増加)した。アニュラ板と底板の自重もモデル上考慮した。

全部の材料の物性値は表1.3.6に示すとおりである。

1.4.4 解析結果

1.4.4.1 仙台・塩釜地区の旧法タンクNo.4の解析結果

以下に仙台・塩釜地区の旧法タンクNo.4の最大浮き上がり変位6.3 cmまでの解析結果を示す。

設計震度Kh₁をパラメータとして、動液圧を0から55.3%まで増加させた時の側板最下端 の浮き上がり変位(軸方向)浮き上がり範囲(半径方向)及び浮き上がり角度(円周方向) を表1.4.1に示す。側板下端部の円周方向角度に対応する軸方向変位を図1.4.3に示す。最大 浮き上がり変位が6.3 cmのとき、逆側の最大沈み込み変位は僅か0.2 cmとなった。

側板最下端に発生した軸方向応力(沈み込み側)を表1.4.2に示す。沈み込み側の軸方向 膜応力と側板の高さの関係を図1.4.4に示す。沈み込み側の円周方向膜応力と側板の高さの 関係を図1.4.5に示す。

最大浮き上がり変位6.3 cmに達した時のタンクモデルの変形図を図1.4.6、浮き上がり変 位、浮き上がり範囲及び浮き上がり角度を示す平面上の分布図を図1.4.7、相当応力の分布 図を図1.4.8に示す。

動液圧	浮き上がり変位	浮き上がり範囲	浮き上がり角度
(%)	(mm)	(mm)	(度)
0	-0.5	-	_
10	-0.2	-	-
20	0. 1	130. 7	69. 2
30	4.7	348. 1	149. 2
40	19.0	546.9	182. 6
50	45.4	742. 7	202. 7
55.3	63.2	844. 6	210. 1

表1.4.1 側板最下端の浮き上がり変位及び浮き上がり範囲

図1.4.3 側板下端部の円周方向の角度に対応する軸方向変位

	浮き上がり変位 (mm)	側板最下端 軸方向応力 (N/mm²)沈み込み側			
動液圧 (%)					
(707	(1007)	膜応力	内表面応力		
0	-0.5	-1.3	60. 4		
10	-0. 2	-3.0	56.4		
20	0. 1	-4.7	52.4		
30	4. 7	-6. 1	49.5		
40	19.0	-6.9	48. 2		
50	45.4	-7.4	47.0		
55.3	63. 2	-7.8	45. 7		

表1.4.2 側板最下端に発生した軸方向応力

(注)動液圧率(100%)のとき

最大動液圧: Ph=0.02 N/mm²

最大動液圧と最大静液圧の比:Ph/Po=0.2

図1.4.4 側板に発生した軸方向の膜応力と側板高さの関係

図1.4.5 側板に発生した円周方向の膜応力と側板高さの関係

図1.4.6 変形図(最大浮き上がり変位:6.3cm)

図1.4.7 浮き上がり変位の分布図(最大浮き上がり変位: 6.3cm)

図1.4.8 相当応力の分布図(最大浮き上がり変位:6.3cm)

1.4.4.2 広野地区の新法タンクNo.3の解析結果

以下に広野地区の新法タンクNo.3の最大浮き上がり変位4.6 cmまでの解析結果を示す。 設計震度Kh1をパラメータとして、動液圧を0から119 %まで増加させた時の側板最下端 の浮き上がり変位(軸方向)、浮き上がり範囲(半径方向)及び浮き上がり角度(円周方向) を表1.4.3に示す。側板下端部の円周方向角度に対応する軸方向変位を図1.4.9に示す。最大 浮き上がり変位が4.6 cmのとき、逆側の最大沈み込み変位は僅か0.3 cmとなった。

側板最下端に発生した軸方向応力(沈み込み側)を表1.4.4に示す。沈み込み側の軸方向 膜応力と側板の高さの関係を図1.4.10に示す。沈み込み側の円周方向膜応力と側板の高さの 関係を図1.4.11に示す。

最大浮き上がり変位4.6 cmに達した時のタンクモデルの変形図を図1.4.12、浮き上がり変 位、浮き上がり範囲及び浮き上がり角度を示す平面上の分布図を図1.4.13、相当応力の分布 図を図1.4.14に示す。

動液圧 (%)	浮き上がり変位 (mm)	浮き上がり範囲 (mm)	浮き上がり角度 (度)
0	-1.3	-	-
10	-1.2	-	-
20	-1.0	-	-
30	-0.9	_	_
40	-0.7	_	-
50	-0.5	_	_
60	-0.3	-	-
70	-0.2	-	-
80	0.0	318.6	15. 1
90	0.5	397.0	62. 2
100	4.8	610. 8	83. 8
110	18.0	913.0	99. 2
112.3	22.9	982.5	101.9
115.6	32.6	1081.0	105.6
119.0	46.0	1220. 7	108. 7

表1.4.3 側板最下端の浮き上がり変位及び浮き上がり範囲

(注)動液圧率(100%)のとき

最大動液圧: Ph=0.055 N/mm²

最大動液圧と最大静液圧の比: Ph/Po=0.4

図1.4.9 側板下端部の円周方向の角度に対応する軸方向変位

制法厅	浮き上がり変位	側板最下端 軸方向応力 (N/mm ²)		
助液庄 (₡)		沈み込み側		
(70)	(11017)	膜応力	内表面応力	
0	-1.3	-2.2	113. 0	
10	-1.2	-2.6	120. 2	
20	-1.0	-3.1	127.6	
30	-0.9	-3.5	134. 9	
40	-0.7	-3.9	142. 2	
50	-0.5	-4.3	149. 6	
60	-0.3	-4.7	157.0	
70	-0.2	-5.1	164. 5	
80	0.0	-5.5	171.9	
90	0.5	-5.9	179.4	
100	4.8	-6.3	186. 9	
110	18.0	-6.7	194. 4	
112. 3	22.9	-6.8	196. 1	
115.6	32.6	-7.0	198. 7	
119.0	46.0	-7.1	201.2	

表1.4.4 側板最下端に発生した軸方向応力

(注)動液圧率(100%)のとき

最大動液圧: Ph=0.055 N/mm²

最大動液圧と最大静液圧の比:Ph/P₀=0.4

図1.4.10 側板に発生した軸方向の膜応力(圧縮応力)と 側板高さの関係

図1.4.11 側板に発生した円周方向の膜応力(フープ応力)と 側板高さの関係

図1.4.13 浮き上がり変位の分布図(最大浮き上がり変位:4.6cm)

図1.4.14 相当応力の分布図(最大浮き上がり変位:4.6cm)

1.4.5 座屈強度評価

座屈強度評価においては、以下のような手順で軸圧縮限界座屈応力を評価するが、必要に 応じて内圧を考慮した評価を行う。

一様軸圧縮を受ける内圧のない円筒殻の弾性軸圧縮限界座屈応力は、次式で表される。

$$\sigma_{cr} = 0.4E \frac{t_s}{D} \tag{1.4.4}$$

ここで、

σ_{cr}:一様軸圧縮を受ける円筒殻の弾性軸圧縮限界座屈応力(N/mm²)

E: 側板のヤング率 (N/mm²)

ts: 側板最下端の板厚(mm)

運転時満液状態にある平底円筒形石油貯槽においては、地震時動液圧負荷側(図1.4.8、 図1.4.14の沈み込み側)の最下段側板の円周方向膜応力が、降伏応力の0.3倍を上回ってい る場合、ダイヤモンド型座屈の評価に加え、象の脚型座屈の評価が要求されている。

ここでは容器構造設計指針において、円周方向膜応力/降伏応力比が0.3以上の場合の限 界座屈応力値に着目し、内圧下における側板の象の脚型座屈限界応力を以下に示す。

$$\frac{\sigma_{\phi}}{\sigma_{y}} \ge 0.3 \quad \text{かつ,} \quad \frac{D}{t_{s}} \ge 1.614(\frac{E}{\sigma_{y}}) \quad \text{0場合}$$

$$\sigma_{cr} = 0.96E \frac{t_{s}}{D} (1 - \frac{\sigma_{\phi}}{\sigma_{y}}) \quad (1.4.5)$$

1.4.5.1 仙台・塩釜地区の旧法タンク No.4 の座屈強度評価

当該タンクの材料のヤング率 E=205940 N/mm²、側板厚 t_s=9 mm、内径 D=14630 mm を代入すると、軸圧縮限界座屈応力 σ_{cr} =50.7 N/mm²となる。

当該タンクの側板に発生した最大円周方向膜応力(93.7 N/mm²)は、降伏応力(245 N/mm²)との比(0.38)が 0.3 以上であることが確認されたので、象の脚型座屈の評価は 必要となる。式(1.4.5)で計算された象の脚型座屈限界応力は 75.0 N/mm²となる。

以上により、計算された仙台・塩釜特防地区旧法タンク No.4 の限界座屈応力は、50.7 N/mm²(ダイヤモンド型座屈)、75.0 N/mm²(象の脚型座屈)となり、解析結果から得られた軸圧縮応力の最大値の 7.8N/mm²よりも大きな値となっている。そのため、当該区域の再現地震波形に対して、仙台・塩釜地区の旧法タンク No.4 の最大浮き上がり変位が 6.3 cm 発生した場合、側板の座屈により損傷は生じないという解析結果が得られた。

1.4.5.2 広野地区の新法タンク No.3 の座屈強度評価

当該タンクの材料のヤング率 E=205940 N/mm²、側板厚 ts=26 mm、直径 D=61000 mm を代入すると、軸圧縮限界座屈応力 ocr = 35.1 N/mm²となる。

当該タンクの側板に発生した最大円周方向膜応力(235 N/mm²)は、降伏応力(490 N/mm²)との比(0.48)が 0.3 以上であることが確認されたので、象の脚座屈の評価は必要となる。式(1.4.5)で計算された象の脚座屈限界応力は 43.9 N/mm²となる。

以上により、計算された広野特防地区新法タンク No.3 の限界座屈応力は、35.1 N/mm² (ダイヤモンド型座屈)、43.9 N/mm²(象の脚型座屈)となり、解析結果から得られた軸 圧縮応力の最大値の 7.1N/mm²よりも大きな値となっている。そのため、当該区域の再現 地震波形に対して、広野地区の新法タンク No.3 の最大浮き上がり変位が 4.5 cm 発生した 場合、側板の座屈により損傷は生じないという解析結果が得られた。
1.5 まとめ

屋外貯蔵タンクの耐震安全性の解析手法の検証を行うため、東北地方太平洋沖地震の再現 波形に対するタンク本体の応答を確認した。

最大の浮き上がり変位は仙台・塩釜地区の旧法タンク No.4 の 6.3 cm であり、これ以外 のタンクの浮き上がり変位は非常に小さいものであった。

今回解析対象とした全てのタンクについて、関係団体を通じて地震の影響による浮き上が りを確認したが、関係各社から浮き上がりがなかったとの回答が得られており、タンクの浮 き上がりによって生じることが想定される接地(アース線)の破断や雨水浸入防止材の巻き 込みなどにつながるような浮き上がりを示す痕跡も確認されなかった。本解析で示した浮き 上がり程度ではこのような痕跡はつかないと考えられるため、解析結果は現実を説明できて いる。

なお、本解析においては、地下逸散減衰をパラメータとし、1.2.4、(1)により15%とした が、東日本大震災での被害実態を説明できる結果が得られた。ただし、これについては、地 下逸散減衰効果以外の要因が関与している可能性もある。

解析では、質点系モデルにて浮き上がり変位が大きい結果が生じたタンク(仙台・塩釜地 区の旧法タンク No.4 (2272 KL)及び広野地区の新法タンク No.3 (50000 KL)を特定し、 その最大浮き上がり時のタンク隅角部の疲労強度及び沈み込み側のタンク側板の座屈強度 について有限要素法解析によって評価した。この2 基のタンクのそれぞれの最大浮き上が り変位が生じるときの隅角部の疲労強度において、疲労損傷度Dは1.0以下という結果が、 また、側板の座屈強度の解析結果において、軸圧縮応力が限界座屈応力以内という結果が得 られ、この解析結果は、東北地方太平洋沖地震における実態と矛盾しないことを確認できた。

2 屋外貯蔵タンクの耐震安全性の解析(平成26年度)

東北地方太平洋沖地震の再現地震波形で検証された解析手法を用い、南海トラフ地震に対す る屋外貯蔵タンクの耐震安全性を解析する。

2.1 解析の流れ

図 2.1 に示す手順により、本調査は以下の3種類の解析により実施した。

- (1) 質点系モデルによる側板下端部の浮き上がり解析
- (2) 2 次元軸対称モデルによる浮き上りの繰返し挙動を考慮した隅角部の疲労損傷度評価解 析
- (3) 3次元シェルモデルによる底板浮き上がり時の側板の座屈強度評価解析

図 2.1.1 南海トラフ地震に対する屋外貯蔵タンク耐震安全性の解析の流れ

2.2 解析対象タンクの検討

2.2.1 タンクモデル

特定屋外タンク貯蔵所のタンクの全国の容量別基数は、図 2.2.1 のとおりの分布となって いる。これらのデータから、各容量帯別の中間値の容量のタンクを解析対象モデルとして選 定した。なお、最大容量である 10万 KL~20万 KLの区分については、地上に設置された 屋外タンク貯蔵所のタンクが概ね 10万 KLのものが最大級であることから、10万 KL で代 表させた。また、東北地方太平洋沖地震再現波形による検討において浮き上がりのあった仙 台・塩釜特防区域の旧法タンク No.4 については、解析対象タンク番号 1 と同規模であるこ とから検討対象には含めないが、広野特防区域の新法タンク No.3 については比較検討のた め検討対象とした(旧法タンク 5 種類、新法タンク 6 種類 計 11 種類)。これらの容量を もつ解析対象タンクの板厚、材質等は入手データに基づき、表 2.2.1 及び表 2.2.2 のとおり とした。

図 2.2.1 容量別特定屋外タンク貯蔵所のタンク数 (危険物規制事務統計表より 平成 26 年 3 月末現在)

番	容量	民坦形士	内径	側板高さ	1/3 液高の	アニュラ	板の材質
号	(KL)	崖依形式	(m)	(m)	側板厚(mm)	板厚(mm)	(側板、アニュラ板)
1	2, 500	固定屋根	15.5	15. 1	8	9	SS41、SM41C
2	7, 500	固定屋根	29.0	12. 2	12	12	SS41、SS41
3	30, 000	浮き屋根	45.1	21.3	13	12	HW50、SM400C
4	75,000	浮き屋根	69.8	21.4	23	12	HW50、HW50
5	100, 000	浮き屋根	83.1	20.0	25	12	HT60、SPV450Q

表 2.2.1 解析対象タンク(旧法)

番	容量	屋根形式	内径	側板高さ	1/3 液高の	アニュラ	板の材質
亏	(KL)		(m)	(m)	側砍厚(mm)	て 板厚(mm)	(側板、アニュフ板)
1	2, 500	固定屋根	15.5	15. 2	9	12	SS400、SM400C
2	7, 500	固定屋根	29. 1	12.9	13	12	SS400、SM41C
3	30, 000	浮き屋根	45.9	23. 0	14	15	SPV490Q、SPV490Q
4	50,000	浮き屋根	61.0	21.0	20	18	SPV50、SPV50
5	75,000	浮き屋根	69.8	21.9	23	18	SPV50、SPV50
6	100, 000	浮き屋根	80.0	22.0	27	21	HW50、SPV50

表 2.2.2 解析対象タンク(新法)

2.2.2 内容液の貯蔵率及び比重

(1) 内容液の貯蔵率

安全側の評価*となるよう、質点系解析においては、内容液の貯蔵率を100%として解析 を実施した。また、貯蔵率の変化による応答解析での浮き上がり量の変化を確認するため に質点系解析において浮き上がりが大きなタンクを対象として貯蔵率を90%、80%と変化 させた条件でも解析を行った。

* 質点系モデルの場合、貯蔵量の減少による液の有効質量の減少によって、地震加速度による慣性 カ(加速度と貯蔵物の有効質量との積で表現する)が小さくなるとともに、ばねの初期剛性は有効質 量に比例することから、復元力も小さくなり、地震応答(応答変位と浮き上がり変位を含む)は減少 する傾向となる。

(2) 内容液の比重

特定屋外タンク貯蔵所のタンクについて、油種別の基数は表2.2.3のようになっており、 特にそれらの油種は石油系ものが大半を占めている。また、主な油種について比重を示す と表 2.2.4 のとおりである。タンクの設計においては、安全側の設計となるよう内容液の 最大実比重以上(新法タンクについては最大実比重が 1.0 を満たない場合は 1.0)を用い ているが、今回の検討においては、南海トラフ地震で想定される最大規模の低頻度の地震 に対する耐震安全性を確認するという目的、及び重質分を含む原油や重油の比重が最大約 0.95 であることから、内容液の比重は 0.95 を上限として解析を行った。また、内容液の 比重の変化による応答解析での浮き上がり量の変化を確認するために質点系解析において 浮き上がりが大きなタンクを対象として内容液比重を 0.85 (軽質分を中心とするナフサ、 ガソリン、灯油及び軽油を想定)とした条件でも解析を行った。

					第	4 類				第4類	=1
	原油	ナフサ	ガソリン	灯油	軽油	重油	第4石油類	アルコール類	その他	以外	āΤ
1000KL 以上 5000KL 未満	46	68	504	321	319	726	225	93	1, 296	65	3, 663
5000KL 以上 10000KL 未満	29	119	234	193	202	351	39	22	339	13	1, 541
10000KL 以上 50000KL 未満	164	101	163	171	150	478	13	15	157	1	1, 413
50000KL 以上 100000KL 未満	331	33	12	16	13	19	0	1	14	0	439
100000KL 以上 200000KL 未満	405	4	1	1	2	0	0	0	1	0	414
計	975	325	914	702	686	1, 574	277	131	1, 807	79	7, 470

表 2.2.3 油種別屋外タンク貯蔵所のタンク基数 ※

※危険物規制事務統計表より(平成26年3月末現在)

表 2.2.4 主な油種の比重

油種名	原油 💒	ナフサ **2	ガソリン *3	灯油 ※3	軽油 2*3	重油 ^{,**3}
比重	0.80~0.95	0.65 ~ 0.76	0.73 ~ 0.76	0.78 ~ 0.80	0.80~0.84	0.83~0.96
割合	13%	4%	12%	9%	9%	21%

※1 原油の比重は、石油学会 HPより

※2 ナフサの比重は、石油便覧(JX日鉱日石エネルギー)より

※3 上記油種以外の比重は、石油連盟 HP より

2.3 質点系モデルによる側板下端部の浮き上がり解析

代表的な旧法屋外貯蔵タンク5基、新法屋外貯蔵タンク6基について非線形ばね特性を 有する質点系モデルを作成し、第1章で南海トラフ地震の想定地震動の作成対象として選定 したA地区、B地区及びE地区において、想定地震波形(3地表波×2方向)を作用させる 地震応答解析を実施した。

2.3.1 解析モデル・条件

(1) 質点系モデルの設定

代表的な旧法5基、新法6基のタンクの質点系モデルの諸元は参考資料5の諸元計算シ ートに示す。解析条件は、東北地方太平洋沖地震の再現波形に対する屋外貯蔵タンクの解 析と同様とした(減衰比一律15%、側板の自重を考慮に入れた保有水平耐力Qyを使用)。 (2)入力地震波

入力に使用したA地区、B地区、E地区の想定地震波形の加速度応答スペクトル図を図 2.3.1から図 2.3.3 に示す。また、タンク周期近傍のピークの周期及びその応答加速度も同 図に記す。

図 2.3.1 A地区の想定地震波形の加速度応答スペクトル(15%減衰)

図 2.3.2 B地区の想定地震波形の加速度応答スペクトル(15%減衰)

図 2.3.3 E 地区の想定地震波形の加速度応答スペクトル(15%減衰)

2.3.2 解析結果

各タンクの浮き上がり変位と浮き上がり回数の算定結果一覧を表 2.3.1 から表 2.3.3 に示 す。

<i>bb</i>		タンク	の旦	A 地区	۲. EW	A 地区 NS		
9 <i>21</i> 采旦	内容物	内径	谷重 (KI)	最大浮き上がり	浮き上がり回数	最大浮き上がり	浮き上がり回数	
田夕		(m)		変位 (cm)	正負合計	変位(cm)	正負合計	
旧法No.1		15.5	2, 500	23.4	161	5.8	133	
旧法No.2	重油/原油	29.0	7, 500	8.2	27	12.1	34	
旧法№.3	相当	45.1	30, 000	104. 3	67	47.3	65	
旧法No.4	比重:0.95	69.8	75, 000	98.0	14	14.7	22	
旧法No.5		83.1	100, 000	39.5	8	6.0	4	
<i>b</i> \. <i>b</i>		タンク	云旦	A 地区	Σ EW	A 地区	s NS	
ッノ/ 来早	内容物	内径	谷里 (KI)	最大浮き上がり	浮き上がり回数	最大浮き上がり	浮き上がり回数	
田夕		(m)		変位(cm)	正負合計	変位(cm)	正負合計	
新法No.1		15.5	2, 500	22. 3	117	9.7	100	
新法No.2		29. 1	7, 500	4.8	20	7.3	24	
新法No.3	重油/原油 +□.\/	45.9	30, 000	77.5	35	13.6	41	
新法No.4	相当 比重:0.05	61.0	50,000	4.9	3	4.6	2	
新法No.5	山里 . 0.95	69.8	75, 000	37.3	7	6.6	6	
新法No.6	-	80.0	100, 000	27.3	4	1.7	1	

表 2.3.1 A 地区想定地震波形による浮き上がり解析結果

<i>bb</i>		タンク	の旦	B 地区	Σ EW	B 地区 NS		
377	内容物	内径	台里 (KI)	最大浮き上がり	浮き上がり回数	最大浮き上がり	浮き上がり回数	
<u>н</u> , ј		(m)	(112)	変位(cm)	正負合計	変位(cm)	正負合計	
旧法№.1		15.5	2, 500	9.8	70	13.7	49	
旧法№.2	重油/原油	29.0	7, 500	0	0	0.9	3	
旧法№.3	相当	45.1	30, 000	31.6	45	48.3	22	
旧法№.4	比重:0.95	69.8	75, 000	5.9	12	36.3	3	
旧法№.5		83. 1	100, 000	0	0	19.1	2	

表 2.3.2 B 地区想定地震波形による浮き上がり解析結果

<i>b</i> \. <i>b</i>		タンク	広 昌	B 地区	Σ EW	B 地区 NS		
· 309 番号	内容物	内径 (m)	(KL)	最大浮き上がり 変位(cm)	浮き上がり回数 正負合計	最大浮き上がり 変位 (cm)	浮き上がり回数 正負合計	
新法No.1		15.5	2, 500	0	0	11.7	30	
新法No.2		29. 1	7, 500	0	0	0.5	2	
新法No.3	重油/原油 += \/	45.9	30, 000	8.4	18	33.7	11	
新法No.4	相当 - 比重:0.95 -	61.0	50, 000	0	0	0	0	
新法No.5		69.8	75, 000	0	0	16.7	2	
新法No.6		80.0	100, 000	0	0	10. 7	1	

表 2.3.3 E 地区想定地震波形による浮き上がり解析結果

bb	内容物	タンク	容量 (KL)	E 地区	۲. EW	E 地区 NS		
309 番号		内径 (m)		最大浮き上がり 変位 (cm)	浮き上がり回数 正負合計	最大浮き上がり 変位 (cm)	浮き上がり回数 正負合計	
旧法№.1		15.5	2, 500	10. 4	34	0	0	
旧法№.2	重油/原	29.0	7, 500	0	0	0	0	
旧法№.3	油	45.1	30, 000	33. 9	16	18.5	17	
旧法№.4	11日 11日 11日	69.8	75,000	7. 1	2	0	0	
旧法№.5	比主 . 0. 35	83. 1	100, 000	0	0	0	0	

<i>bb</i>		タンク	広 星	E地区 EW		E地区 NS	
ッフク 来早	内容物	内径	谷里 (KI)	最大浮き上がり	浮き上がり回数	最大浮き上がり	浮き上がり回数
田夕		(m)	(NL)	変位(cm)	正負合計	変位(cm)	正負合計
新法No.1		15.5	2, 500	0	0	0	0
新法No.2		29. 1	7, 500	0	0	0	0
新法No.3	重油/原油 += \/	45.9	30, 000	9.3	10	0	0
新法No.4	11日 11日 - 1105	61.0	50, 000	0	0	0	0
新法No.5	山王 . 0. 55	69.8	75, 000	0	0	0	0
新法No.6		80.0	100, 000	0	0	0	0

各対象地区の想定地震波により、最大浮き上がり変位の大きいタンクに着目し、それぞれのタンクの最大応答変位、最大応答加速度及び加速度の応答倍率を表 2.3.4 に示す。

9ンり番号	地区 地震波	方向	最大地震加速度 Su max(cm/s/s)	D/H1	降伏変位 ∆y(cm)	最大応答変位 ∆max(cm)	最大浮き上がり変位 ômax(cm)	最大応答加速度 Sa max(cm/s/s)	加速度 応答倍率	タンク周期 Tb(s)
	Α	EW	767. 1			18. 2	104. 3	755.6	0.99	
No.3 旧法	В	EW	424. 0	F 00	0.70	6.0	31.6	493. 4	1.16	0.0000
(30000KL)	В	NS	532. 1	5.98	0.76	8.8	48.3	525. 0	0.99	0.3388
	E	EW	490. 6			6.4	33.9	504. 9	1. 03	
No.4 旧法	Α	EW	767. 1	0.45	1 00	12. 2	98.0	936. 3	1. 22	0.2600
(75000KL)	В	NS	532. 1	9.45	1.82	5.7	36.3	751.9	1. 41	0.3608
№.5 旧法 (100000KL)	A	EW	767. 1	11. 91	3. 04	6.4	39. 5	1003. 1	1.31	0. 3890
№.3 新法 (30000KL)	A	EW	767. 1	5. 94	1.19	14. 2	77. 5	940. 3	1. 23	0. 3368
№.5 新法 (75000KL)	A	EW	767. 1	9. 20	2. 50	6.6	37. 3	989. 2	1. 29	0. 3670
№.6 新法 (100000KL)	A	EW	767. 1	10. 30	3. 33	6.0	27.3	1076.9	1.40	0. 3882

表2.3.4 各想定地震波形により大きな浮き上がり変位を生じたタンクの応答値一覧

2.3.3 考察

- (1) A 地区 EW 方向の想定地震波形は加速度応答スペクトルの応答加速度が(特に 0.3 秒あ たりのタンク周期に近いあたり)最も大きいため、本浮き上がり解析ではこの地震波形に よるタンクの応答値が一番大きい。次に大きいのは B 地区の NS 方向の想定地震波形の応 答値であり、一番応答値が小さい地震波形は E 地区の想定地震波形である。
- (2) A 地区 EW 方向の想定地震波形により大きな応答が発生したタンクは次の7基である。
 - ア 旧法タンク
 - No.3 (3万KL)、No.4 (7万KL)、No.5 (10万KL)
 - イ 新法タンク

No.3 (3万KL)、No.5 (7万KL)、No.6 (10万KL)

この6基のタンクのバルジング周期は0.3368秒から0.3882秒までの範囲内であり、A 地区 EW 方向の想定地震波形の加速度応答スペクトル曲線において、タンク固有周期に近 いピーク(周期:0.3746秒)に接近しているため、応答が大きくなっているものと考えら れる(図 2.3.1参照)。

応答が大きくなった3基の旧法タンクはアニュラ板の板厚が12mmであり、他のタンク と比べアニュラ板が薄いという共通の特徴をもつ。このため、浮き上がりやすくなってい ると考えられる。特に旧法タンク No.3 は、アニュラ板の板厚が薄いことだけではなく、 アニュラ板材料の降伏強度(=245 N/mm²)が他の2基のタンクより小さいため、最も応 答が大きいタンクとなっていると推察される。

- (3) A 地区 NS 方向の想定地震波形の加速度応答スペクトル曲線では、周期 0.2264 秒にピー クがあり、タンクの固有周期がこれに近いと大きな浮き上がりを生じるのでないかと懸念 された。そこで別途、東北地方太平洋沖地震で解析手法を検証する際に解析したタンクの うち、固有周期が近いタンクを選定して A 地区 NS 方向の想定地震波形による応答解析を 実施して、その浮き上がり変位を確認した。
 - ア 対象タンク: 仙台・塩釜地区の No.7 タンク(1万 KL)(表 1.2.4 参照)、貯蔵量 100%、 内容物比重 0.95、周期 0.2348 秒
 - イ 浮き上がり解析結果: 20.1 cm

計算された浮き上がり変位はA地区EW方向の想定地震波形による旧法タンクNo.3(3万KL)の応答値よりも小さい値であった。

- (4) B地区 NS 方向の想定地震波形により大きな応答が発生したタンクは次の3基である。
 - ア 旧法タンク

No.3 (3万KL)、No.4 (7万KL)

イ 新法タンク

No.3 (3万KL)

これら3 基のタンクのバルジング周期は0.3368 秒から0.3717 秒までの範囲内であり、 B地区のNS方向の想定地震波形の加速度応答スペクトル曲線のピーク(周期:0.3939 秒) にタンク固有周期が接近しているため応答が大きくなっているものと考えられる(図2.3.2 参照)。

- (5) 旧法タンク、新法タンクはそれぞれA地区想定地震波形に対して最も浮き上がっており、 以下2基のタンクについて疲労損傷、側板の座屈を確認する。
 - ア 旧法タンク

No.3 (3万KL)

イ 新法タンク

No.3(3 万 KL)

- (6) B 地区及び E 地区の想定地震波形に対して、旧法タンク、新法タンクとも、A 地区に比 べ地震時の浮き上がり量は少なくなっている。
- (7) これらのタンクの地震応答は最大貯蔵量(100%)と最大液比重(0.95)で算定されたものであるため、浮き上がりの応答値を大きめに想定するかなり保守的な設定と考えている。

質点系モデルの場合、貯蔵量の減少による液の有効質量の減少によって、地震加速度による慣性力(加速度と液の有効質量との積で表現する)が小さくなるとともにばねの復元力(初期剛性が液の有効質量に比例する)も小さくなるので、系の地震応答(応答変位と浮き上がり変位を含む)は減少する傾向となる。従って、最大貯蔵量(100%)と最大液比重(0.95) で算定される場合、質点系モデルの地震応答は最大となると考えられる。

貯蔵量を 90%、80%、液比重を 0.85 と仮定した場合、検討対象の旧法タンク No.3 (3 万 KL) の地震応答は低減される傾向となった (表 2.3.5 及び図 2.3.4 参照)。この調査結果か ら、同規模タンクでも貯蔵量や比重が減少した場合、A 地区 EW 方向の想定地震波のよう な強い地震に対しても浮き上がり量が減少することが推測される。

他の地震波形、例えば、B地区 NS 方向の想定地震波形が作用する場合でも、貯蔵量や比 重の減少によってタンクの浮き上がり量も低減すると推測される。

旧法かり		貯蔵量		降伏変位	最大応答変位	最大浮き上がり変位	ないク周期
番号	液比重	(%)	D/H1	Δy(cm)	$\Delta \max(\text{cm})$	δ max (cm)	Tb (s)
		100	5.98	0. 76	18.2	104. 3	0. 3388
	0. 95 0. 85	90	6.73	0.85	14.8	94.2	0. 3125
n		80	7.68	0.97	10.6	73.9	0. 2865
3		100	5.98	0. 73	17.3	99.1	0. 3208
		90	6.73	0. 81	12.5	78.4	0. 2959
		80	7.68	0.93	9.2	63.4	0. 2713

表 2.3.5 貯蔵量と液比重変更の調査結果(A地区 EW 方向の想定地震波形)

図 2.3.4 貯蔵量と液比重の変化による浮き上がり変位の 低減傾向に関する調査結果

解析したタンクの中で最も浮き上がりの大きかった旧法タンク No.3 の変位についての解 析結果を図 2.3.5 から図 2.3.7 に記載する。また、図 2.3.8 には応答解析における復元力の 履歴を示す。図 2.3.5 は EW 方向の地震波形を作用させたときの、質点モデルの水平 E 方 向への応答変位(相対変位)を+(プラス)、W 方向への応答変位を-(マイナス)で示し ている。また、当該タンクにおいて、浮き上がりが始まると判定する水平方向の変位(Δ_y) は±0.76 cm と算定され、図中に緑の線で表示している(この緑線を越えるときにタンクは 浮き上がると判定)。また、水平方向の応答変位からタンクの浮き上がり変位を算定した結 果を図 2.3.6 に示す。この図においては、タンク W 側の浮き上がり量を+(プラス)、タン ク E 側の浮き上がり量を-(マイナス)で示している(注:沈み込み量ではない)。

図 2.3.5 旧法タンク No.3の質点モデルの応答変位時刻歴 (A 地区想定地震波形 EW)

図 2.3.6 旧法タンク No.3 の質点モデルの浮き上がり変位時刻歴(A地区想定地震波形 EW)

図 2.3.7 旧法タンク No.3の質点モデルの浮き上がり変位と 回数のヒストグラム(A地区想定地震波形 EW)

図 2.3.8 旧法タンク No.3の質点モデルのばね復元力履歴図(A地区想定地震波形 EW)

2.4 2次元軸対称モデルによる底板の疲労損傷度評価

2.3.2に示す質点系モデルによる浮き上がり変位と回数の解析結果から選定されたA地区の旧法タンク No.3 及び新法タンク No.3 について、この2 基のタンクの浮き上がり時に隅角部に発生するひずみ量及び疲労損傷に対する強度を確認するために、有限要素法を用いた静的応力解析を行った。

2.4.1 解析モデル

2.4.1.1 旧法タンクNo.3の解析モデル

旧法タンクNo.3(公称容量30000 KL)の隅角部を対象として解析モデルを作成した。タンクの主な寸法と諸元を表2.4.1に示す。

		旧法	ミタンクNo	. 3				
許可容量	30000 KL			側板の板	厚と材料			
タンク内径	45100 mm	1段	18 mm	HW50	6段	8	mm	HW50
タンク高さ	21270 mm	2段	15 mm	HW50	7段	8	mm	HW50
液面高さ 18802 mm 3段 13 mm HW50 8段 3						8	mm	SS41
液比重	0.95	4段	11 mm	HW50	9段	8	mm	SS41
巴坦水子	シンク゛ルテ゛ッキ	5段	5段 9mm HW50 — —					
座 侬形式	浮き屋根	アニュラ板の板厚と材料				12 mm		SM400C
		底板の机	返厚と材料	ŀ		8 mm		SS41
隅角部隅肉溶热	妾部脚長(mm)	W1		12 mm	W2	W2		12 mm

表2.4.1 解析対象タンクの主な寸法と諸元

隅角部モデル化範囲を図2.4.1(a)、隅角部の一部の要素分割を図2.4.1(b)に示す。図 2.4.1(a)の左端A端部の半径方向変位を拘束し、同図上端B端部は強制変位を与える位置 とした。隅角部溶接部近傍はメッシュ分割を約2mmとした。

なお、図に示した寸法はモデル上のA端部とB端部までの長さである。

地盤との接触部には非線形ばねを設置し、圧縮方向に294N/cm³の力が生じるように設定した。

図 2.4.1 隅角部の解析モデル

(1) 解析条件

1.3で示した解析方法に従い、以下の条件で解析を行った。

ア 荷重

B端部(円周上)に側板の全重量(=2764.4 kN)を負荷する。

イ液圧

アニュラ板に一様分布の静液圧(=0.18 N/mm²)を作用させた。 側板には高さに応じて液圧(静液圧)を作用させた。

ウ 強制変位

表2.4.2に示す片側の浮き上がり変位を強制的に付与する。

エ 繰返しサイクル

片側の浮き上がり回数の21回と設定した(最大の浮き上がり変位を含む10mm以上の 浮き上がり変位のみ考慮する場合の回数)。

<u> </u>	
サイクルNo.	浮き上がり変位(mm)
1	24. 4
2	33. 8
3	38.8
4	65. 0
5	76. 0
6	102. 8
7	16. 9
8	20. 7
9	247.0
10	336. 6
11	25. 9
12	51.4
13	1042. 7
14	746. 3
15	281.2
16	195. 2
17	15. 7
18	92. 8
19	18. 7
20	64.4
21	28.5

表2.4.2 各サイクルにおける浮き上がり変位

(2) 材料の物性値

1段から7段までの側板の材料はHW50(SPV450と相当する)、8段と9段の側板の材料 はSS41、アニュラ板の材料はSM400C、底板の材料はSS41であり、それぞれの材料の物 性値は表2.4.3に示すとおりである。また、塑性後の応力-ひずみ特性は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用 した(図2.4.2参照)。硬化則には移動硬化則を使用した。

材料の物性値		HW50	SS41/SM400C		
降伏強度(N/mm ²)	Sy	450	245		
引張強度(N/mm²)	Su	570	400		
ポアソン比	ν	0.3	0.3		
ヤング率 (N/mm ²)	E	205939.7	205939.7		

表2.4.3 材料の物性値

図2.4.2 弾塑性解析入力用の応力—ひずみカーブ

2.4.1.2 新法タンク No.3 の解析モデル

新法タンクNo.3(公称容量30000 kL)の隅角部を対象として解析モデルを作成した。タンクの主な寸法と諸元を表2.4.4に示す。

旧法タンクNo.3									
許可容量	30000 KL		側板の板厚と材料						
タンク内径	45900 mm	1段	1段 21 mm SPV490Q 5段 9 mm SPV490						SPV490Q
タンク高さ	23000 mm	2段	17 n	nm	SPV490Q	6段	9	mm	SPV490Q
液面高さ	19240 mm	3段	3段 14 mm SPV490Q 7段 9					mm	SS400
液比重	0.95	4段	4段 12 mm SPV490Q 8段					mm	SS400
巴坦 水 子	シンク゛ルテ゛ッキ	アニュラ	アニュラ板の板厚と材料				15	mm	SPV490Q
^{産根形式} 浮き屋根 底板の板厚と材料					12	mm	SS400		
隅角部隅肉溶热	妾部脚長(mm)	W1			12 mm	W2			12 mm

表2.4.4 解析対象タンクの主な寸法と諸元

隅角部モデル化範囲を図2.4.3(a)、隅角部の一部の要素分割を図2.4.3(b)に示す。図 2.4.3(a)の左端A端部の半径方向変位を拘束し、同図上端B端部は強制変位を与える位置 とした。隅角部溶接部近傍のメッシュ分割サイズは約2mmとした。

なお、図に示した寸法はモデル上のA端部とB端部までの長さである。

地盤との接触部には非線形ばねを設置し、圧縮方向に294N/cm³の力が生じるように設定した。

図2.4.3 隅角部の解析モデル

(1) 解析条件

1.3で示した解析方法に従い、以下の条件で解析を行った。

ア 荷重

B端部(円周上)に側板の全重量(=3180 kN)を負荷する。

イ液圧

アニュラ板に一様分布の静液圧(=0.18 N/mm²)を作用させた。 側板には高さに応じて液圧(静液圧)を作用させた。

ウ 強制変位

表2.4.5に示す片側の浮き上がり変位を強制的に付与する。

エ 繰返しサイクル

片側の浮き上がり回数の14回と設定した(最大の浮き上がり変位を含む10mm以上の 浮き上がり変位のみ考慮する場合の回数)。

サイクルNo.	浮き上がり変位(mm)
1	12. 6
2	80. 8
3	10. 2
4	14. 6
5	10. 3
6	83. 4
7	91.1
8	23. 7
9	526. 9
10	775. 3
11	382. 8
12	174.0
13	28.6
14	18.6

表2.4.5 各サイクルにおける浮き上がり変位

(2) 材料の物性値

1段から6段までの側板の材料はSPV490Q、7段と8段の側板の材料はSS400、アニュラ 板の材料はSPV490Q、底板の材料はSS400であり、それぞれの材料の物性値は表2.4.6に 示すとおりである。また、塑性後の応力-ひずみ特性は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用した(図2.4.4 参照)。硬化則には移動硬化則を使用した。

材料の物性値		SPV490Q	SS400	
降伏強度(N/mm ²)	Sy	490	245	
引張強度(N/mm²)	Su	610	400	
ポアソン比	ν	0.3	0.3	
ヤング率 (N/mm ²)	E	205939.7	205939.7	

表2.4.6 材料の物性値

図2.4.4 弾塑性解析入力用の応力—ひずみカーブ

2.4.2 解析結果

2.4.2.1 旧法タンクNo.3の解析結果

(1) 浮き上がり変位と抵抗力の関係

各サイクルの参照点の浮き上がり変位とB端部に強制変位をかけた時の算定された軸方向の抵抗力(B端部の断面上節点力の合計値)の数値を表2.4.7に、その関係を線図で表示すると図2.4.5に示すとおりである(変位出力参照点の位置:図2.4.1(b)を参照)。

No. 位置 (N) 参照点 開始 0.00E+00 -2.15 1 最高 1.55E+07 25.02	B端 −2.90
開始 0.00E+00 -2.15 1 最高 1.55E+07 25.02	-2.90
1 最高 1.55E+07 25.02	2.00
	24 36
最低 8.02F+06 0.63	0.00
	33 80
2 最低 5.91F+06 0.63	0.00
<u>最高 1.64F+07 39.43</u>	38.77
3 最低 4.78F+06 0.64	0.00
	64 98
4 最低 3.78F+05 0.67	0,00
最高 <u>1.82F+07</u> 76.66	75, 97
5 最低 -2 09F+05 0.68	0.00
最高 <u>1,94E+07</u> <u>103,56</u>	102.83
6 最低 -1.14E+06 0.69	0.00
最高 1.01E+07 17.49	16.88
7 最低 -1.14E+06 0.69	0.00
	20. 73
8 最低 -1.14E+06 0.69	0.00
最高 2.73E+07 248.53	246, 95
9 最低 -5.80E+06 0.73	0.00
最高 3.36E+07 339.61	336.57
10 最低 -8.62E+06 0.76	0.00
最高 1.06E+07 26.55	25.92
11 最低 -8.61E+06 0.76	0.00
最高 1.41E+07 52.07	51.40
12 最低 -8.54E+06 0.76	0.00
最高 7.75E+07 1079.16	1042.74
13 最低 -1.67E+07 0.69	0.00
最高 5.85E+07 765.74	746.32
14 最低 -1.96E+07 0.79	0.00
最高 2.46E+07 283.48	281.17
15 最低 -2.07E+07 0.80	0.00
したの時間の1.89E+07 196.41	195.25
10 最低 -2.11E+07 0.81	0.00
	15.67
日本 日	0.00
	92.84
-2.09E+07 0.80	0.00
LO 最高 7.82E+06 19.31	18.74
日本 19 最低 -2.09E+07 0.80	0.00
	64.44
20 最低 -2.06E+07 0.80	0.00
	28.53
21 最低 -2.06E+07 0.79	0.00

表2.4.7 浮き上がり変位と抵抗力の関係

図2.4.5 浮き上がり変位とB端部の算定された抵抗力の関係

(2) 隅角部隅肉溶接部のひずみ振幅

浮き上がり変位を与えて、隅角部を浮上らせる静的応力解析結果の、隅角部隅肉溶接部 近傍の注目点(A点、B点とC点、3つの点の位置を図2.4.6に示す。)に発生した全ひずみ と全ひずみ振幅を表2.4.8に示す。A点は隅肉溶接部止端部、B点はA点から2 mm内側のア ニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最も側板に近い位置)で あり、両点の半径方向全ひずみを ϵ_r とする。C点は側板内面の止端部であり、その鉛直方 向ひずみを ϵ_z とする。また、全ひずみ振幅は $\Delta\epsilon_r$ 等とする。21サイクルにおける各点の浮 き上がり変位とひずみとの関係線図を図2.4.7から図2.4.9に示す。

	ヨナトキニ	ひずみ (%)			ひずみ振幅(%)			
サイクル) 、 、 、 、 、 、 、 、 、 、 、 、 、	A点	B点	C点	A点	B点	C点	
INU.	卫国	E.r	E.r	E .z	Δε _r	Δε _r	Δε. _z	
	開始	0.15	0.20	0.09				
1	最高	0.41	3.35	0.13	0. 26	3.15	0.10	
	最低	0.24	3.17	0. 03				
2	最高	0.49	4. 27	0.13	0.00	0.00	0 10	
	最低	0.27	4.04	0.00	0. 23	0. 23	0.13	
2	最高	0.53	4.73	0.13	0.25	0.00	0 15	
3	最低	0.28	4.45	-0. 02	0.25	0.20	0.15	
4	最高	0.79	6.72	0.14	0.20	1 02	0.22	
4	最低	0.40	5.70	-0.07	0. 39	1.03	0.22	
5	最高	0.88	7.52	0.15	0.44	1 05	0.00	
5	最低	0.44	5.68	-0. 08	0.44	1.00	0.23	
6	最高	1.17	9. 25	0.16	0 57	4 00	0.24	
U	最低	0.60	5.18	-0.08	0. 57	4.00	0. 24	
7	最高	0.74	5.33	0.01	0.15	0.16	0.09	
1	最低	0.60	5.17	-0.08	0.15	0.10		
o	最高	0.76	5.34	0. 02	0 17	0 10	0 11	
0	最低	0.60	5.16	-0.08	0.17	0.10	0.11	
0	最高	3.18	16. 72	0. 22	1 72	11 95	0.31	
9	最低	1.46	4.87	-0.09	1.72	11.00	0.31	
10	最高	4.75	22.66	0.30	3. 11	16 12	0.25	
10	最低	1.65	6.53	-0.05		10.15	0.00	
11	最高	1.76	6.79	0.12	0. 10	0. 32	0.17	
	最低	1.67	6.47	-0.05				
10	最高	1.90	8.09	0. 18	0.22	1.00	0. 23	
12	最低	1.67	6.49	-0.05	0.23	1.00		
12	最高	17.24	44.36	0. 81	14 02	24 85	0 14	
13	最低	3. 22	9.51	0.67	14. 02	54.05	0.14	
14	最高	12.90	41.50	0.98	89.0	30 80	0 14	
14	最低	3. 22	10.61	0.84	9.00	50.03	0.14	
15	最高	5.80	28.98	1.16	2 70	18 95	0 32	
10	最低	3.10	10.03	0.84	2.70	10. 55	0.32	
16	最高	4.56	24.57	1. 22	1 / 9	15 22	0 37	
10	最低	3.07	9.35	0.85	1.43	15.22	0.07	
17	最高	3.04	9.32	1.12	0.05	0.01	0.27	
17	最低	3.09	9.30	0.85	0.00	0.01	0.27	
19	最高	3.47	17.27	1.26	0.35	<u>8</u> 20	0.40	
10	最低	3.13	8.99	0.86	0.00	υ. Ζθ	0.40	
10	最高	3.08	9.04	1.16	0.07	0 10	0 20	
13	最低	3.15	8.92	0.86	0.07	U. 1Z	0.30	
20	最高	3.33	14.07	1.26	0 15	5 56	0 40	
20	最低	3.18	8. 51	0.86	0.15	5. 50	0.40	
01	最高	3.15	8.94	1.22	0.06	0 55	0.26	
21	最低	3.21	8.39	0.87	0.00	0. 55	0.30	

表2.4.8 各サイクルにおける隅角部隅肉溶接部のひずみとひずみ振幅 (最大浮き上がり変位:104.3cm)

図2.4.7 浮き上がり変位とA点に発生した半径方向ひずみの関係

図2.4.8 浮き上がり変位とB点に発生した半径方向ひずみの関係

図2.4.9 浮き上がり変位とC点に発生した鉛直方向ひずみの関係

(3) 変形図とひずみ分布図

最大浮き上がり変位が104.3 cmになるときの、隅角部の変形及び塑性ひずみ分布図を図 2.4.10及び図2.4.11に示す。

図2.4.10 浮き上がり時の隅角部の変形図 (サイクル13回目の浮き上がり時)

図2.4.11 隅角部の半径方向ひずみ成分分布図 (サイクル13回目 最大浮き上がり変位:104.3cm)

浮き上がり挙動によって、隅角部が曲げられ、隅角部の溶接部の止端部(B点)に最も 大きなひずみが発生した。この表面上のひずみは局部的なものであり、全断面での平均値 はこれよりも小さい。

2.4.2.2 新法タンク No.3の解析結果

各サイクルの参照点の浮き上がり変位と B 端部に強制変位をかけた時の算定された軸方 向の抵抗力(B端部の断面上節点力の合計値)の数値を表 2.4.9 に、その関係を線図で表示 すると図 2.4.12 に示すとおりである(変位出力参照点の位置:図 2.4.3 (b)を参照)。

サイクル	浮き上がり	抵抗力	浮き上がり変位(mm)			
No.	位置	(N)	参照点	B端		
	開始	0. 00E+00	-1.54	-2.26		
1	最高	1.88E+07	13. 26	12.60		
	最低	1. 42E+07	0.63	0.00		
0	最高	2. 25E+07	81.61	80. 80		
Z	最低	9.54E+06	0.60	0.00		
0	最高	1.67E+07	10. 81	10. 20		
კ	最低	9. 54E+06	0. 60	0.00		
4	最高	1.77E+07	15. 22	14.60		
4	最低	9. 54E+06	0. 60	0.00		
-	最高	1.67E+07	10. 91	10. 30		
5	最低	9. 54E+06	0.60	0.00		
6	最高	2. 57E+07	84. 21	83.40		
6	最低	9. 05E+06	0.60	0.00		
7	最高	2. 61E+07	91.91	91.10		
1	最低	7. 50E+06	0. 60	0.00		
2	最高	1.88E+07	24. 33	23.70		
8	最低	7. 50E+06	0. 60	0.00		
•	最高	5. 74E+07	531.08	526.90		
9	最低	-2.26E+07	0. 82	0.00		
10	最高	7. 54E+07	786. 40	775.30		
10	最低	-3. 58E+07	0. 74	0.00		
	最高	3. 82E+07	385. 25	382.80		
11	最低	-3. 53E+07	0. 74	0.00		
10	最高	2. 38E+07	174. 97	174.00		
12	最低	-3. 44E+07	0. 73	0.00		
10	最高	3. 12E+06	29. 15	28.60		
13	最低	-3. 44E+07	0. 73	0.00		
	最高	-2. 41E+06	19. 13	18.60		
14	最低	-3.44E+07	0. 73	0.00		

表2.4.9 浮き上がり変位と抵抗力の関係

図2.4.12 浮き上がり変位とB端部の算定された抵抗力の関係

浮き上がり変位を与えて、隅角部を浮き上がらせる静的応力解析結果の隅角部隅肉溶接部 近傍の注目点(A点、B点とC点、3つの点の位置を図 2.4.6に示す。)に発生した全ひず みと全ひずみ振幅を表 2.4.10に示す。A点は隅肉溶接部止端部で、B点はA点から2 mm 内側のアニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最も側板に近い位 置)で、両点の半径方向全ひずみを ϵ_r とし、C点は側板内面の止端部でその鉛直方向ひず みを ϵ_z とする。また、全ひずみ振幅は $\Delta\epsilon_r$ 等とする。14 サイクルにおける各点の浮き上が り変位とひずみとの関係線図を図 2.4.13 から図 2.4.15 に示す。

			ひずみ(%)		ひずみ振幅(%)			
サイクル Nn	浮き上がり 位置	A点	B点	C点	A点	B点	C点	
NO.		E.r	E.r	E.z	Δεır	Δεır	Δε.Ζ	
1	開始	0.20	0.14	0. 11			0.06	
	最高	0.46	0. 25	0. 17	0. 26	0. 12		
	最低	0.34	0.16	0. 12				
0	最高	1.87	1.44	0. 33	0.46	0.20	0.24	
2	最低	1.41	1.05	0.09	0.40	0. 39	0. 24	
2	最高	1. 52	1.14	0. 13	0 11	0.00	0.05	
3	最低	1.41	1.05	0. 09	0.11	0.09	0.05	
	最高	1.55	1.17	0. 15	0.14	0.10	0.07	
4	最低	1.41	1.05	0. 09	0.14	0.12	0.07	
F	最高	1. 52	1.15	0.14	0 11	0. 09	0. 05	
5	最低	1.41	1.05	0. 09	0.11			
6	最高	1.95	1. 52	0. 33	0.47	0. 40	0.25	
	最低	1.48	1.13	0. 08	0.47		0.23	
7	最高	2. 21	1.81	0.34	0. 52	0. 43	0. 27	
Ι	最低	1.69	1.39	0. 07				
0	最高	1.89	1.57	0. 17	0.20	0. 18	0. 10	
ŏ	最低	1.69	1.39	0.07	0.20			
0	高	15.52	12. 18	0. 85	0.20	0.50	0 70	
9	最低	6.24	3.62	0.06	9.20	8.50	0.79	
10	副	23.11	18.34	1. 29	15 21	12 60	0.01	
10	最低	7.89	4.74	0.38	15. 21	13.00	0.91	
11	最高	15.73	14.14	1. 22	7 07	0 52	0.94	
	最低	7.75	4.61	0.38	1.91	9.00	0. 64	
10	副	10.17	8.66	1. 17	2 02	4 40	0.77	
	最低	7.24	4. 24	0.40	2. 30	4.42	0.77	
12	最高	7.26	4.56	0. 70	0.02	0.32	0.30	
10	最低	7.23	4. 24	0. 41	0.03	0.32	0.30	
14	最高	7.24	4.49	0. 61	0.02	0.25	0.01	
14	最低	7.23	4.24	0.41	0.02	0.25 0.2	0.21	

表2.4.10 各繰返しサイクルにおける隅角部隅肉溶接部のひずみとひずみ振幅

図2.4.13 浮き上がり変位とA点に発生した半径方向ひずみの関係

図2.4.14 浮き上がり変位とB点に発生した半径方向ひずみの関係

図2.4.15 浮き上がり変位とC点に発生した軸方向ひずみの関係

最大浮き上がり変位が77.5 cmになるときの、隅角部の変形及び塑性ひずみ分布図を図 2.4.16及び図2.4.17に示す。

図 2.4.16 変形図(最大浮き上がり変位:77.5cm)

図 2.4.17 隅角部の半径方向ひずみ成分の分布図 (サイクル 10 回目、最大浮き上がり変位:77.5cm)

浮き上がり挙動によって、隅角部が曲げられ、隅角部の溶接部の止端部(A 点)に最も大きなひずみが発生した。この表面上のひずみは局部的なものであり、全断面での平均値はこれよりも小さい。

2.4.3 低サイクル疲労評価

地震時の浮き上がりに対する隅角部挙動は、低サイクル疲労である。飯田[※]は、溶接構造 用鋼、高張力鋼、一般構造用鋼などの10種の鋼をひずみ制御疲労試験を実施し、き裂発生 寿命*Nc*をひずみ振幅*Ae*に対して整理し、次式で最適疲労曲線を表した。

$$\frac{\Delta\varepsilon}{2} = 0.415 N_c^{-0.606} + 0.00412 N_c^{-0.115}$$
(2.4.1)

上式を図示すると図2.4.18になる。

図 2.4.18 飯田の最適疲労曲線

マイナー則では、次式の疲労損傷度D=1.0のときを疲労寿命としており、式(2.4.2)により隅角部の疲労損傷度の評価を実施した。

$$D = \frac{n(\Delta \varepsilon_1)}{N_c(\Delta \varepsilon_1)} + \frac{n(\Delta \varepsilon_2)}{N_c(\Delta \varepsilon_2)} + \frac{n(\Delta \varepsilon_3)}{N_c(\Delta \varepsilon_3)} + \dots < 1.0$$
(2.4.2)

ただし、**D**:疲労損傷度

∆εi:ひずみ振幅

 $N(\Delta \epsilon_i):$ ひずみ振幅 $\Delta \epsilon_i$ の繰返し回数

 $N_{c}(\Delta \epsilon_{i}):$ ひずみ振幅 $\Delta \epsilon_{i}$ の疲労寿命

※ 文献: 日本材料学会編、疲労設計便覧、養賢堂、pp.135-136、1995年。

2.4.3.1 旧法タンク No.3 の疲労損傷度評価

旧法タンク No.3 の浮き上がり回数は最大の浮き上がり変位が算出された側の 21 回で設定し、この条件での疲労損傷度 D を算定した。

表 2.4.8 に示したA点に発生した板表面上の全ひずみ振幅に対する、飯田の最適疲労曲線 式(2.4.1)で求めた疲労寿命 Nc を表 2.4.11 に示す。同表より、最大浮き上がり変位 104.3 cm となる A 地区 EW 方向の想定地震波形に対し、当該タンクは隅角部の溶接部止端部の A 点の疲労損傷度 D は 0.085 であり、1.0 以下という結果になった。

表 2.4.8 に示した B 点に発生した板表面上の全ひずみ振幅の一部には約 35%という数値 が出ており、飯田の最適疲労曲線式のグラフ範囲外となる。なお、同式にて仮に疲労損傷度 D を算出すると 0.756 となる。今回の隅角部の疲労破壊の可能性評価については、1994 年 三陸はるか沖地震や1995年兵庫県南部地震に対する石油タンク隅角部の繰返し片浮き上が り挙動解析に用いられた一連の解析システムを採用したが、今回のような大きな浮き上がり に対し、そのまま適用することの妥当性については、別途検討していく必要がある。

	河土上杉口赤什		A 点	
サイクル	浮き上かり変位 え (mm)	ひずみ振幅	繰り返し回数	疲労損傷度
INU.	$\mathcal{O}_{i,j}$ (IIIII)	$\Delta \mathcal{E}_{r}$ (%)	Nc	D
1	24. 4	0.26	177350	0. 000006
2	33. 8	0. 23	320500	0. 000003
3	38.8	0. 25	212800	0. 000005
4	65.0	0.39	36130	0. 000028
5	76.0	0.44	24390	0. 000041
6	102. 8	0. 57	11410	0. 000088
7	16.9	0. 15	500000	0. 000002
8	20. 7	0.17	500000	0. 000002
9	247.0	1. 72	902	0. 001109
10	336.6	3. 11	288	0. 003472
11	25. 9	0. 10	500000	0. 000002
12	51.4	0. 23	320500	0. 000003
13	1042. 7	14. 02	20	0. 050000
14	746. 3	9.68	38	0.026316
15	281.2	2. 70	375	0.002667
16	195. 2	1.49	1207	0. 000829
17	15. 7	0.05	500000	0. 000002
18	92.8	0.35	52810	0.000019
19	18. 7	0.07	500000	0. 000002
20	64. 4	0. 15	500000	0. 000002
21	28. 5	0.06	500000	0. 000002
			合計	0. 084598

表 2.4.11 旧法タンク No.3 の隅角部の疲労損傷度評価結果

表 2.4.11 に示す許容繰り返し回数を用いて、以下のように A 点の疲労.損傷度 D(合計) を計算した。

$$D = \sum_{i=1}^{21} \frac{1}{Nci} = \frac{1}{177350} + \frac{1}{320500} + \frac{1}{212800} + \bullet \bullet \bullet \frac{1}{20} + \frac{1}{38} + \frac{1}{375} + \bullet \bullet \bullet \frac{1}{500000} = 0.084598$$

2.4.3.2 新法タンク No.3 の疲労損傷度評価

新法タンク No.3 の浮き上がり回数は最大の浮き上がり変位が算出された側の 14 回で設定し、この条件での疲労損傷度 D を算定した。

表 2.4.10 に示したA点とB点に発生した板表面上の全ひずみ振幅に対する、飯田の最適 疲労曲線式(2.4.1)で求めた疲労寿命 Nc を表 2.4.12 に示す。同表より、最大浮き上がり 変位 77.5 cm となる A 地区 EW 方向の想定地震波形に対し、当該タンクは隅角部の溶接部 止端部の A 点と B 点の疲労損傷度 D は 0.190 と 0.101 であり、1.0 以下という結果になっ た。

	浮き上がり		A 点		B 点			
サイクル	変位	ひずみ振幅	繰り返し	疲労損傷度	ひずみ振幅	繰り返し	疲労損傷度	
NO.	${\cal S}_{ij}$ (mm)	Δε. _r . (%)	回数 Nc	D	Δε. _r . (%)	回数 Nc	D	
1	12.6	0. 26	177350	0.000006	0.12	500000	0. 000002	
2	80.8	0.46	21250	0.000047	0. 39	36130	0.000028	
3	10. 2	0. 11	500000	0.000002	0.09	500000	0.000002	
4	14.6	0.14	500000	0.000002	0. 12	500000	0.000002	
5	10.3	0. 11	500000	0.000002	0.09	500000	0.000002	
6	83.4	0. 47	19900	0.000050	0.40	33190	0.000030	
7	91.1	0. 52	14770	0.000068	0. 43	262300	0.000004	
8	23. 7	0. 20	500000	0.000002	0. 18	500000	0.000002	
9	526. 9	9. 28	41	0.024390	8.56	47	0. 021277	
10	775. 3	15. 21	17	0.058824	13.60	21	0.047619	
11	382. 8	7.97	53	0.018868	9. 53	39	0. 025641	
12	174. 0	2. 93	322	0.003106	4. 42	151	0.006623	
13	28.6	0.03	500000	0.000002	0.32	73940	0.000014	
14	18.6	0. 02	500000	0.000002	0. 25	212800	0. 000005	
			合計	0. 189968		合計	0. 101249	

表 2.4.12 新法タンク No.3 の隅角部の疲労損傷度評価結果

表 2.4.12 に示す許容繰り返し回数を用いて、以下のように A 点と B 点の疲労損傷度 D(合計)を計算した。

A 点:

$$D = \sum_{i=1}^{14} \frac{1}{Nci} = \frac{1}{177350} + \frac{1}{21250} + \frac{1}{500000} + \bullet \bullet \bullet \frac{1}{41} + \frac{1}{17} + \frac{1}{53} + \bullet \bullet \bullet \frac{1}{500000} = 0.189968$$

B 点:

$$D = \sum_{i=1}^{14} \frac{1}{Nci} = \frac{1}{500000} + \frac{1}{36130} + \frac{1}{500000} + \bullet \bullet \bullet \frac{1}{47} + \frac{1}{21} + \frac{1}{39} + \bullet \bullet \bullet \frac{1}{212800} = 0.101249$$

2.5 3次元シェルモデルによる側板の座屈強度評価解析

非線形ばねを有する質点系モデルの浮き上がり解析結果によって、以下の浮き上がりが発生した2基のタンクを選定し、3次元シェル要素モデルによる弾性大変形解析を実施し、最大浮き上がり変位が生じるときの沈み込み側の側板下端に発生する最大軸方向圧縮応力を求めた(通常は側板の最下端付近が最大となる)。側板の限界座屈応力との比較により側板の地震時の座屈強度評価を行った。

(1) 旧法タンク

No.3 (30000 KL)(算定された最大浮き上がり変位:104.3 cm)

(2) 新法タンク

No.3 (30000 KL) (算定された最大浮き上がり変位: 77.5 cm)

2.5.1 解析モデル

タンクの浮き上がり側及び沈み込み側に着目するため、2 基のタンクの3 次元シェルモデ ルを作成した。タンク形状は 1/2 部分であるが、その切断面には対称条件を設定した。底板 は形状として全面作成しているが、タンク半径の 70%の位置からの底板の一部を剛体要素 でモデル化し、中心の参照点と連動させている。

タンク側板上端のトップアングルのみモデル上には含まれている。上端拘束条件はフリー とした。底板およびアニュラ板と基礎との接触・離間を考慮するため、軸方向の圧縮のみに 294N/cm³の力が生じるようなばね要素を設定した。

2.5.1.1 旧法タンクNo.3の解析モデル

旧法タンク No.3 (30000KL) を対象として解析モデルを作成した(図 2.5.1 参照)。タンクの主な寸法と諸元は 2.4 の表 2.4.1 に示すとおりである。

図2.5.1 旧法タンクNo.3の3次元シェルモデル

側板と付属物の重量分(合計:2760kN)は側板に均等に分布させて調整(側板の質量密度を増加)した。アニュラ板と底板の自重もモデル上考慮した。 材料の物性値は2.4の表2.4.3に示しているとおりである。

2.5.1.2 新法タンクNo.3の解析モデル

新法タンクNo.3 (30000 KL) を対象として解析モデルを作成した(図2.5.2参照)。タン クの主な寸法と諸元は2.4の表2.4.4に示しているとおりである。

図2.5.2 新法タンクNo.3の3次元シェルモデル

側板と付属物の重量分(合計:3530 kN)は側板に均等に分布させて調整(側板の質量密度を増加)した。アニュラ板と底板の自重もモデル上考慮した。

材料の物性値は2.4の表2.4.6に示しているとおりである。

2.5.1.3 荷重条件

(1) 荷重

側板の付属物及び屋根の重量分は側板に均等に分布させて調整(側板の質量密度を増加) した。アニュラ板と底板の自重もモデル上考慮した。

(2) 動液圧の算定

入力地震動は、地震動レベル1の設計水平震度Kh1を基準として、消防法により規定され た以下の算出式で求めた動液圧を静的に作用させた。算出した動液圧は、1/2対称境界面を 最大/最小として、側板と底板の周方向に余弦分布させてモデルに入力した。

水平方向地震動による側板部作用する液圧は、次式で表される。
$Ph = Ph_0 + Ph_1 \tag{2.5.1}$

 P_h は、底部からの高さZにおける側板部に作用する動液圧 (N/mm^2) である。 P_{h0} 及び P_{h1} は 次式のとおり。

$$Ph_{0} = \frac{9.80665\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{0i} \left(\frac{Z}{H}\right)^{i} \right\} Kh_{1} / \nu_{3}$$
(2.5.2)

$$Ph_{1} = \frac{9.80665\,\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{1i} \left(\frac{Z}{H}\right)^{i} \right\} (1 - \frac{1}{v_{3}}) Kh_{1}$$
(2.5.3)

ここで、 ρ は貯蔵液の比重、Hは最高液面高さ(m)、 v_3 は特定屋外貯蔵タンクの固有 周期を考慮した応答倍率 (-)、 C_{0i} と C_{1i} は、特定屋外貯蔵タンクの最高液面高さと直径 との比により、求めた係数である。

算定された2基の対象タンクの動液圧を参考資料6に示す。

(3) 解析ステップ

解析ステップを、次のように2段階に分けて実施した。

- ア ステップ1通常時荷重(静液圧)
- イ ステップ2 地震時荷重(静液圧+動液圧) 静液圧が負荷されている状態から、動液圧を準静的に段階的に負荷させた。 質点系モデルにて算定された最大浮き上がり変位となるときに側板に発生する応力を 確認した。

2.5.2 解析結果

2.5.2.1 旧法タンクNo.3の解析結果

以下に旧法タンクNo.3の最大浮き上がり変位104.3 cmまでの解析結果を示す。

側板下端部の円周方向角度に対応する軸方向変位を図2.5.3に示す。最大浮き上がり変位 が104.3 cmのとき、沈み込み側の最大沈み込み変位は僅か0.6 cmであることが確認された。

沈み込み側の軸方向膜応力と側板の高さの関係を図2.5.4に示す。このとき沈み込み側の 側板下端に発生する最大軸方向圧縮応力は13.1 N/mm²であった。また、沈み込み側の円周 方向膜応力と側板の高さの関係を図2.5.5に示す。このとき沈み込み側の側板最下段に発生 する最大円周方向膜応力は336 N/mm²であった。

図2.5.3 側板下端部の円周方向の角度に対応する軸方向変位

図2.5.4 側板に発生した軸方向の膜応力と側板の高さの関係

図2.5.5 側板に発生した円周方向の膜応力と側板の高さの関係

側板最下端の浮き上がり104 cm時の変形を図2.5.6、応力分布を図2.5.7、浮き上がり範囲 を図2.5.8に示す。

図2.5.6 変形図(104.3cm浮き上がり時)

浮き上がり側の側板は動液圧の影響でタンク内側へ凹むように変形している。本モデルで は形状を単純化してウインドガータ等を含めていないために大きな変形となっているが、実 際のタンクでは変形は抑えられると推測する。本検討では沈み込み側下部の圧縮に注目して 座屈評価をし、今回は浮き上がり側の周方向応力の評価は除外する。

図2.5.7 相当応力分布図(104.3cm浮き上がり時)

図2.5.8 浮き上がり範囲(104.3cm浮き上がり時)

2.5.4.2 新法タンクNo.3の解析結果

以下に新法タンクNo.3の最大浮き上がり変位77.5 cmまでの解析結果を示す。 側板下端部の円周方向角度に対応する軸方向変位を図2.5.9に示す。最大浮き上がり変位 が77.5 cmのとき、沈み込み側の最大沈み込み変位は僅か0.5 cmであることが確認された。 沈み込み側の軸方向膜応力と側板の高さの関係を図2.5.10に示す。このとき沈み込み側の 側板下端に発生する最大軸方向圧縮応力は14.0 N/mm²であった。また、沈み込み側の円周 方向膜応力と側板の高さの関係を図2.5.11に示す。このとき沈み込み側の側板最下段に発生 する最大円周方向膜応力は285 N/mm²であった。

側板最下端の浮き上がり77.5 cm時の変形を図2.5.12、応力分布を図2.5.13、浮き上がり 範囲を図2.5.14に示す。

図2.5.9 側板下端部の円周方向の角度に対応する軸方向変位

図2.5.10 側板に発生した軸方向の膜応力と側板の高さの関係

図2.5.11 側板に発生した円周方向の膜応力と側板の高さの関係

図2.5.12 変形図(77.5cm浮き上がり時)

浮き上がり側の側板は動液圧の影響でタンク内側へ凹むように変形している。本モデルで は形状を単純化してウインドガータ等を含めていないために大きな変形となっているが、実 際のタンクでは変形は抑えられると推測する。本検討では沈み込み側下部の圧縮に注目して 座屈評価をし、今回は浮き上がり側の周方向応力の評価は除外する。

図2.5.13 相当応力分布図(77.5cm浮き上がり時)

図2.5.14 浮き上がり範囲(77.5cm浮き上がり時)

2.5.3 座屈強度評価

座屈強度評価においては、以下のような手順で軸圧縮限界座屈応力を評価するが、必要に 応じて内圧を考慮した評価を行う。

一様軸圧縮を受ける内圧のない円筒殻の弾性軸圧縮限界座屈応力は、次式で表される。

$$\sigma_{cr} = 0.4E \frac{t_s}{D} \tag{2.5.4}$$

ここで、

σ_{cr}:一様軸圧縮を受ける円筒殻の弾性軸圧縮限界座屈応力(N/mm²)

E: 側板のヤング率 (N/mm²)

ts: 側板最下端の板厚(mm)

運転時満液状態にある平底円筒形石油貯槽においては、地震時動液圧負荷側(図 2.5.7、 図 2.5.13 の沈み込み側)の最下段側板の円周方向膜応力が、降伏応力の 0.3 倍を上回って いる場合、象の脚型座屈の評価が要求されている。

ここでは容器構造設計指針において、円周方向膜応力/降伏応力比が 0.3 以上の場合の限 界座屈応力値に着目し、内圧下における側板の象の脚型座屈限界応力を以下に示す。

$$\frac{\sigma_{\phi}}{\sigma_{y}} \ge 0.3 \quad \text{かつ,} \quad \frac{D}{t_{s}} \ge 1.614(\frac{E}{\sigma_{y}}) \quad \text{の場合}$$

$$\sigma_{cr} = 0.96E \frac{t_{s}}{D} (1 - \frac{\sigma_{\phi}}{\sigma_{y}}) \quad (2.5.5)$$

2.5.3.1 旧法タンク No.3の座屈強度評価

当該タンクの材料のヤング率 E=205940 N/mm²、側板厚 t_s=18 mm、内径 D=45100 mm を代入すると、軸圧縮限界座屈応力 σ_{cr} =32.9 N/mm²となる。

当該タンクの側板最下段に発生した最大円周方向膜応力(336 N/mm²)は、降伏応力(450 N/mm²)との比(0.75)が 0.3 以上であることが確認されたので、象の脚型座屈の評価は 必要となる。式(2.5.5)で計算された象の脚座屈限界応力は 19.7 N/mm²となる。

以上により、計算された旧法タンク No.3 の限界座屈応力は、32.9 N/mm² (ダイヤモン ド型座屈)、19.7 N/mm² (象の脚型座屈)となり、解析結果から得られた軸圧縮応力の最 大値の 13.1N/mm²よりも大きな値となっている。

そのため、当該区域の再現地震波形に対して、旧法タンク No.3 の最大浮き上がり変位が 104.3 cm 発生した場合の応力は、従来評価手法の限界応力を超えない。

2.5.3.2 新法タンク No.3の座屈強度評価

当該タンクの材料のヤング率 E=205940 N/mm²、側板厚 ts=21 mm、直径 D=45900 mm を代入すると、軸圧縮限界座屈応力 o_{cr} =37.7 N/mm²となる。

当該タンクの側板最下段に発生した最大円周方向膜応力(285 N/mm²)は、降伏応力(490 N/mm²)との比(0.58)が 0.3 以上であることが確認されたので、象の脚座屈の評価は必要となる。式(2.5.3)で計算された象の脚座屈限界応力は 38.0 N/mm²となる。

以上により、計算された新法タンク No.3 の限界座屈応力は、37.7 N/mm²(ダイヤモン ド型座屈)、38.0 N/mm²(象の脚型座屈)となり、解析結果から得られた軸圧縮応力の最 大値の 14.0 N/mm²よりも大きな値となっている。

そのため、当該区域の再現地震波形に対して、新法タンク No.3 の最大浮き上がり変位が 77.5 cm 発生した場合の応力は、従来評価手法の限界応力を超えない。

2.6 まとめ

2.6.1 解析手法等

今年度は、南海トラフ沿いで発生する最大クラスの巨大地震に対する屋外貯蔵タンクの単体による解析を、タンク本体への影響という観点から短周期地震動に着目し実施した。なお、この解析にあたっては、解析手法について一定の信頼性があることを確認するため、東北地方太平洋沖地震における屋外タンク貯蔵所の実態を再現できることの確認を行った。今回対象とした地震動は、現時点で考えられる最新の科学的知見を踏まえ内閣府の検討会においてとりまとめられたものであるが、通常のタンクの設計で用いられるような比較的発生頻度の高い地震ではなく、千年に一度あるいはそれよりもっと発生頻度が低いものであり、また、考え得る最大クラスの地震動である。

今回の解析においては、入力する地震動は、揺れが大きい地区を選定するなど安全側とな るような評価を実施しつつ、このような地震動に対するタンクの挙動を再現し耐震安全性を 確認するという観点から、通常の耐震設計で用いられている簡易な方法ではなく、詳細な解 析手法を採用し、より精緻に耐震安全性を確認した。タンクで通常用いられている耐震設計 と今回の解析の主な違いについて、以下にまとめた。

	耐震設計	今回の耐震評価
評価手法	静的耐震評価法の1つである修正震度法を 用いて、構造物の固有周期に応じた加速度を 構造物の中心に作用させる。	動的耐震評価法の1つである時刻歴応答法 を用いて、加速度を1/100 秒程度の刻みで構 造物に作用させる。
	修正震度法のイメージ	時刻歴応答法のイメージ
	以下のような簡易的な方法で評価	以下のような詳細な方法で評価。
	〇隅角部 保有水平耐力が必要保有水平耐力以上であ ること。	〇隅角部 質点系による浮き上がり量に基づくFEM モデルによる評価
	Q _{dw} =0.15 _{v₋₁.v₋₂.v₋₃.v_{-p}・D_S・W₀ 0.15_{v₋₁.v₋₂.v₋₃.:設計水平震度}}	
耐震評価	D _s :構造特性係数 W ₀ :有効液重量	解析モデルのイメージ
	〇側板部 発生応力が許容応力以下であること。	〇側板部 質点系による浮き上がり量に基づくFEM モデルによる評価
	(例) 許容圧縮応カ $S' = \frac{0.4E \cdot t}{2.25D} \times 1.5$	
	D:直径、E:ヤング率、t:側板厚	解析モデルのイメージ

表 2.6.1 特定屋外タンク貯蔵所の耐震設計と今回の耐震評価による主な比較

また、今回の解析に用いた解析条件については、表 2.6.2 のとおり、実態に即した形とし ながらも、安全側の評価となるように設定を行った。

項目	解析条件	
入力地震動	特防区域を含む市町村において南海トラフ巨大地震の想定震度 が7の地域を抽出し、その中で特防区域の揺れが大きい地区を 選定し入力地震動を作成	
タンクモデル	容量の違いを考慮した代表的なタンクモデルについて、簡易的 に浮き上がり量を解析し、浮き上がり量が大きいものを選定し 詳細解析を実施	
貯蔵量(液高さ)	100%の液高さで解析 (液高さを変化させた場合も解析)	
比重	石油類の比重の最大値を想定し 0.95 で解析 (0.85 の場合も解析)	
タンクの弾塑性の 復元カモデルの 非線形ばね特性	非線形ばね特性の第2剛性のK2を0として解析 (タンクの底部板の全断面が塑性化した以降のばね特性は 0~ 0.3の値と想定されるが、安全側となるよう0とした。)	
浮き上がり量の 解析手法	1 質点系モデルにより解析 (一般に3 質点系より安全側の評価を与える。)	
地下逸散減衰	通常 10%であるが、東日本大震災での実態の再現性から、15% を採用	

表 2.6.2 解析に用いた条件

2.6.2 解析結果

(1) 質点系モデル解析結果

入力に使用した南海トラフの想定地震波形のうち、A地区で旧法タンク及び新法タンク ともに最も大きな浮き上がりが生じており、最も大きな浮き上がりが生じた以下2基のタ ンクについて隅角部溶接部の疲労損傷、側板の座屈を確認した。

ア 旧法タンク

A 地区 No.3 (3 万 KL) 104.3cm 浮き上がり

イ 新法タンク

A 地区 No.3 (3 万 KL) 77.5cm 浮き上がり

(2) 疲労損傷評価

隅角部の疲労損傷は、旧法 No.3 タンク、新法 No.3 タンクともに疲労損傷度 D は 1.0 以下という結果になったが、旧法 No.3 の表 2.4.8 に示した B 点に発生した板表面上の全 ひずみ振幅の一部には約 35%という飯田の最適疲労曲線式のグラフ範囲外の数値が出て おり、適切な評価ができなかった。

(3) 側板座屈評価

側板の座屈評価は、旧法タンク、新法タンクともに座屈応力が限界座屈応力以内という 結果になった。

3 屋外貯蔵タンクの耐震安全性の解析(平成27年度)

平成26年度に検討された質点系モデル解析において、南海トラフ地震の想定地震動に対 する側板直下部の浮き上がり量を解析したところ、最大で104.3cmとなるタンク(旧法No3 タンク、30000kL、直径45.1m)があった。

これは、解析を効率的に進めるため、1 質点系モデルによる解析条件を単純化して実際よ りも浮き上がり変位が大きくなるモデルで検討した結果ではあり、この結果を元に、FEM 解 析により同タンクの隅角部のひずみを解析したところ、全ひずみ振幅Δεが約35%となり、 一般的な低サイクル疲労の疲労損傷度評価手法(飯田の最適疲労曲線)では評価できない範 囲となった。

また、FEM 解析により側板の弾性応力解析を行ったところ、本モデル作成において、沈 み込み側下部の圧縮に着目した評価を行うためタンクモデルの形状を単純化してウインド ガーダー等を含めていないことから、浮き上がり側の側板上部に大きな変形が生じた。

このことから、浮き上がり変位をより精緻に検討し、その結果をもって再度耐震安全性の 解析を行う。

3.1 解析の流れ

本調査では図 3.1.1 に示す手順により、以下の3種類の解析を実施した。

- (1) 質点系モデル等の見直し及びタンク側板下端部の浮き上がり解析
- (2) 2 次元軸対称モデルによる浮き上りの繰返し挙動を考慮した隅角部の疲労損傷度評価解 析
- (3) 3次元シェルモデルによる底板浮き上がり時の側板の座屈強度評価解析

図 3.1.1 南海トラフ地震に対する屋外貯蔵タンク耐震安全性確認の再解析の流れ

3.2 質点系モデル等の見直し及びタンク側板下端部の浮き上がり解析

平成 26 年度の検討ではモデルを単純にして安全側で検討を行ったが、平成 27 年度は、質 点系モデルや解析条件の見直し等を行って浮き上がり変位をより精緻に検討する。

3.2.1 質点系モデルの見直し

通常、特定屋外タンクはアンカーで固定されることなく盛土基礎上に直接載置される。従って、内容液に満たされたタンクの隅角部は、強い地震動の影響を受けると基礎面から浮き上がる現象を繰返して、当該隅角部アニュラ板の内側の隅肉溶接止端部がき裂・破損に至るおそれがある。消防法では、地震後のタンクに多少変形が残っても、き裂・破損・漏洩がなければ良いと言う基本概念に基づいて、終局強度耐震設計法が定められている。

片浮き上がり ロッキング現象

回転ばね付き 1 質点系モデル 1 質点等価水平ばね系モデル

図 3.2.1 バルジング振動質点系モデル化(側板下端が片浮き上がりする場合)

平成 26 年度は、消防法の終局強度耐震設計法に採用された水平方向の地震応答を考慮し た解析モデル(図 3.2.1 参照)の基本的考え方に沿って作成した1質点非線形ばね系モデル を用いて水平方向地震力に対する時刻歴応答解析を行い、タンクの浮き上がり量の検討を 実施した。当該解析・検討では、非線形水平ばね特性に、S字非ループ型の弾塑性復元力特 性(第2剛性を無視した水平抵抗力 Qと水平変位 Δの線図(以下バイリニア型 Q-Δ線図 と略称する))を持つ動液圧の影響を無視した簡便な非線形水平ばねを使用したため、検討 対象タンクのうち、旧法タンク No.3 では大きな浮き上がり変位を生じる結果となった。

そこで、平成 27 年度はタンクの浮き上がり量をより適切に評価するため、1 質点モデル の非線形水平ばね特性に、S 字非ループ型の弾塑性復元力特性(第2剛性以降を考慮した水 平抵抗力 Q と水平変位 Δ の線図(以下マルチリニア型 Q-Δ線図と略称する))持つ動液圧 の影響を考慮した非線形水平ばねを採用して解析を行う(図 3.2.2 及び図 3.2.3 参照)。

図 3.2.2 タンクの片浮き上がりロッキング挙動解析用 1 質点非線形水平ばね系モデルの概念図

図 3.2.3 1 質点モデルの非線形水平ばね特性概念図

また、参考として、図 3.2.4 に示す貯油タンクの振動モデルの考え方に基づき、スロッシ ング振動とバルジング振動の両方を考慮できる 3 質点モデルに対して、タンクの片浮き上 がり挙動に対応する 3 質点非線形ロッキング系モデルを構築して解析・検討を実施し、バ ルジング振動に着目した簡易解析モデル(1 質点非線形水平ばね系モデル)の解析結果の比 較を行い、参考資料 14 に示した。

なお、消防法における貯油タンクの耐震設計は、長周期設計地震動に対してスロッシング 振動1 質点モデル、短周期設計地震動に対してはバルジング振動2 質点モデルを用いて個 別に修正震度法により行われていることを付記する。本年度の検討内容のフローチャート を示せば図 3.2.5 のとおりである。

図3.2.4 貯油タンクの振動モデル概念図(仮定: 剛基礎に固定されたタンク)

図 3.2.5 質点系モデルでの検討内容とのフローチャート

3.2.2 1 質点非線形ばね系モデルによる時刻歴地震応答解析の検討

1 質点非線形ばね系モデルによる時刻歴地震応答解析を実施するために、以下の検討を行った。

- (1) 定式化による非線形水平ばねの水平力 Q と水平変位の復元力特性(Q-Δ 線図)の整備 と算定
- (2) 定式化による非線形回転ばねの回転モーメント M と回転角度 θ の復元モーメント特性
 (M-θ線図)の整備と算定
- (3) 3D シェル FEM 解析モデルを用いる弾塑性大たわみ解析結果から求める回転モーメント M と回転角度θとの復元モーメント特性(M-θ線図)の整備

(定式化によるばね特性の算定は簡便的な近似方法であり、解析結果が保守的になり現 実とは異なることが懸念される。そのため FEM 解析モデルを用いたばね特性での検討を 実施し、定式化ばねの結果と比較する。)

(4) 定式化による Q-Δ線図と定式化による M-θ線図の同等性の確認・検討

3.2.2.1 1 質点非線形ばね系ばねモデルの検討

図 3.2.6 (a) は、剛基礎から片浮き上がりロッキングする円筒形貯槽(液体・貯槽連成バルジング振動)モデルである。片浮き上がり非線形回転ばね特性を表現する $M-\theta$ 線図を用いると、図 3.2.6 (b) に示す1 質点非線形回転ばね系モデルとなる。非線形水平ばねを表現する $Q-\Delta$ 線図を用いると、図 3.2.6 (c) に示す1 質点非線形水平ばね系モデルとなる。すなわち、図 3.2.6 (b) と (c) に示す両1 質点非線形ばね系モデルは、ばねなどを等置することにより、理論的に一致する。

図3.2.6 1質点片浮き上がりロッキング系モデルと1質点非線形ばね系モデル

本検討では、図 3.2.6 (b) と(c) に示す浮き上がり変位解析用の2つの簡便的な1質点 非線形ばね系モデルを用いて、想定される地震波入力による時刻歴応答解析を実施し、1質 点モデルの弾塑性地震応答変位を求めるとともに弾塑性変形と隅角部の片浮き上がり挙動 との関連づけを行う。

Q-Δ線図で表現する非線形水平ばねの復元力特性を持つ基礎固定の1質点モデルの振動 方程式は次のように書ける(基礎に回転ばねありの1質点モデルの振動方程式については 参考資料7参照)。

$$M_1 \ddot{\Delta} + C_e \dot{\Delta} + Q(\Delta) = -M_1 \ddot{x}_g \qquad (3.2.1)$$

ここで、 M_1 : 質点の有効質量(kg) $C_e \dot{\Delta}$:粘性減衰力(N) $Q(\Delta)$: 非線形水平ばねの復元力(N) \ddot{x}_g : 地震加速度(cm/s²)

Δ: 質点の相対変位 (cm)

 Δ : 質点の相対速度 (cm/s)

△: 質点の相対加速度(cm/s)

 $\dot{\Delta} + \ddot{x}_{o}$: 質点の絶対加速度 (cm/s)

3.2.2.2 非線形水平ばねの復元力特性(Q-△線図)の算定方法

剛基部上に置かれた満液状態の円筒形貯槽を1 質点でモデル化し、タンクの浮き上がり 挙動を非線形水平ばね特性で表現する。この非線形水平ばねにより質点に作用する水平力 Qと水平変位Δの復元力線図を図 3.2.7 に示す。計算方法と計算式は参考資料8と参考資 料9に示す。

下図における各 Point の定義は下記のとおりである。

- (1) Point T ----- (Q_{Rt}, Δ_{et}) 弾性浮き上がり開始点
- (2) Point Y ------ (Q_{Ry}+Q_{Rt}, Δ_{ey}) 弾性限界浮き上がり点
- (3) Point P ----- (Q_{Rp}+Q_{Rt}, Δ_{ep}) 塑性関節発生浮き上がり点
- (4) Point 4 ------ (Q_{R4}+Q_{Rt}, Δ_{e4}) 想定される最大浮き上がり変位における点

必要に応じて、Point 4 の算定式を用いて、線図上に任意点(Point 5 など)の追加も可能となる。

なお、図の中に使用される記号αは、動液圧 Ph₁と静液圧 P₀の比(α=Ph₁/P₀)とし、浮き上がり変位の変動によって変化する値である。浮き上がり変位に動液圧による影響を取り入れることによって、側板下部がより浮き上がり易くなる現象を数式で表現できるようになる。

図 3.2.7 非線形水平ばねの復元力特性(Q-△線図)

参考資料 9 に示す計算式を用いて、算定した旧法タンク No.3 の 1 質点モデルの非線形水 平ばねの復元力特性とする Q-Δ線図上の折れ曲がり点の座標値と線図を表 3.2.1 と図 3.2.8 に示す(参考資料 11 に示す質点系の諸元計算シート参照)。

記号	Δ (cm)	Q (N)
∆ 00	0.00	0
∆et	0.17	8.26E+06
∆ey	0. 74	3. 05E+07
∆ер	0.97	3.54E+07
∆ e4	4. 43	5. 79E+07
∆ e5	14. 92	7.56E+07

表 3.2.1 Q-△線図用記号と折れ曲がり点の座標値

図 3.2.8 非線形水平ばねの復元力特性(Q-△線図)

3.2.2.3 非線形ロッキングばねの復元モーメント特性(M-0線図)の算定方法

3.2.2.2 に記述された非線形水平ばねの復元力特性の算定方法に基づき、非線形回転ばね 用の抵抗モーメント M と回転角度 θ の復元モーメント特性(M-θ 線図)の計算方法の定 式化を検討した。構築した M-θ 線図を図 3.2.9 に示す。

上図における各 Point は下記するとおりであり、計算方法は参考資料 10 に記載する。

- (1) Point T ----- (M_{Rt}, 0) 弾性浮き上がり開始点
- (2) Point Y ----- (M_{Ry}+M_{Rt}, θ_{ty}) 弾性限界浮き上がり点
- (3) Point P ----- (M_{Rp}+M_{Rt}, θ_{tp}) 塑性関節発生浮き上がり点
- (4) Point 4 ----- (M_{R4}+M_{Rt}, θ_{t4}) 想定される最大浮き上がり変位における点

必要に応じて、Point 4 の算定式を用いて、線図上に Point 5 の追加も可能となる。

記号	heta (rad)	M (N·cm)
	0. 00E+00	0.00E+00
	0. 00E+00	6. 23E+09
∆ty	1.26E-04	2. 30E+10
∆tp	2.99E-04	2. 67E+10
∆t4	4. 25E-03	4. 37E+10
∆t5	1.77E-02	5. 70E+10

表 3.2.2 M-θ線図用記号と折れ曲がり点の座標値

図 3.2.10 非線形回転ばねの復元モーメント特性(M-θ線図)

3.2.2.4 3D シェル FEM 解析結果から求めた非線形ロッキングばねの復元モーメント特性

3.2.2.3 に記述した定式化による非線形回転ばねの復元モーメント特性の算定方法は、簡便的な近似方法であり、保守的な計算結果になると推測されている。ここでは、タンク全体の 3D シェルモデルを用いた FEM 弾塑性大たわみ解析を実施し、その結果から求めた抵抗 モーメント M と回転角度 θ の復元モーメント特性 (M-θ 線図)を算定し、それを質点系 モデルの非線形回転ばね特性として使用する。

旧法タンク No.3 の 3D シェル FEM モデルの弾塑性大たわみ解析結果から求めた抵抗モ ーメント M と回転角度 θ の復元モーメント特性(以下 3D シェルモデルの M-θ 線図と略 称する)を図 3.2.11 に示す。解析モデル及び解析条件の詳細を参考資料 12 に記述する。

図 3.2.11 3D シェルモデルの M-θ線図

3.2.3 解析対象タンク及び解析条件

3.2.3.1 解析対象タンクの主な諸元

解析対象タンクとする旧法タンク No.3 の主な寸法と諸元を表 3.2.3 に示す。

旧法タンクNo.3		
許可容量	30000 KL	
タンク内径 D	45100 mm	
タンク高さ Ht	21270 mm	
液面高さ H	18802 mm	
液比重 γ	0.95	
最下段側板の板厚 t _s	18 mm	
H/3高さの側板の板厚 t _{1/3}	13 mm	
アニュラ板厚 ta	12 mm	
屋根形式	シングルデッキ浮屋根	

表3.2.3 解析対象タンクの主な寸法と諸元

3.2.3.2 1 質点非線形ばね系モデルの諸元

消防法新基準に基づいて算出したタンクのバルジング固有周期、有効質量と参考資料 11 に示す算定式による非線形水平ばね特性(水平力と水平変位の復元力線図のばね及び側板 の自重を考慮)等を1質点非線形ばね系モデルの解析上の諸元とする(参考資料 11 に示す 1質点系モデルの諸元計算シート参照)。

基礎固定の1質点非線形水平ばね系モデル(図 3.2.6(c)参照)の諸元を表 3.2.4に示す。

固有周期(バルジング振動)	T.b	0.336	s
自由液有効質量	M. ₁ . (+M. _t .)	1. 36E+07	kg
自由液の重心高さ	H. ₁	7. 55E+02	cm
バルジング振動 ばね係数	K. ₁	4. 74E+07	N/cm
バルジング振動 減衰係数	C.e.=C.1	5. 07E+05	N.s/cm
復元力特性	図 2.23.3 に示す Q-Δ線図参照		照

表 3.2.4 1 質点非線形水平ばね系モデルの諸元

注:Mttは側板の重量分

基礎に回転ばねありの1質点非線形回転ばね系モデル(図 3.2.6(b)参照)では表 3.2.4 に示す諸元を使用し、非線形回転ばねの復元モーメント特性に図 3.2.10 に示す $M-\theta$ 線図 を使用している(回転ばねの減衰係数は $C_{\theta}=0$)。

3.2.3.3 入力地震波

南海トラフ巨大地震のA地区の想定地震動(EW 方向)の加速度波形を図 3.2.12 に示す。 EW 方向の加速度波形の最大と最小加速度値は 672.2/-767.1 cm/s²である。図 3.2.13 に、そ の地震動に関する減衰比 0.15 の加速度応答スペクトルを示す。また、タンクの1次バルジ ング振動周期近傍のピークの周期及びその応答加速度も同図に記す。

図 3.2.12 A 地区の想定地震動の加速度の波形(EW 方向)

図 3.2.13 A 地区の想定地震動(EW 方向)の加速度応答スペクトル(減衰比:0.15)

3.2.3.4 側板下端の浮き上がり変位の計算方法(基部固定の 1 質点非線形ばね系モデルの場合)

図 3.2.14 に示すようにタンク側板下端が片浮き上がりを生じたことと想定し、最大浮き 上がり変位 δ_{u-max}は近似的に次式で表わされる。

$$\delta_{u-\max} = \frac{D}{H_1} (\Delta_{\max} - \frac{Q_{\max}}{K_1})$$
(3.2.2)

Δ_{max}:最大水平変位(最大地震応答変位)(cm)
 Q_{max}:最大水平変位になるときの最大水平力(N)
 D:タンクの直径(cm)(No.3 旧法タンクの場合、D=4510cm)
 H₁:バルジング有効液質量高さ(cm)

K1:バルジング振動ばね定数 (N/cm)

図 3.2.14 1 質点非線形ばね系モデルによる浮き上がり変位の算出の概念図

3.2.3.5 側板下端の浮き上がり変位の計算方法(基部に回転ばねありの質点系モデルの場合) 時刻歴応答解析から求めた基部の最大回転角度を用いて、最大浮き上がり変位 δ_{u-max}は近 似的に次式より計算される。

$$\delta_{u-\max} = \theta_{\max} D \tag{3.2.3}$$

3.2.3.6 応答水平震度と動液圧の算定

最大応答水平震度 Kh₁、動液圧 Ph₁及び動液圧比 a は、浮き上がり解析から求めた水平 力 Q 及び回転モーメント M を用いて、以下の式(算定方法の詳細について参考資料 9 参 照)によって算定する。

 $Kh_1 \approx Q / W_1 \tag{3.2.4}$

あるいは、

 $Kh_{1} \approx M / (W_{1}H_{1})$ (3. 2. 5) $ph_{1} \approx Kh_{1}C_{10}p_{0}$ (3. 2. 6) $\alpha = ph_{1} / p_{0}$ (3. 2. 7)

ここで、W₁:自由液有効重量、P₀:静液圧、C₁₀は、特定屋外貯蔵タンクの最高液面高さ Hと直径 D との比により求めた係数である。ここでは、C₁₀=0.71 とした(屋外貯蔵所のタ ンクの基準参照)。

3.2.3.7 時刻歴地震応答解析方法

有限要素法による非線形構造解析プログラム Abaqus/Standard V6.12 を用いて、質点系

モデルの時刻歴地震応答解析を実施する。Abaqus による一般的な非線形動的解析は、陰的時間積分法を用いて、構造系の動的過度応答(地震による時刻歴応答)や準静的な応答を計算する。

3.2.3.8 Q-△線図とM-θ線図の同等性の検討結果

3.2.2.2 及び 3.2.2.3 で記述した非線形ばね特性 ($Q-\Delta$ 線図と $M-\theta$ 線図)を持つ 2 つの 1 質点モデルでの地震応答の同等性を明らかにするため、以下の比較解析を行った。

昨年度検討した旧法タンク No.3 に対して、図 3.2.6 (b) と (c) に示す 2 つの 1 質点モ デルを作成した。基部固定の 1 質点モデル(平成 26 年度モデルの改良モデル)の非線形水 平ばねの特性は、図 3.2.8 に示す $Q-\Delta$ 線図を使用した。基部に回転ばねがある 1 質点モデ ルの非線形回転ばねの特性は、図 3.2.10 に示す $M-\theta$ 線図を使用した。

正弦波加振(正弦波周期:0.336sec(バルジング振動の固有周期 T_bと同じ)、最大加速度 振幅:1500cm/sec²)による2つの1質点非線形ばね系モデル(減衰なし)の解析結果の比 較を表3.2.5、水平力と水平変位の関係を示す復元力履歴の比較を図3.2.15に示す。

1g占エゴリ	最大回転角度	最大浮き上がり変位	M1 質点の最大/最小応答変位
「貝点て)ル	(rad)	(cm)	(cm)
基礎固定		125.9	22.0/-22.5
基礎部に回転ばねがある	0. 028	125.8	22. 1/-22. 5

表 3.2.5 時刻歴応答解析による検証結果(正弦波加振、減衰なし)

図3.2.15 2 つの1 質点モデルの水平変位と水平力の履歴図(正弦加振、減衰なし)

以上の比較結果によって、正弦波を受ける場合、Q-Δ線図を使用した基部固定の1質 点モデルの解析結果とM-θ線図を使用した基部に回転ばねありの1質点モデルの正弦波 加振の応答解析結果及び水平力と水平変位の関係を示す復元力の履歴は同等であることが 確認された。これにより、3質点系モデルの解析のため、M-θ線図の使用もできるよう になる。

3.2.4 解析結果

3.2.4.1 定式化によるQ-△線図を使用した1質点非線形ばね系モデル時刻歴応答解析

解析対象タンクとする旧法タンク No.3 について、定式化による Q-Δ線図を非線形水平 ばねの復元力特性とする 1 質点非線形ばね系モデルを用いて、A 地区の想定地震動の EW 波に対する時刻歴地震応答解析を実施した。得られた当該タンクの水平応答変位、浮き上が り変位及び回数を表 3.2.6、応答解析結果を図 3.2.16 から図 3.2.19 に示す。

表 3.2.6 定式化による Q-△線図を使用した1質点モデルの

解析結果のまとめ(想定地震動:A地区 EW 波)

最大/最小	最大/最小	最大	
地震加速度	応答水平変位	浮き上がり変位	浮き上がり回数
(cm/s^{2})	(cm)	(cm)	
672.2/-767.1	14. 0/-12. 9	75. 1	34

図 3.2.16 応答変位の時刻歴(定式化によるQ-△線図使用)

図 3.2.17 浮き上がり変位の時刻歴(定式化によるQ-ム線図使用)

図 3.2.18 非線形水平ばねに発生した水平抵抗力の時刻歴 (定式化によるQ-△線図使用)

図 3.2.19 非線形水平ばねの復元力履歴図(定式化によるQ-ム線図使用)

最大浮き上がり変位(75.1cm)発生時(79.6秒)における水平抵抗力及び式(3.2.4) ~ 式(3.2.7)から算定した最大応答水平震度と動液圧及び動液圧比を表 3.2.7 に示す。

表 3.2.7 最大浮き上がり変位発生時(79.6秒)の

最大応答水平震度及び動液圧

水平抵抗力	応答水平震度	動液圧	動液圧比
Q (N)	Kh ₁	Ph_1 (N/mm ²)	α
6.48E+07	0. 487	0.063	0. 35

3.2.4.2 3D シェルモデルの M-θ線図を使用した1質点非線形ばね系モデルの時刻歴応答解析 解析対象タンクとする旧法タンク No.3 について、3D シェルモデルの M-θ線図を基部 の回転ばねの非線形回転ばね特性とする1質点非線形ばねモデルを用いて、A 地区の想定 地震動の EW 波に対する時刻歴地震応答解析を実施した。

得られた当該タンクの最大回転角度、浮き上がり変位及び回数を表 3.2.8 に、応答解析結 果を図 3.2.20 から図 3.2.23 に示す。

表 3.2.8 3D シェルモデルの M-θ線図を使用した1質点非線形ばね系モデル

解析結果のまとめ(想定地震動:A地区 EW 波)

最大/最小 地震加速度 (cm/s ^{,2})	最大回転角度 (rad)	最大浮き上がり 変位(cm)	浮き上がり回数
672. 2/-767. 1	0. 01	45.0	29

図 3.2.20 回転角度の時刻歴(3D シェルモデルの M- θ線図使用)

図 3.2.21 浮き上がり変位の時刻歴(3D シェルモデルの M-θ線図使用)

図 3.2.22 非線形回転ばねに発生した回転モーメントの時刻歴 (3D シェルモデルの M-θ線図使用)

最大浮き上がり変位(45cm)発生時(79秒における)の回転モーメント及び式(3.2.4) ~式(3.2.7)から算定した最大応答水平震度と動液圧及び動液圧比を表 3.2.9に示す。

表 3.2.9 最大浮き上がり変位発生時(79秒)の最大応答水平震度及び動液圧

回転モーメント	応答水平震度	動液圧	動液圧比
Q (N.cm)	Kh.1	Ph_{1} (N/mm ²)	α
7. 50E+10	0. 747	0. 096	0.55

3.2.5 見直した質点系モデルでの浮き上がり解析結果まとめ

平成 26 年度は、現行消防法の終局強度耐震設計法に採用された解析モデルの基本的考え 方に沿って作成した 1 質点系モデルを用いて時刻歴応答解析を行い、南海トラフ巨大地震 発生時におけるタンクの浮き上がり量の検討を実施した。当該解析・検討では、解析を効率 的に進めるため、非線形水平ばね特性に実際よりも大きな浮き上がり変位がでる S 字非ル ープ型の簡便な弾塑性復元力特性(第2剛性を無視した水平抵抗力 Q と水平変位 Δ の線図 を持つ動液圧の影響を無視した簡便な非線形水平ばね(バイリニア型 Q-Δ 特性ばね))を 使用したため、検討対象タンクのうち、旧法タンク No.3 では大きな浮き上がり変位を生じ る結果となった。そこで、平成 27 年度はタンクの浮き上がり量をより適切に評価するため、 1 質点系モデルの非線形水平ばね特性を見直し、第2剛性以降も考慮し、かつ動液圧の影響 も考慮した非線形水平ばね、(マルチリニア型特性ばね)を採用して解析を行った。

採用したマルチリニア型特性ばねは、定式化による $Q-\Delta$ 線図の特性と 3D のシェルモデルから得られた $M-\theta$ 線図の特性であり、それぞれ以下のような違いがある。

定式化による特性のばね		3D シェルモデルより 得られる特性のばね
動液圧の影響	考慮	考慮
タンク浮き上がりを繰り返すことにより 2回目以降は浮き上がり易くなる効果	Wozniak モデルを使用繰返しにより 浮き上がり易くなる傾向を考慮	考慮せず
作成されるばね特性	比較的柔らかいばね (安全側の設定)	比較的固いばね
ばね特性作成の簡便さ	作成が容易 (算定式を利用)	時間と手間がかかる (FEM 解析が必要)

表 3.2.10 採用したばね特性の比較

これらの特性を使用して、昨年度と同条件である南海トラフの想定地震波形 A 地区 EW 方向を入力地震波形とした旧法タンク No.3 (30000KL)の浮き上がり解析を実施した結果 は以下となった。

- ① 定式化による Q-∆線図を非線形水平ばねの復元力特性とした1質点非線形ばねモデルの解析結果:最大 75.1cmの浮き上がり
- ② 3D シェルモデルの M-θ線図を非線形回転ばねの復元モーメント特性とした1質点 非線形ばねモデルの解析結果:最大 45.0 cm の浮き上がり
- ③ 平成 26 年度(参考):最大 104.3 cm の浮き上がり

【考察】

- (1) 定式化による Q-Δ線図を非線形水平ばねとした場合、保守的な設定による比較的柔 らかいばね特性となるため、求めた浮き上がり変位(75.1cm)は、比較的安全側の結果 と考えられる。
- (2) 3D シェルモデルの M-θ線図で表現する非線形回転ばね特性については、解析上では、動液圧を静的な荷重として1回だけの作用による片側の浮き上がり挙動現象を模擬したが、繰り返しの履歴変形挙動(2回目や3回目)によるタンク変形に起因する浮

き上がりばね特性の低下は、本ばね特性を使用して求めた最大浮き上がり変位(45.0cm) よりも、実際は浮き上がりが大きくなる可能性があると考えられる。

従って、A 地区想定地震波を受ける当該タンクの最大浮き上がり変位は 45.0cm~75.1cm の幅内にあると推定される。

参考資料として、3 質点非線形ロッキングばね系モデルの構築、時刻歴地震応答解析結 果及び1 質点非線形ばね系モデルによる解析結果との照査・比較検討を参考資料 14 に示 す。

3.3 2次元軸対称モデルによる隅角部の疲労損傷度評価

旧法タンク No.3 の質点系モデルによる浮き上がり変位と回数の解析結果より、隅角部に 発生するひずみ量及び疲労損傷に対する強度を確認するため、非線形構造解析プログラム Abaqus V6.12 による有限要素法を用いた静的弾塑性ひずみ解析を行った。

3.3.1 解析モデル

旧法タンクNo.3(公称容量:30000KL)の隅角部を対象として解析モデルを作成した。 タンクの主な寸法と諸元を表3.3.1に示す。

A地区 旧法タンクNo.3								
許可容量	30000 KL	側板の板厚と材料						
タンク内径	45100 mm	1段	18 mm	HW50	6段	8	mm	HW50
タンク高さ	21270 mm	2段	15 mm	HW50	7段	8	mm	HW50
液面高さ	18802 mm	3段	13 mm	HW50	8段	8	mm	SS41
液比重	0.95	4段	11 mm	HW50	9段	8	mm	SS41
日祖下士	シンク゛ルテ゛ッキ	5段	9 mm	HW50	—	_	-	—
崖根形式	浮き屋根	アニュラ板の板厚と材料			12 mm S		SM400C	
		底板の板厚と材料 8 mm SS ²			SS41			
隅角部隅肉溶接部脚長(mm)		W1		12 mm	W2			12 mm

表3.3.1 解析対象タンクの主な寸法と諸元

最大浮き上がり点の隅角部の挙動は、2D軸対称ソリッド要素を用いた弾塑性大たわみ静的FEM解析法により実施する。

隅角部モデル化範囲を図3.3.1(a)、隅角部の一部の要素分割を図3.3.1(b)に示す。

図3.3.1 (a)の左端A端部の半径方向変位を拘束し、同図上端B端部は強制変位を与える 位置とした。また、隅角部溶接部近傍はメッシュ分割を約2mmとした。なお、図に示した 寸法はモデル上のA端部とB端部までの長さである。地盤との接触部には、圧縮ばね 294N/cm³の力を有するノンテンションばねを設置した。

図3.3.1 隅角部の解析モデル

(1) 解析条件

以下の条件で解析を行った。

ア 荷重

B端部(円周上)に側板重量等(=2764.4 kN)を負荷した。

イ 強制変位

片側の浮き上がり変位量を強制的に付与した。検討は以下の2ケースで行った。

① ケース1

定式化によるQ-Δ線図を非線形水平ばねの復元力特性とした1質点系モデルの片側の浮き上がり変位と回数(表3.3.2参照)。

② ケース2

3DシェルモデルのM-θ線図を非線形回転ばねの復元モーメント特性とした1質点 系モデルの片側の浮き上がり変位と回数(表3.3.3参照)。

ウ 繰返しサイクル

片側の浮き上がり回数を設定した(最大の浮き上がり変位を含む10mm以上の浮き上がり変位のみ考慮する場合の回数)。

(ケース	<1 定式化によるQ-△線図使用)
サイクルNo.	浮き上がり変位δ _ω (mm)
1	20. 7
2	27.8
3	38.0
4	56.3
5	69.6
6	35. 2
7	25. 2
8	13.0
9	157. 2
10	105.0
11	30. 7
12	36.4
13	572.0
14	751.0
15	372. 1
16	186.0
17	47.4
18	73.5

表3.3.2 各サイクルにおける浮き上がり変位

(ケース	₹2 3DシェルモデルのM−(9線図使用)
サイクルNo.	浮き上がり変位δ』(mm)	
1	28. 1	
2	12. 7	
3	26.6	
4	51.1	
5	13.8	
6	23. 1	
7	31.5	
8	27.4	
9	89.7	
10	60.6	
11	168.1	
12	450.0	
13	112.5	
14	71.5	

表3.3.3 各サイクルにおける浮き上がり変位

エ 液圧

アニュラ板と側板に作用する液圧の組合せは表3.3.4に示すとおりである。アニュラ板 に作用する液圧は一様分布とし、側板に作用する液圧は高さに応じて変化させた。

各ケースの最大応答水平震度Kh₁、動液EPh₁及び動液E比αは、浮き上がり解析から 求めた水平抵抗力Q及び回転モーメントMを用いて、以下の式によって算定した(式 (3.2.4)と同様)。計算結果を表3.3.5に示す。

$$Kh_1 \approx Q/W_1 \tag{3.3.1}$$

あるいは、

$$Kh_1 = \approx M / (W_1 H_1)$$
 (3.3.2)
 $Ph_1 \approx Kh_1 C_{10} P_0$ (3.3.3)
 $\alpha = Ph_1 / P_0$ (3.3.4)

表3.3.4	ア	~ ニュラ板と側板に作用する液圧の組合せ	

強制変位作用方向	アニュラ板上面に作用する液圧P』 静液圧:P₀=0.18N/mm² 動液圧:Ph₁	側板内面に作用する 液圧	
浮き上がり方向(+)	$P_{u} = (P_{0} - Ph_{1}) = P_{0} (1 - \alpha)$	静液圧分布	
沈み込み方向(一)	P.u.=P.o	静液圧分布	

ケース	最大浮き上がり変位	最大応答水平震度	動液圧	動液圧比
No.	$\delta_{\text{u-max}}$ (cm)	Kh.1	Ph_{1} (N/mm ²)	α (=Ph _{.1} ./P _{.0} .)
1	75. 1	0. 487	0.063	0.35
2	45.0	0. 747	0.096	0. 55

表3.3.5 最大応答水平震度Kh₁、動液圧Ph₁及び動液圧比αの計算結果

注:消防法式で計算した水平震度Kh1=0.504、動液圧Ph1=0.067N/mm2(参考資料8)

(2) 材料の物性値

タンクの1段から7段までの側板材料はHW50、8段と9段の側板の材料はSS41、アニュラ 板の材料はSM400C、底板の材料はSS41であり、それぞれの材料の物性値は表3.3.6に示す とおりである。また、塑性後の応力-ひずみ線図は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用した(図3.3.2及び参考 資料15参照)。硬化則には移動硬化則を使用した。

材料特性		HW50	SS41/SM400C			
降伏強度 (N/mm ²)	Sy	490	245			
引張強度(N/mm ²)	Su	610	400			
ポアソン比	ν	0.3	0.3			
ヤング率 (N/mm ²)	E	205939.7	205939.7			

表 3.3.6 材料の物性値

図3.3.2 弾塑性解析入力用の応力—ひずみ線図

3.3.2 解析結果

3.3.2.1 旧法タンクNo.3のケース1の解析結果

(1) 浮き上がり変位と抵抗力の関係

各サイクルの参照点とB端の浮き上がり変位及びB端部に強制変位をかけた時の算定された軸方向の抵抗力(単位長さあたりの抵抗力)の数値を表3.3.7に示す。また、その関係 を線図で表示すると図3.3.3のとおりである(変位出力参照点の位置:図3.3.1 (b)参照)。
サイクル	浮き上がり	抵抗力	浮き上がり	変位(mm)	
No.	位置	(N/mm)	参照点	B端	
	開始	0. 0E+00	-2.2	-2.9	
1	最高	8. 5E+02	21.1	20. 7	
	最低	8. 2E+02	0.6	0.0	
2	最高	8. 7E+02	28.2	27. 8	
L	最低	7. 5E+02	0.6	0. 0	
3	最高	9. 0E+02	38.4	38.0	
0	最低	6. 3E+02	0.6	0.0	
4	最高	9. 5E+02	56.7	56.3	
4	最低	4. 1E+02	0.6	0.0	
5	最高	9.8E+02	70.0	69.6	
0	最低	2. 5E+02	0.6	0.0	
e	最高	7. 9E+02	35.5	35. 2	
0	最低	2. 5E+02	0.6	0.0	
7	最高	7.1E+02	25.5	25. 2	
I	最低	2. 5E+02	0.6	0.0	
0	最高	5. 7E+02	13.3	13.0	
ŏ	最低	2. 5E+02	0.6	0.0	
0	最高	1. 2E+03	157.6	157. 2	
9	最低	-1.0E+02	0.7	0.0	
10	最高	1.0E+03	105.4	105. 0	
10	最低	-1.0E+02	0.7	0.0	
11	最高	6. 4E+02	31.0	30. 7	
	最低	-1.0E+02	0.7	0. 0	
10	最高	6.9E+02	36.7	36.4	
12	最低	-1.0E+02	0.7	0.0	
10	最高	2.6E+03	578.6	572.0	
13	最低	-6. 6E+02	0.7	0.0	
1.4	最高	3. 1E+03	764. 3	751.1	
14	最低	-9.8E+02	0.5	0.0	
15	最高	1. 7E+03	374.6	372. 1	
15	最低	-1.1E+03	0.5	0.0	
10	最高	9.8E+02	186. 4	186. 0	
16	最低	-1.1E+03	0.5	0.0	
17	最高	6. 3E+02	47.6	47.4	
1/	最低	-1.1E+03	0.5	0.0	
10	最高	7. 2E+02	73.7	73. 5	
18	最低	-1.1E+03	0.5	0.0	

表 3.3.7 浮き上がり変位と抵抗力の関係 (ケース 1)

図3.3.3 浮き上がり変位(δ_u)とB端部の算定された抵抗力(q_u)の関係 (ケース1)

(2) 隅角部隅肉溶接部のひずみ両振幅

浮き上がり変位を与えた静的応力解析結果の、隅角部隅肉溶接部近傍の注目点(A点、B 点とC点、3つの点の位置を図3.3.4に示す)に発生したひずみ(弾性ひずみ+塑性ひずみ の和)とひずみ両振幅の計算結果を表3.3.8に示す。A点は隅肉溶接部止端部、B点はA点か ら2mm内側のアニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最も側板 に近い位置)であり、両点の半径方向ひずみを ϵ_r とする。C点は側板内面の止端部であり、 その鉛直方向ひずみを ϵ_z とする。また、ひずみ両振幅は $\Delta\epsilon_r$ 等とする。18サイクルにおけ る各点の浮き上がり変位とひずみとの関係線図を図3.3.5から図3.3.7に示す。

図3.3.4 ひずみ評価位置

	河土上杉口		ひずみ(%)		ひ	ずみ振幅(%)
サイクル) 注意上かり (大衆	A点	B点	C点	A点	B点	C点
INO.	1立直	E.r	E.r	E .z	Δεr	Δεr	Δε.Ζ
	開始	0.149	0. 197	0. 091			
1	最高	0. 234	0.958	0.118	0.085	0. 761	0. 031
	最低	0. 188	0.902	0.086			
0	最高	0. 263	1.658	0.121	0.004	0.005	0.050
2	最低	0.179	1.563	0.069	0.084	0.095	0.053
2	最高	0.306	2.556	0.126	0 120	0 140	0.000
ა	最低	0. 168	2. 408	0.042	0. 138	0. 148	0.083
4	最高	0.395	3.856	0.132	0 226	0 226	0 126
4	最低	0.169	3.630	-0.004	0.220	0. 220	0. 130
5	最高	0. 448	4. 674	0.136	0 282	0 358	0 171
5	最低	0. 165	4.316	-0.035	0.202	0. 550	0.171
6	最高	0. 341	4. 489	0.067	0 177	0 173	0. 101
0	最低	0.164	4.316	-0.034	0.177	0.175	
7	最高	0. 296	4. 445	0. 041	0 100	0 120	0 075
/	最低	0. 163	4. 316	-0.034	0. 155	0.129	0.075
Q	最高	0. 224	4. 375	0.000	0. 061	0. 058	0 034
0	最低	0. 163	4.316	-0.034			0.034
0	最高	1.004	8.695	0.162	0 581	4. 291	0. 248
5	最低	0. 424	4. 404	-0.086	0.001		
10	最高	0.816	6. 244	0.145	0 401	1 022	0 229
10	最低	0. 415	4. 311	-0.084	0.401	1. 500	0.225
11	最高	0.569	4. 462	0.023	0 153	0 159	0 106
	最低	0. 416	4. 303	0. 083	0.100	0.100	0.100
12	最高	0. 591	4. 480	0.040	0 172	0 180	0 123
12	最低	0. 418	4. 291	-0.082	0.172	0.100	0. 120
13	最高	6. 290	24. 076	0. 455	4 321	19 604	0 397
	最低	1.969	4. 471	0.058	1. 021	10.001	0.007
14	最高 最高	8.870	31.072	0. 588	6 653	24 549	0 443
	最低	2. 217	6. 523	0.145	0.000	21.010	0. 110
15	最高	4. 989	24. 310	0. 479	3 003	17 676	0 336
	最低	1.985	6.634	0.144	0.000		0.000
16	最高	2. 980	17. 486	0.467	1,006	10, 875	0.318
· · ·	最低	1.974	6.612	0.149			0.010
17	最高	2. 147	7.375	0. 423	0, 125	0, 943	0, 272
.,	最低	2. 022	6.432	0.152	0.120	0.010	<i>v. L1L</i>
18	最高	2. 302	10. 101	0. 447	0.264	3, 781	0, 291
10	最低	2.037	6, 320	0.155	0.204	0.701	0.201

表3.3.8 各サイクルにおける隅角部隅肉溶接部のひずみとひずみ両振幅(ケース1)

図3.3.5 浮き上がり変位とA点に発生した半径方向ひずみの関係(ケース1)

図3.3.6 浮き上がり変位とB点に発生した半径方向ひずみの関係(ケース1)

図3.3.7 浮き上がり変位とC点に発生した鉛直方向ひずみの関係(ケース1)

(3) 隅角部の変形及びひずみ分布

最大浮き上がり変位が75.1cmになるときの隅角部の変形及び塑性ひずみ分布を図3.3.8 と図3.3.9に示す。浮き上がり挙動によって隅角部が曲げられ、隅角部の溶接部の止端部(B 点)に最も大きなひずみが発生する。

3.3.2.2 旧法タンクNo.3のケース2の解析結果

(1) 浮き上がり変位と抵抗力の関係

各サイクルの参照点とB端の浮き上がり変位及びB端部に強制変位をかけた時の算定された軸方向の抵抗力(単位長さあたりの抵抗力)の数値を表3.3.9に、その関係を線図で表示すると図3.3.10に示すとおりである(変位出力参照点の位置:図3.3.1(b)参照)。

サイクル	浮き上がり	抵抗力 浮き上がり変位(mm)		変位(mm)
No.	位置	(N/mm)	参照点	B端
	開始	0.0E+00	-2.2	-2.9
1	最高	7.3E+02	28.4	28. 1
	最低	8.4E+02	0.6	0.0
ŋ	最高	6. 4E+02	12. 9	12. 7
Z	最低	8. 4E+02	0.6	0.0
C	最高	7. 2E+02	26.9	26.6
3	最低	8.4E+02	0.6	0.0
4	最高	7.8E+02	51.4	51.1
4	最低	6.6E+02	0.6	0.0
F	最高	5.9E+02	14.0	13.8
5	最低	6.6E+02	0.6	0.0
6	最高	6.6E+02	23.3	23. 1
	最低	6.6E+02	0.6	0.0
٦	最高	7. 0E+02	31.7	31.5
1	最低	6.6E+02	0.6	0.0
8	最高	6.8E+02	27.6	27.4
	最低	6.6E+02	0.6	0.0
0	最高	8.4E+02	89.9	89. 7
9	最低	3. 0E+02	0.6	0.0
10	最高	7.5E+02	60.8	60.6
10	最低	3. 0E+02	0.6	0.0
11	最高	9.8E+02	168.3	168. 1
	最低	-5.0E+01	0. 7	0.0
12	最高	1.8E+03	452.4	450. 0
	最低	-4.3E+02	0. 7	0.0
12	最高	7.8E+02	112.7	112.5
10	最低	-4. 2E+02	0.7	0.0
14	最高	6.9E+02	71.7	71.5
14	最低	-4. 2E+02	0.7	0.0

表 3.3.9 浮き上がり変位と抵抗力の関係 (ケース 2)

図3.3.10 浮き上がり変位(るu)とB端部の算定された抵抗力(qu)の関係 (ケース2)

(2) 隅角部隅肉溶接部のひずみ両振幅

浮き上がり変位を与えた静的応力解析結果の、隅角部隅肉溶接部近傍の注目点(A点、B 点とC点、3つの点の位置を図3.3.11に示す。)に発生したひずみとひずみ両振幅の計算結 果を表3.3.10に示す。A点は隅肉溶接部止端部、B点はA点から2 mm内側のアニュラ板上 の点(実タンクを想定した場合にひずみ計測が可能な最も側板に近い位置)であり、両点 の半径方向ひずみをεrとする。C点は側板内面の止端部であり、その鉛直方向ひずみをεz とする。また、ひずみ両振幅はΔεr 等とする。14サイクルにおける各点の浮き上がり変位 とひずみとの関係線図を図3.3.12から図3.3.14に示す。

図3.3.11 ひずみ評価位置

	河土上北山		ひずみ(%)		ひ	ずみ振幅(%)
サイクル) 注意上かり (古聖	A点	B点	C点	A点	B点	C点
INU.	卫旦	E.r	E.r	E.z	Δε _r	Δε _r	Δε.Ζ
	開始	0. 149	0.197	0.091			
1	最高	0. 207	0.698	0.112	0.059	0. 520	0. 021
	最低	0. 188	0.718	0. 091			
2	最高	0. 151	0.689	0.077	0 027	0 020	0.015
2	最低	0. 188	0. 718	0. 091	0.037	0. 020	0.015
2	最高	0. 204	0. 747	0.108	0.016	0.020	0.016
3	最低	0. 188	0. 718	0. 091	0.010	0.029	0.010
4	最高	0. 279	2.242	0.123	0 110	0 121	0 074
4	最低	0. 159	2.111	0.049	0.119	0. 131	0.074
5	最高	0. 148	2. 105	0. 047	0 011	0 005	0 002
5	最低	0. 159	2.111	0.049	0.011	0.000	0.002
6	最高	0. 189	2.148	0.070	0 021	0 027	0 022
0	最低	0. 159	2.111	0.049	0.031	0.037	0. 022
7	最高	0. 220	2. 180	0. 089	0.061	0 070	0.040
/	最低	0. 158	2.111	0. 049	0.001	0.070	0.040
Q	最高	0. 205	2.165	0.080	0 047	0 054	0 021
0	最低	0. 158	2.111	0. 049	0.047	0.004	0.031
0	最高	0. 412	4. 147	0.134	0 262	0 306	0 160
3	最低	0. 150	3.841	-0.027	0.202	0.000	0.100
10	最高	0. 348	4.043	0.095	0 202	0.200	0 120
10	最低	0. 146	3.843	-0.026	0.202	0.200	0. 120
11	最高	0. 775	7.161	0.154	0 513	2 746	0 238
	最低	0. 262	4.416	-0.084	0.010	2.740	0. 200
12	最高	3. 457	16. 482	0. 290	2 058	12 846	0 331
12	最低	1.399	3.636	-0.041	2.000	12.040	0.001
12	最高	1.665	6.343	0.204	0 250	2 808	0 242
10	最低	1.415	3.535	-0.038	0.200	2.000	0. 242
14	最高	1. 540	4. 256	0. 183	0 102	0.815	0.218
14	最低	1.438	3. 441	-0.035	0.102	0.015	0.210

表3.3.10 各サイクルにおける隅角部隅肉溶接部のひずみとひずみ両振幅(ケース2)

図3.3.12 浮き上がり変位とA点に発生した半径方向ひずみの関係 (ケース2)

図3.3.13 浮き上がり変位とB点に発生した半径方向ひずみの関係 (ケース2)

(3) 隅角部の変形及びひずみ分布

最大浮き上がり変位が45.0cmになるときの隅角部の変形及び塑性ひずみ分布を図 3.3.15と図3.3.16に示す。浮き上がり挙動によって隅角部が曲げられ、隅角部の溶接部の 止端部(B点)に最も大きなひずみが発生する。

図 3.3.16 隅角部の半径方向ひずみ成分 ε_x分布図 (ケース 2:最大浮き上がり 45cm)

3.3.3 低サイクル疲労評価

地震時の浮き上がりに対する隅角部挙動は、低サイクル疲労である。飯田 ※は、溶接構 造用鋼、高張力鋼、一般構造用鋼などの10種の鋼をひずみ制御疲労試験を実施し、き裂発 生寿命 Nc をひずみ両振幅 $\Delta \epsilon$ (=2 ϵ_a, ϵ_a は最適疲労曲線に使用されるひずみ振幅(片振幅)) に対して整理し、次式で最適疲労曲線を表した(図3.3.17参照)。

(3.3.5)

マイナー則では、次式の疲労損傷度 D=1.0 のときを疲労寿命としており、式(3.3.6) に より隅角部の疲労損傷度の評価を実施した。

$$D = \frac{n(\Delta \varepsilon_1)}{N_c(\Delta \varepsilon_1)} + \frac{n(\Delta \varepsilon_2)}{N_c(\Delta \varepsilon_2)} + \frac{n(\Delta \varepsilon_3)}{N_c(\Delta \varepsilon_3)} + \dots < 1.0$$
(3.3.6)

ただし、

D:疲労損傷度

Δε_i: ひずみ両振幅

 $n(\Delta \epsilon_i): ひずみ両振幅 \Delta \epsilon_i の繰返し回数$

N_c(Δε_i): ひずみ両振幅 Δε_iの疲労寿命

(1) ケース1の疲労損傷度評価

旧法タンク No.3 の浮き上がり回数は最大の浮き上がり変位が算出された側の18回で設 定し、この条件での疲労損傷度 D を算定した。

表 3.3.8 に示した B 点に発生した板表面上のひずみ両振幅に対する、飯田の最適疲労曲 線式(3.3.5)で求めた疲労寿命 Nc を表 3.3.11 に示す。同表より、最大浮き上がり変位 75.1 cm となる A 地区 EW 方向の想定地震波形に対し、当該タンクは隅角部の溶接部止端 部の A 点の疲労損傷度 D は 0.333 であり、1.0 以下という結果になった。

表 3.3.8 に示した B 点に発生した板表面上のひずみ両振幅の1サイクルには24.5%という数値が出ており、飯田の最適疲労曲線の上端部(繰返し回数10回以下の範囲)となる。 なお、疲労損傷度 D を算出する際に安全係数を考慮していない。今回の隅角部の疲労破壊 の可能性評価については、1994 年三陸はるか沖地震や1995 年兵庫県南部地震に対する石 油タンク隅角部の繰返し片浮き上がり挙動解析に用いられた一連の解析システムを採用し たが、今回のような大きな浮き上がりに対し、そのまま適用することの妥当性については 3 次元シェルモデルの有限要素法による解析から得られたた非線形回転ばね特性を表現す る M-0線図を使用した場合の評価結果(ケース2)との比較により、検討していく必要 がある。

+	浮き上が日本位		В	点	
No	子さエかり変位 <i>る</i> "(mm)	ひずみ振幅	繰り返し回数	許容繰り返し回数	疲労損傷度
		Δε.r. (%)	n	Nc	D
1	20. 7	0. 761	1	5398	0.000
2	27.8	0.095	1	156376362	0.000
3	38.0	0. 148	1	4773960	0.000
4	56.3	0. 226	1	350665	0.000
5	69.6	0.358	1	48675	0.000
6	35.2	0. 173	1	1649470	0.000
7	25.2	0. 129	1	13248396	0.000
8	13.0	0. 058	1	10623598099	0.000
9	157.2	4. 291	1	160	0.006
10	105.0	1.933	1	715	0.001
11	30. 7	0. 159	1	2889661	0.000
12	36.4	0. 189	1	950923	0.000
13	572. 0	19.604	1	11	0.091
14	751.0	24. 549	1	8	0. 125
15	372. 1	17.676	1	14	0.071
16	186. 0	10.875	1	31	0.032
17	47.4	0.943	1	3250	0.000
18	73.5	3. 781	1	201	0.005
				合計	0.333

表 3.3.11 旧法タンク No.3 の隅角部の疲労損傷度評価結果

表 3.3.11 に示す許容繰り返し回数を用いて、以下のように B 点の疲労損傷度 D (合計) を計算した。

$$D = \sum_{i=1}^{18} \frac{n}{Nci} = \frac{1}{5398} + \frac{1}{156376362} + \bullet \bullet \bullet \frac{1}{11} + \frac{1}{8} + \frac{1}{14} + \frac{1}{31} + \frac{1}{3250} + \frac{1}{201} = 0.333$$

疲労損傷度 D=1 になるまで、約3倍の余裕度がある。

(2) ケース2の疲労損傷度評価

旧法タンク No.3 の浮き上がり回数は最大の浮き上がり変位が算出された片側の14回で 設定し、この条件での疲労損傷度 D を算定した。

表 3.3.10 に示した B 点に発生した板表面上のひずみ両振幅に対する、飯田の最適疲労 曲線式 (3.3.5) で求めた疲労寿命 Nc を表 3.3.12 に示す。同表より、最大浮き上がり変位 45cm となる A 地区 EW 方向の想定地震波形に対し、当該タンクは隅角部の溶接部止端部 の A 点の疲労損傷度 D は 0.05 であり、1.0 以下という結果になった。

サイクル 河き トポリ赤仕		B 点				
りイクル No.	浮さエがり変位 る ₋₄ (mm)	ひずみ振幅	繰り返し回数	許容繰り返し回数	疲労損傷度	
		∠ E. _r . (%)	n	NC	U	
1	28. 1	0. 520	1	14772	0.000	
2	12. 7	0.028	1	5.92E+12	0.000	
3	26.6	0.029	1	4.36E+12	0.000	
4	51.1	0. 131	1	11777162	0.000	
5	13.8	0.005	1	1.90E+19	0.000	
6	23. 1	0.037	1	5. 25E+11	0.000	
7	31.5	0.070	1	2373380661	0.000	
8	27.4	0.054	1	19721889496	0.000	
9	89.7	0.306	1	88219	0.000	
10	60.6	0.200	1	682172	0.000	
11	168.1	2. 746	1	364	0.003	
12	450.0	12.846	1	23	0.043	
13	112.5	2.808	1	349	0.003	
14	71.5	0.815	1	4572	0.000	
				合計	0. 049	

表 3.3.12 旧法タンク No.3 の隅角部の疲労損傷度評価結果

表 3.3.12 に示す許容繰り返し回数を用いて、以下のように B 点の疲労損傷度 D (合計) を計算した。

$$D = \sum_{i=1}^{14} \frac{n}{Nci} = \frac{1}{14772} + \frac{1}{5.92E12} + \bullet \bullet \bullet + \frac{1}{364} + \frac{1}{23} + \frac{1}{349} + \frac{1}{4572} = 0.049$$

疲労損傷度 D=1 になるまで、約20倍の余裕度がある

3.4 3次元シェルモデルによる側板の座屈強度評価解析

非線形ばねを持つ質点系モデルの浮き上がり解析結果によって、3次元シェル要素モデル による弾性大変形解析を実施し、最大浮き上がり変位が生じるときの沈み込み側の側板下端 に発生する最大軸方向圧縮応力を求めた(通常は側板の最下端付近が最大となる)。側板の 限界座屈応力との比較により側板の地震時の座屈強度評価を行った。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみの検討である。

3.4.1 解析モデル

タンクの浮き上がり側及び沈み込み側に着目するため、タンクの3次元シェルモデルを 作成した。タンク形状は1/2部分であるが、その切断面には対称条件を設定した。底板は形 状として全面作成しているが、タンク半径の70%の位置からの底板の一部を剛体要素でモ デル化し、中心の参照点と連動させている。

旧法タンク No.3 (30000KL) の解析モデルを図 3.4.1 及び図 3.4.2 に示す。タンクの主 な寸法と諸元は表 3.3.1 に示すとおりである。タンク側板には上端のトップアングル及びウ ィンドガーダーをモデルに含んでいる。また、底板およびアニュラ板と基礎との接触・離間 を考慮するため、軸方向の圧縮のみに 294N/cm³の力が生じるノンテンションばねを設置し た。

図3.4.1 旧法タンクNo.3の3次元シェルモデル

図3.4.2 タンクモデルのトップアングル及びウィンドガータ

側板重量等(合計:2760 kN)は側板に均等に分布させて調整(側板の質量密度を増加) している。

材料の物性値は表3.3.6に示すとおりである。

3.4.2 荷重条件

(1) 荷重

側板重量等は側板に均等に分布させて調整(側板の質量密度を増加)した。アニュラ板 と底板の自重もモデル上考慮した。

(2) 動液圧の算定

入力地震動は、地震動レベル1の設計水平震度Kh₁を基準として、消防法により規定され た以下の算出式で求めた動液圧を静的に作用させた。算出した動液圧は、1/2 対称境界面 を最大/最小として、側板と底板の周方向に余弦分布させてモデルに入力した。

水平方向地震動による側板部作用する液圧は次式で表される。

$$Ph = Ph_0 + Ph_1 \tag{3.4.1}$$

Phは、底部からの高さZにおける側板部に作用する動液圧(N/mm²)である。 Pho及びPh1は次式のとおり。

$$Ph_{0} = \frac{9.80665\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{0i} \left(\frac{Z}{H}\right)^{i} \right\} Kh_{1} / \nu_{3}$$
(3.4.2)
$$Ph_{1} = \frac{9.80665\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{1i} \left(\frac{Z}{H}\right)^{i} \right\} (1 - \frac{1}{\nu_{3}}) Kh_{1}$$
(3.4.3)

ここで、ρは貯蔵液の比重、Hは最高液面高さ(m)、ν₃は特定屋外貯蔵タンクの固有 周期を考慮した応答倍率(-)、C_{0i}とC_{1i}は、特定屋外貯蔵タンクの最高液面高さと直径 との比により求めた係数である。

算定されたタンクの動液圧を参考資料16に示す。

(3) 解析ステップ

解析ステップを、次のように2段階に分けて実施した。

ステップ1:通常時荷重(静液圧)

ステップ2:地震時荷重(静液圧+動液圧)

静液圧が負荷されている状態から、動液圧を準静的に段階的に負荷した。 質点系モデルにて算定された最大浮き上がり変位となるときに側板に発 生する応力を確認した。

3.4.3 解析結果

以下に旧法タンクNo.3の最大浮き上がり変位75.1cmまでの解析結果を示す。

側板最下端の浮き上がりが75.1cm時の変形を図3.4.3、応力分布を図3.4.4、浮き上がり範 囲を図3.4.5に示す。

図3.4.3 変形図(75.1cm浮き上がり時)

図 3.4.4 相当応力分布図(75.1cm 浮き上がり時)

図3.4.5 浮き上がり範囲(75.1cm浮き上がり時)

側板下端部の半径方向に対応する軸方向(上下)変位を図3.4.6に示す。最大浮き上がり 変位が75.1cmのとき、沈み込み側の最大沈み込み変位は僅か0.44cmであることが確認され た。

沈み込み側の軸方向膜応力と側板の高さの関係を図3.4.7に示す。このとき沈み込み側の 側板下端に発生する最大軸方向圧縮応力は7.2 N/mm²であった。また、沈み込み側の円周 方向膜応力と側板の高さの関係を図3.4.8に示す。このとき沈み込み側の側板最下段(下端からの高さ:1309mm)に発生する最大円周方向膜応力は324 N/mm²であった。

図3.4.6 側板下端部の半径方向に対応する軸方向変位

図3.4.7 側板に発生した軸方向の膜応力と側板の高さの関係(沈み込み側)

図3.4.8 側板に発生した円周方向の膜応力と側板の高さの関係(沈み込み側)

3.4.4 座屈強度評価

座屈強度評価においては、以下のような手順で軸圧縮限界座屈応力を評価するが、必要に 応じて内圧を考慮した評価を行う。

一様軸圧縮を受ける内圧のない円筒殻の弾性軸圧縮限界座屈応力は次式で表される。

$$\sigma_{cr} = 0.4E \frac{t_s}{D} \tag{3.4.4}$$

ここで、

σer:一様軸圧縮を受ける円筒殻の弾性軸圧縮限界座屈応力(N/mm²)

E: 側板のヤング率 (N/mm²)

ts: 側板最下端の板厚(mm)

運転時満液状態にある平底円筒形石油貯槽においては、地震時動液圧負荷側(図 3.4.5 の 沈み込み側)の最下段側板の円周方向膜応力が、降伏応力の 0.3 倍を上回っている場合、象 の脚型座屈の評価が要求されている。

ここでは容器構造設計指針において、円周方向膜応力/降伏応力比が0.3以上の場合の限 界座屈応力値に着目し、内圧下における側板の象の脚型座屈限界応力を以下に示す。

$$\frac{\sigma_{\phi}}{\sigma_{y}} \ge 0.3 \quad \text{fr} \quad \frac{D}{t_{s}} \ge 1.614(\frac{E}{\sigma_{y}}) \quad \text{fr} \quad \text{fr} \\ \sigma_{cr} = 0.96E \frac{t_{s}}{D} (1 - \frac{\sigma_{\phi}}{\sigma_{y}}) \quad (3.4.5)$$

当該タンク材料のヤング率 E=205939.7 N/mm²、側板厚 t_s=18mm、内径 D=45100mm を代入すると、軸圧縮限界座屈応力 o_{cr} =32.9 N/mm²となる。

また、当該タンクの側板最下段に発生した最大円周方向膜応力(324 N/mm²)は、降伏 応力(490 N/mm²)との比(0.66)が0.3以上であるため、象の脚型座屈の評価が必要と なる。象の脚座屈限界応力は、式(3.4.5)より28.4 N/mm²と計算される。

以上により、計算された旧法タンク No.3 の限界座屈応力は、32.9 N/mm²(ダイヤモン ド型座屈)、28.4 N/mm²(象の脚型座屈)となり、解析結果から得られた軸圧縮応力の最 大値の 7.2 N/mm²よりも大きな値となっている。そのため、当該区域の再現地震波形に対 して、旧法タンク No.3 の最大浮き上がり変位が 75.1 cm 発生した場合の応力は、従来評 価手法の限界応力を超えないという評価結果となった。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみでの検討である。

3.5 解析・評価結果のまとめ

(1) 質点系モデル解析結果

平成 26 年度は消防法の終局強度耐震設計法に採用された解析モデルの基本的考え方に 沿って作成した1質点非線形ばね系モデルを用いて時刻歴地震応答解析を行い、南海トラ フ巨大地震発生時におけるタンクの浮き上がり量の検討を実施した。当該解析・検討では、 解析を効率的に進めるため、非線形水平ばね特性に実際よりも浮き上がり変位が大きくなる S字非ループ型の簡便な弾塑性復元力特性(第2剛性を無視した水平抵抗力Qと水平変位 Δ の線図を持つ動液圧の影響を無視した簡便な非線形水平ばね(バイリニアQ- Δ 特性ば ね))を使用したため、検討対象タンクの内、旧法タンクNo.3では大きな浮き上がり変位 を生じる結果となった。そこで、平成27年度はタンクの浮き上がり量をより適切に評価 するため、1質点系モデルの非線形水平ばね特性を見直し、第2剛性以降も考慮し、かつ 動液圧の影響も考慮した非線形水平ばね、マルチリニア特性ばね)を採用して解析を行っ た。

採用した非線形ばねは、定式化による $Q-\Delta$ 線図の特性(ケース 1 という)と 3D のシ ェルモデルから得られた $M-\theta$ 線図の特性(ケース 2 という)であり、それぞれ以下のよ うな違いがある。

	ケース 1 定式化による特性のばね	ケース 2 3D シェルモデルより 得られる特性のばね
動液圧の影響	考慮	考慮
タンク浮き上がりを繰り返すことにより 2 回目以降は浮き上がり易くなる効果	Wozniak ^{※1} モデルを使用繰返しにより 浮き上がり易くなる傾向を考慮	考慮せず
作成されるばね特性	比較的柔らかいばね (安全側の設定)	比較的固いばね
ばね特性作成の簡便さ	作成が容易 (算定式を利用)	時間と手間がかかる (FEM 解析が必要)

※1 参考文献:

Wozniak, R.S. and Mitchell, W.W. "Basis of Seismic Design provisions for Welded Steel Oil Storage Tanks", API Refining Dept. 43rd Midyear Meeting, Toronto, May 1978

これらの特性を使用して、前年度と同条件である南海トラフの想定地震波形 A 地区 EW 方向を入力地震波形とした旧法タンク No.3 (30000KL)の浮き上がり解析を実施した結 果は以下となった。

ケース1:最大 75.1cm の浮き上がり

ケース2:最大 45.0cm の浮き上がり

- 参考(平成 26 年度):最大 104.3cm の浮き上がり
- (2) 疲労損傷評価

平成 26 年度は、バイリニア Q-Δ 特性ばねを持つ1 質点系モデルで求めたタンク浮き 上がり履歴を使用して解析した旧法タンク No.3 隅角部のひずみ振幅の一部に飯田の最適 疲労曲線式の範囲外となる大きなひずみ量があり、同値を使用しての疲労損傷評価の妥当 性が懸念された。平成 27 年度はより精緻に検討したばね(ケース1 及びケース 2)の1 質点系モデルでの浮き上がり履歴を使用して解析を実施したところ、ひずみ振幅は飯田の 最適疲労曲線式の範囲内であり、両ケースともに隅角部の疲労損傷度Dは1.0以下となり、 許容値以内であった。

⇒−− マ	最大浮き上がり変位	疲労損傷度
計画クース	(cm)	D
ケース 1	75.1	0. 33
ケース 2	45.0	0. 05

(3) 側板座屈評価

平成 26 年度のタンク側板の座屈評価では、旧法タンク No.3 が 104.3cm 浮き上がり時 に発生するタンク沈み込み側の最大軸圧縮応力は、軸圧縮限界座屈応力及び象の脚限界座 屈応力以内であり、座屈の問題はないという結果であった。平成 27 年度も同様の手順に て、より精緻に検討した質点系モデルでの浮き上がり量(75.1cm:ケース1とケース2の 解析結果の大きい方)を使用して解析・評価を実施したところ、最大軸圧縮応力は軸圧縮 限界座屈応力及び象の脚限界座屈応力以内となることを確認した。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみでの検討である。

- ・側板下端の最大軸圧縮応力 7.2 N/mm² < 軸圧縮座屈限界応力 32.9 N/mm²
- ・側板下端の最大軸圧縮応力 7.2 N/mm² < 象の脚座屈限界応力 28.4 N/mm²
- (4) 考察・まとめ

平成 27 年度はタンクの浮き上がり量をより適切に評価するため、質点系モデルの非線 形水平ばね特性を見直したタンクの浮き上がり解析を実施した。また、平成 26 年度と同 様に、質点系モデルの解析結果を基にしてタンク隅角部の疲労損傷と側板の座屈を評価し て以下の結果を得た。

- ア ケース1(定式化による Q-△ 線図を非線形水平ばねとした場合)では、安全側に設定した比較的柔らかいばね特性となるため、今回算定した最大浮き上がり変位(75.1cm)よりも実際の浮き上がりは小さくなる可能性がある。また、ケース1の浮き上がり変位を解析条件として算定した疲労損傷度においても、実際の値はこれよりも小さくなると考えられる。
- イ ケース2(3DシェルモデルのM-0線図を非線形回転ばねとした場合)のばね特性は、 1回だけの液圧の静的な作用による片側の浮き上がり挙動現象を捉えているが、繰り返 し挙動(2回目や3回目)によるタンク変形に起因する浮き上がりばね特性の低下は無 視されている。そのため、ケース2で求めた最大浮き上がり変位(45.0cm)よりも、実 際は浮き上がりが大きくなると考えられる。また、ケース2の浮き上がり変位を解析条 件として算定した疲労損傷度においても、実際の値はこれよりも大きくなると考えられ る。
- ウ 従って、A 地区想定地震波を受ける当該タンクの最大浮き上がり変位は両ケースから 求めた浮き上がり変位(45.0cm~75.1cm)の幅内にあると推定される。この場合での

タンク隅角部の疲労損傷度も両ケースの間であると予測され、疲労損傷の問題はないと 考えられる。

エ 側板の座屈評価は、ケース1での最大浮き上がり75.1cm において、従来評価手法の 限界応力を超えないこという結果となった。上述の通り、実際の浮き上がりは75.1cm より小さくなると推測され、圧縮応力はより小さくなるために座屈の問題はないと考え られる。

4 屋外貯蔵タンクの耐震安全性の解析のまとめ

4.1 屋外貯蔵タンクの耐震安全性解析手法の検証

屋外貯蔵タンクの耐震安全性の解析手法の妥当性を検証するため、東北地方太平洋沖地震にお ける屋外タンク貯蔵所の実態を再現できることの確認を行った。

今回の解析においては、入力する地震動は、揺れが大きい地区を選定するなど安全側となるような評価を実施しつつ、このような地震動に対するタンクの挙動を再現し耐震安全性を確認するという観点から、通常の耐震設計で用いられている簡易な方法ではなく、詳細な解析手法を採用し、より精緻に耐震安全性を確認した。タンクで通常用いられている耐震設計と今回の解析の主な違いについては、表 4.1.1 のとおりである。

	耐震設計	今回の耐震評価
評価手法	静的耐震評価法の1つである修正震度法を 用いて、構造物の固有周期に応じた加速度を 構造物の中心に作用させる。	動的耐震評価法の1つである時刻歴応答法 を用いて、加速度を1/100 秒程度の刻みで構 造物に作用させる。
耐震評価	以下のような簡易的な方法で評価 〇隅角部 保有水平耐力が必要保有水平耐力以上であ ること。 Q _{dw} =0.15 _{V-1} , V ₋₂ , V ₋₃ , V _p , D _s , W ₀ 0.15 _{V-1} , V ₋₂ , V ₋₃ , 2) v _p : 塑性設計係数 D _s :構造特性係数 N ₀ : 有効液重量 〇側板部 発生応力が許容応力以下であること。 (例) 許容圧縮応力 S'= $\frac{0.4E \cdot t}{2.25D} \times 1.5$ D: 直径、E: ヤング率、t: 側板厚	以下のような詳細な方法で評価。 〇隅角部 質点系による浮き上がり量に基づくFEM モデルによる評価 解析モデルのイメージ 〇側板部 質点系による浮き上がり量に基づくFEM モデルによる評価 解析モデルのイメージ

表 4.1.1 特定屋外タンク貯蔵所の耐震設計と今回の耐震評価による主な比較

また、今回の解析に用いた解析条件については、表 4.1.1 のとおり、実態に即した形としなが らも、安全側の評価となるように設定を行った。

項目	解析条件		
	特防区域を含む市町村において南海トラフ巨大地震の想定震度		
入力地震動	が 7 の地域を抽出し、その中で特防区域の揺れが大きい地区を		
	選定し入力地震動を作成		
	容量の違いを考慮した代表的なタンクモデルについて、簡易的		
タンクモデル	に浮き上がり量を解析し、浮き上がり量が大きいものを選定し		
	詳細解析を実施		
	100%の液高さで解析		
町咸里(液高さ)	(液高さを変化させた場合も解析)		
山王	石油類の比重の最大値を想定し 0.95 で解析		
	(0.85の場合も解析)		
タンクの弾塑性の	非線形ばね特性の第2剛性のK₂を0として解析		
復元カモデルの	(タンクの底部板の全断面が塑性化した以降のばね特性は 0~		
非線形ばね特性	0.3の値と想定されるが、安全側となるよう0とした。)		
浮き上がり量の	1 質点系モデルにより解析		
解析手法	(一般に3質点系より安全側の評価を与える。)		
地下海地域声	通常 10%であるが、東日本大震災での実態の再現性から、15%		
	を採用		

表 4.1.2 解析に用いた条件

解析の結果、最大の浮き上がり変位は仙台・塩釜地区の旧法タンク No.4 の 6.3cm であり、これ以外のタンクの浮き上がり変位は非常に小さいものであった。

今回解析対象とした全てのタンクについて、関係団体を通じて地震の影響による浮き上がりを 確認したが、関係各社から浮き上がりがなかったとの回答が得られており、タンクの浮き上がり によって生じることが想定される接地(アース線)の破断や雨水浸入防止材の巻き込みなどにつ ながるような浮き上がりを示す痕跡も確認されなかった。本解析で示した浮き上がり程度ではこ のような痕跡はつかないと考えられるため、解析結果は現実を説明できている。

また、浮き上がり変位が大きい結果が生じたタンク(仙台・塩釜地区の旧法タンク No.4 (2272 KL)及び広野地区の新法タンク No.3 (50000 KL))について、タンク隅角部の疲労強度及び沈み込み側のタンク側板の座屈強度について有限要素法解析によって評価した。この2 基のタンクのそれぞれの隅角部の疲労強度において、疲労損傷度 D は 1.0 以下という結果が、また、最大浮き上がり変位が生じるときの側板の座屈強度の解析結果において、軸圧縮応力が限界座屈応力以内という結果が得られ、この解析結果は、東北地方太平洋沖地震における実態と矛盾しないことを確認できた。

4.2 屋外貯蔵タンクの耐震安全性の解析(平成26年度)

作成した3つの特防区域の地震波形を用いて解析した結果、旧法タンク及び新法タンクのそれ ぞれで最も大きな浮き上がりが生じたタンクは、以下のとおりであった。

- 旧法タンク:A地区 No.3 (3万 KL) 104.3cm 浮き上がり
- ・ 新法タンク: A 地区 No.3 (3 万 KL) 77.5cm 浮き上がり

この2基のタンクについて、タンク隅角部の疲労強度及び沈み込み側のタンク側板の座屈強度 について有限要素法解析によって評価した。この2基のタンクのそれぞれの隅角部の疲労強度に おいて、旧法 No.3 タンク、新法 No.3 タンクともに疲労損傷度 D は 1.0 以下という結果にな ったが、旧法 No.3 の表 2.4.8 に示した B 点に発生した板表面上の全ひずみ振幅の一部には 約 35%という飯田の最適疲労曲線式のグラフ範囲外の数値が出ており、適切な評価ができな かった。

また、最大浮き上がり変位が生じるときの側板の座屈強度の解析結果において、軸圧縮応力が 限界座屈応力以内という結果が得られた。

4.3 屋外貯蔵タンクの耐震安全性の解析(平成27年度)

平成 26 年度は消防法の終局強度耐震設計法に採用された解析モデルの基本的考え方に沿って 作成した1 質点非線形ばね系モデルを用いて時刻歴地震応答解析を行い、南海トラフ巨大地震発 生時におけるタンクの浮き上がり量の検討を実施した。当該解析・検討では、解析を効率的に進 めるため、非線形水平ばね特性に実際よりも浮き上がり変位が大きくなる S 字非ループ型の簡 便な弾塑性復元力特性(第2剛性を無視した水平抵抗力 Q と水平変位 Δ の線図を持つ動液圧の 影響を無視した簡便な非線形水平ばね(バイリニア Q- Δ 特性ばね))を使用したため、検討対 象タンクの内、旧法タンク No.3 では大きな浮き上がり変位を生じる結果となった。そこで、平 成 27 年度はタンクの浮き上がり量をより適切に評価するため、1 質点系モデルの非線形水平ば ね特性を見直し、第2剛性以降も考慮し、かつ動液圧の影響も考慮した非線形水平ばね(マルチ リニア特性ばね)を採用して解析を行った。

採用した非線形ばねは、定式化による $Q-\Delta$ 線図の特性(ケース 1 という)と 3D のシェルモ デルから得られた $M-\theta$ 線図の特性(ケース 2 という)であり、それぞれ以下のような違いがあ る。

	ケース 1 定式化による特性のばね	ケース 2 3D シェルモデルより 得られる特性のばね
動液圧の影響	考慮	考慮
タンク浮き上がりを繰り返すことにより 2回目以降は浮き上がり易くなる効果	Wozniak ^{※1} モデルを使用繰返しにより 浮き上がり易くなる傾向を考慮	考慮せず
作成されるばね特性	比較的柔らかいばね (安全側の設定)	比較的固いばね
ばね特性作成の簡便さ	作成が容易 (算定式を利用)	時間と手間がかかる (FEM 解析が必要)

表 4.3.1 採用した非線形ばね特性の比較

※1 参考文献:

Wozniak, R.S. and Mitchell, W.W. "Basis of Seismic Design provisions for Welded Steel Oil Storage Tanks", API Refining Dept. 43rd Midyear Meeting, Toronto, May 1978 これらの特性を使用して、前年度と同条件である南海トラフの想定地震波形 A 地区 EW 方向 を入力地震波形とした旧法タンク No.3 の浮き上がり解析を実施した結果は以下となった。

- ・ ケース1:最大 75.1cm の浮き上がり
- ケース2:最大45.0cmの浮き上がり
- ・ 参考(平成 26 年度): 最大 104.3cm の浮き上がり

平成 26 年度は、バイリニア $Q-\Delta$ 特性ばねを持つ 1 質点系モデルで求めたタンク浮き上がり履歴を使用して解析した旧法タンク No.3 隅角部のひずみ振幅の一部に飯田の最適疲労曲線式の範囲外となる大きなひずみ量があり、同値を使用しての疲労損傷評価の妥当性が懸念された。平成 27 年度はより精緻に検討したばね(ケース 1 及びケース 2)の 1 質点系モデルでの浮き上がり履歴を使用して解析を実施したところ、ひずみ振幅は飯田の最適疲労曲線式の範囲内であり、両ケースともに隅角部の疲労損傷度 D は 1.0 以下となり、許容値以内であった。

評価ケース	最大浮き上がり変位	疲労損傷度			
	(cm)	D			
ケース 1	75. 1	0. 33			
ケース 2	45.0	0.05			

表 4.3.2 浮き上がり変位と疲労損傷度の比較

また、最大浮き上がり変位が生じるときの側板の座屈強度の解析結果において、軸圧縮応力が 限界座屈応力以内という結果が得られた。

参考資料1

質点系モデルの入力諸元の計算結果

仙台・塩釜特防区域旧法タンク No.4 及び広野特防区域新法タンク No.3 の質点系モデルの諸 元計算シートを以下に示す。

(1) 仙台・塩釜特防区域旧法タンク No.4

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	2272	(k)		
貯槽内径	D	14630	(mm)	
側板高さ	Hmax	14632	(mm)	
最下段側板厚	t.s	9	(mm)	
最高液面高さの 1/3 高さにおける側板厚	t.1/3	7	(mm)	
アニュラ板厚	9. 76	(mm)		
鋼材のヤング率	E	205939.7	(N/mm².)	
鋼材のポアソン比	ν	0. 3	(—)	
降伏応力	σу	245	(N/mm².)	
最高液高さ	Н	12123	(mm)	
液密度	r	8. 50E-07	(kg/mm ³)	
直径/液高さ比	1. 21	(-)		
液高さ/直径比	0. 83	(-)		
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right)$	7. 15E–01	(—)		
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right)^2$	6. 60E-01	(-)		
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) +$	4. 16E-01	(—)		
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) +$	4. 63E-01	(-)		
底板に作用する最大静液圧 $P_0 = g\gamma H$	1. 01E-01	(N/mm²)		

側板重量	W _{.s0}	3. 48E+02	(KN)
側板附属品重量	W _{·s1}	4. 76E+01	(KN)
浮き屋根重量	W _{·r0}	0. 00E+00	(KN)
浮き屋根附属品重量	W _{·r1}	0.00E+00	(KN)
固定屋根重量	W _{.cr0}	6. 08E+01	(KN)
固定屋根附属品重量	W _{.cr1}	1. 30E+01	(KN)
固定屋根骨重量	W.cr2	4. 12E+01	(KN)
本体重量 合計	W _{.sr}	5. 11E+05	(N)

タンク本体重量(赤字:入力値)

[計算式と質点系モデルの入力数値](紫字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 1542	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 2574	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	1.70E+07	(N)
合計重量 (W + W _{sr})	W+W _{.sr}	1.75E+07	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		1.25E+07	(N)
$W_1 = f_{w1} * (W + W_{sr})$		1.15E+07	(N)
消防法/有効液重量率	f.w0	0. 71	(—)
	f.w1	0.66	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		504. 27	(cm)
$H_1 = f_{h1} * H$		561.32	(cm)
消防法/有効液の重心高さ	f. _{h0}	0. 42	(—)
	f. _{h1}	0. 46	(—)
側板自重による鉛直抵抗力	V.0	111.16	(N/cm)
ばね係数	K₀	1.95E+07	(N/cm)
浮き上がり抵抗力	q. _y	396. 52	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left({{{q}_y} + {V_0}} ight)$	q_{vy} + V_{v0}	507.68	(N/cm)
保有水平耐力(降伏耐力)	Q.y	3.04E+06	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	0. 16	(cm)
減衰係数	C	1.44E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	2. 61	(-)

(2) 広野特防区域新法タンク No.3

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	50000	(k1)						
貯槽内径	61000	(mm)						
側板高さ	Hmax	21000	(mm)					
最下段側板厚	26	(mm)						
最高液面高さの 1/3 高さにおける側板厚	23	(mm)						
アニュラ板厚	18	(mm)						
鋼材のヤング率	E	205939. 7	(N/mm ² .)					
鋼材のポアソン比	ν	0. 3	(-)					
降伏応力	降伏応力 σу							
最高液高さ	н	14562. 35	(mm)					
液密度	r	9. 50E-07	(kg/mm. ³ .)					
直径/液高さ比	4. 19	(-)						
液高さ/直径比	0. 24	(-)						
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right)$	0. 28	(-)						
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right)^2$	0. 27	(-)						
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) +$	0. 40	(-)						
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) +$	0. 38	(-)						
底板に作用する最大静液圧 $P_0 = g\gamma H$	0. 14	(N /mm²)						

側板重量	W _{.s0}	6.77E+02	(KN)
側板附属品重量	W _{·s1}	0.00E+00	(KN)
浮き屋根重量	W _{·r0}	0.00E+00	(KN)
浮き屋根附属品重量	W _{·r1}	0.00E+00	(KN)
固定屋根重量	W _{.cr0}	4. 32E+03	(KN)
固定屋根附属品重量	W _{.cr1}	0.00E+00	(KN)
固定屋根骨重量	W.cr2	0.00E+00	(KN)
本体重量 合計	W _{.sr}	1. 11E+07	(N)

タンク本体重量(赤字:入力値)

[計算式と質点系モデルの入力数値](紫字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 2695	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 3922	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	3.96E+08	(N)
合計重量 (W + W _{sr})	W+W _{.sr}	4. 07E+08	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		1.16E+08	(N)
$W_1 = f_{w1} * (W + W_{sr})$		1.09E+08	(N)
消防法/有効液重量率	f.w0	0. 28	(—)
	f.w1	0. 27	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		582. 57	(cm)
$H_1 = f_{h1} * H$		553.15	(cm)
消防法/有効液の重心高さ	f. _{h0}	0. 40	(—)
	f. _{h1}	0. 38	(—)
側板自重による鉛直抵抗力	V.0	578. 45	(N/cm)
ばね係数	K₀	6.07E+07	(N/cm)
浮き上がり抵抗力	q. _y	1198. 29	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left({{{q}_y} + {V_0}} ight)$	q_{vy} + V_{v0}	1776. 74	(N/cm)
保有水平耐力(降伏耐力)	Q. _y	1. 27E+08	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	2.09	(cm)
減衰係数	C	1.44E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	11.0	(-)

参考資料2

地下逸散減衰を含むタンクの逸散減衰の設定についての理論的検討

1 目的

東北地方太平洋沖地震の発生後に、屋外貯蔵タンクでは、タンクの側板の浮上りについて の痕跡は、確認できていない。本検討においては、質点系モデルの浮上り解析を実施するに 当り、本検討での解析の結果がこのような実現象に近い結果を再現できるように、タンクに 適用する地下逸散減衰を含む等価減衰を適切に設定することを目的とする。

2 基本方針

質点系モデルの地震応答解析の結果から、仙台・塩釜地区及び広野地区においては、EW 方向の地震波によるタンクの浮上りが大きいという結果となった。よって、本検討では、仙 台・塩釜地区及び広野地区におけるタンクを対象として地下逸散減衰を含む等価逸散減衰を 推定し、全てのタンクの等価逸散減衰のうち最小値を選択し、その値を一律に全タンクの等 価逸散減衰と設定するものとする。下記の参考文献を用いた検討手順は以下のとおり。

(1) 地震動が小さな場合の地下逸散を考慮した等価減衰定数の推定

文献①の梅林らの方法により、各タンクの諸元および設置地盤のせん断波速度(V_s)から推定する地下逸散減衰を考慮した等価減衰定数を算定する。

(2) 地震動が大きな場合の地盤の Vs 値の低減率の推定

文献②及び③より、地下逸散減衰は、地盤の Vsに反比例するとされている。

その理論に則り、地震動が大きな場合の等価減衰定数を算定するため、地震動が大きな 場合の Vs値の推定を行う。文献④においては、地表面の震度が最大 0.3 のときの Vs値の 低減率が与えられている。これらの値と、地盤応答解析から推定される Vs値の低減率の推 定値を採用する。

(3) 地震動が大きな場合の等価減衰定数の推定

仙台・塩釜地区、および広野地区における全検討対象タンクの大地震時の等価減衰定数 の推定を行い、今後、全タンクの質点系モデルでの応答解析に適用する一律の等価減衰定 数を設定する。

参考文献

①梅林、他4名;平底円筒形貯槽の地下逸散減衰、圧力技術、第21巻、第1号、1983年
 ②日本建築学会;容器構造設計指針・同解説、2010

- ③山本;平底円筒形貯槽の耐震設計上の諸問題、日本機械学会誌、第87巻、第792号、昭和59年11月
- ④ Eurocode 8: Design provisions for earth quake resistance of structures, Part 5.
 Foundations, retaining structures and geotechnical aspects, DD ENV 1998-5: 1996

3 検討結果

文献①の梅林らの方法により、各タンクの諸元および設置地盤のせん断波速度(V_s)から 推定する地下逸散減衰を考慮した等価減衰定数を算定した結果を表1及び表2に示す。

また、文献②及び③から、構造物と地盤の系を連続するせん断棒と仮定した1次元波動理 論によれば、地下逸散減衰に対応する減衰定数hは次式により表わされる。

$$h = \frac{2\rho_0 V_0}{\pi \rho_{1V_1}}$$

 ρ_0 , ρ_1 :構造及び地盤の密度 (kg/m³)

V₀, V₁:構造及び地盤のせん断波速度 (m/s)

上記の式の $\rho_0 V_0 / \rho_1 V_1$ は貯槽と地盤の波動インピーダンス比で、この値が大きいものほ ど、地下逸散減衰は大きくなる。このインピーダンス比は地盤の剛性の(V_s)には反比例し ている。そこで、地震動が大きな場合の地盤の V_s の低減率を推定し、この関係を利用して地 震動が大きな場合の地下逸散減衰定数を推定する。

文献④によると、地表面震度が 0.3 のとき、20m 以浅の地盤における V_sの標準的な低減 率は 0.6 と示されている (V_sが 300m/s 以下の場合に限る)。地表面震度が 0.3 より大きけれ ば、より大きな低減率が期待できるが、ここでは安全側の値として 0.6 を採用することとし、 上記条件に合致する仙台・塩釜地区ケース①の地盤の V_s、及び広野地区の地盤の V_sの低減 率に適用する。また、仙台・塩釜地区ケース②の地盤の V_sの低減率については、東北地方太 平洋沖地震の模擬地震波で地盤応答解析を実施し、その結果として得られた 0.57 を大ひずみ 時の V_sの低減率とする。

以上から、大ひずみ時の V_sの低減を考慮した地下逸散減衰を含む等価減衰定数を表 1 及 び表 2 の最も右の欄に示す。以上の結果から、最も小さい等価減衰定数は 15%となり、今後 の全タンクの質点系モデルの応答解析に適用する地下逸散減衰を考慮した一律の等価減衰定 数を 15%と設定する。

表1 仙台・塩釜地区の再現地震波 EW による屋外貯蔵タンクの浮き上がり解析結果

タンク No.	内容物	貯蔵 内径 (m)	公称 容量 (KL)	震災時 貯蔵量 (KL)	震災時 貯蔵率 (%)	最大 浮上り 変位 (cm)	浮上り 回数 正負 合計	周期 Tb (s)	液高 (m)	貯蔵 内径 / 液高	地盤 の V.s (m/s)	文献①の 等価減衰 定数(%)	地盤の V₅.の 低減率	V.₅.の低減 率を考慮 した等価 減衰定数 (%)
1	RG	27.50	1542	1218	79	0. 1	3	0. 110	10. 1	2. 71	140	18. 0		31.6
2	ガソリン	13. 54	1570	1262	80	0	0	0. 106	8. 7	1.55	140	11.8		20. 7
3	軽油	13. 54	1780	1408	79	0. 2	5	0. 112	9.8	1.39	140	10. 5		18.4
4	LSA	14. 63	2272	2040	90	6.3	25	0. 154	12. 1	1. 21	140	8.6	0. 57	15.0
5	灯油	17.07	3425	2689	79	2. 9	10	0. 145	11.8	1. 45	140	11. 0		19.4
6	77#	23. 248	5540	5300	96	0. 1	1	0. 159	12. 7	1.83	140	14. 9		26. 1
7	重油	26. 151	10930	8400	77	0. 8	6	0. 171	15. 7	1.67	140	13. 4		23.5
8	軽油	37.776	22450	17100	76	1. 3	1	0. 253	15. 3	2. 47	140	17.9		31.4
9	ガソリン	58.113	53620	48200	90	1.6	1	0. 309	18. 1	3. 21	150	16. 1	0.00	26.8
10	原油	78. 471	98060	86800	89	0	0	0. 343	18. 1	4.34	150	11.7	0.60	19.5

及び地盤の逸散減衰を含む等価逸散減衰定数

タンク No. 1~8 はケース②を適用、タンク No. 9~10 はケース①を適用

表2 広野地区の再現地震波 EW による屋外貯蔵タンクの浮き上がり解析結果

10															
	タンク No.	内容物	貯蔵 内径 (m)	公称 容量 (KL)	震災時 貯蔵量 (KL)	震災時 貯蔵率 (%)	最大 浮上り 変位 (cm)	浮上り 回数 正負 合計	周期 Tb (s)	液高 (m)	貯蔵 内径 / 液高	地盤 の V.s (m/s)	文献①の 等価減衰 定数(%)	地盤の V _s .の 低減率	V.s.の低減 率を考慮 した等価 減衰定数 (%)
	1	軽油	15.5	2000	1477	74	0.5	6	0. 115	7.9	1.95	180	12. 7		21. 1
	2	燃料	61.0	50000	35955	72	0	0	0. 268	12. 6	4. 83	180	9.0	0. 60	15.0
	3	燃料	61.0	50000	41654	83	4. 5	4	0. 294	14.6	4. 19	180	10. 8		18.0

及び地盤の逸散減衰を含む等価逸散減衰定数

以上
3-1 減衰比 10%および Qy算出に側板重量を考慮しない 条件での質点系による浮き上がり解析結果

第2章、1での検討(減衰率を15%、Qy補正)では、ほとんどのタンクは浮き上がり変位 が小さい結果となり、現実を再現できていると考えられる。ここでは、浮き上がりやすいタン クの調査を目的とし、解析条件をより安全側 (減衰率を10%、Qy算出には側板重量を含めな い) に調整して地震応答解析を実施した結果を参考のため以下に示す。

各タンクの浮き上がり変位と回数の算定結果を以下の付表 3-1 から付表 3-2 に示す。表中の 浮き上がり回数は、小さい浮き上がり~最大浮き上がりを全て数え上げたものである(例:仙 台・塩釜特防区域の再現地震波形 EW に対して、旧法タンク No.9 の最大浮き上がり変位は 45.5cm である)。このように、多くのタンクで顕著な浮き上がりが生じるという解析結果とな り、実現象を再現していないものと考えられる。

タンク No.	内容物	貯蔵内径 (m)	公称容量 (KL)	震災時貯蔵量 (KL)	震災時貯蔵率 (%)	最大浮上り 変位(cm)	浮上り回数 正負合計
1	RG	27. 500	1542	1218	79	7	20
2	ガソリン	13. 540	1570	1262	80	0.17	6
3	軽油	13. 540	1780	1408	79	6.3	17
4	LSA	14.630	2272	2040	90	9.4	102
5	灯油	17.070	3425	2689	79	12	45
6	ナフサ	23. 248	5540	5300	96	11.6	17
7	重油	26. 151	10930	8400	77	16.5	50
8	軽油	37.776	22450	17100	76	21.6	25
9	ガソリン	58.113	53620	48200	90	45.5	47
10	原油	78. 471	98060	86800	89	0	0

付表 3-1 仙台・塩釜特防区域再現地震波形 EW による浮き上がり解析結果

注1:検討したタンクはすべて旧法タンク。

注2:地盤構成を考慮し、No.1から No.8までのタンクにケース②の地震加速度波形を使用。

注3:地盤構成を考慮し、No.9とNo.10タンクにケース①の地震加速度波形を使用。

注4: 側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)。

タンク No.	内容物	貯蔵内径 (m)	公称容量 (KL)	震災時貯蔵量 (KL)	震災時貯蔵率 (%)	最大浮上り 変位(cm)	浮上り回数 正負合計
1	RG	27.500	1542	1218	79	0.1	2
2	ガソリン	13. 540	1570	1262	80	0	0
3	軽油	13. 540	1780	1408	79	0	0
4	LSA	14.630	2272	2040	90	5	65
5	灯油	17.070	3425	2689	79	5.6	64
6	ナフサ	23. 248	5540	5300	96	0.1	3
7	重油	26. 151	10930	8400	77	5.2	30
8	軽油	37.776	22450	17100	76	1.2	7
9	ガソリン	58.113	53620	48200	90	8.5	28
10	原油	78. 471	98060	86800	89	0	0

付表 3-2 仙台・塩釜特防区域再現地震波形 NS による浮き上がり解析結果

注1:検討したタンクはすべて旧法タンク。

注2:地盤構成を考慮し、No.1からNo.8までのタンクにケース②の地震加速度波形を使用。

注3:地盤構成を考慮し、No.9とNo.10タンクにケース①の地震加速度波形を使用。

注4: 側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)。

付表 3-3 広野特防区域再現地震波形 EW による浮き上がり解析結果

タンク No.	内容物	貯蔵内径 (m)	公称容量 (KL)	震災時貯蔵量 (KL)	震災時貯蔵率 (%)	最大浮上り 変位(cm)	浮上り回数 正負合計
1	軽油	15.500	2000	1477	74	9.4	88
2	燃料	61.000	50000	35955	72	0	0
3	燃料	61.000	50000	41654	83	18.3	25

注1:検討したタンクはすべて新法タンク。

注2: 側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)。

付表 3-4 広野特防区域再現地震波形 NS による浮き上がり解析結果

タンク No.	内容物	貯蔵内径 (m)	公称容量 (KL)	震災時貯蔵量 (KL)	震災時貯蔵率 ^(%)	最大浮上り 変位(cm)	浮上り回数 正負合計
1	軽油	15.500	2000	1477	74	9.9	72
2	燃料	61.000	50000	35955	72	0	0
3	燃料	61.000	50000	41654	83	4.5	7

注1:検討したタンクはすべて新法タンク。

注2: 側板とアニュラ板の板厚には実板厚値を使用(不明なものは設計板厚を使用)。

・旧法タンク

仙台・塩釜特防区域の旧法タンク No.8(ケース②の地震波形作用)及び No.9(ケース① の地震波形作用)に大きな浮き上がり変位が発生することがわかった。この2 基のタンクの バルジング振動の固有周期は 0.253 秒と 0.309 秒と算定され、両地震の加速度応答スペクト ルのピークの周期(0.4-0.5 秒)と非常に近いことによる結果と考えられる。なお、旧法タン ク No.10 の固有周期は 0.34 であり、地震加速度スペクトルのピークに近いが、アニュラ板 が厚く(21.6mm)、浮き上がりが抑えられていると考えられる(No10 のアニュラ板を 12mm とした試計算では、浮き上がり変位は 63.5cm であることが確認された)。

・新法タンク

広野特防区域の再現地震波形の最大加速度は、仙台・塩釜特防区域の再現地震波より約1.6 倍が大きいにもかかわらず、同容量(50000 KL)の旧法タンクと比べ、新法タンク(50000 KL)の浮き上がり変位が小さく計算された。これは、新法タンクのアニュラ板(18mm)が 厚くてかつ良い材質(降伏強度:490 N/mm²以上)のものを使用されているため、耐震性が より強いと示されている。

広野特防区域の新法タンク No.2 と NO.3 が同サイズのタンクであるが、応答量の違う結果 となった。その原因は震災時貯蔵量が違うことによって、両タンクのバルジング振動の固有 周期(No.2: T_b=0.2682(s)、 No.3: T_b=0.2940(s))が違っているためである。新法タ ンク NO.3 の固有周期が広野特防区域の再現地震波形加速度応答スペクトルのピークの周期 (0.3063 秒)と近いため、より大きな応答となった。

3-2 減衰比と Qy の定数の違いが及ぼすタンク浮上り変位に関する調査結果

南海トラフ A 地区 EW 方向の想定地震波を用い、代表タンクモデルの旧法タンク No.6 (100,000KL 級) について、減衰比と Qy の定数の違いがタンク浮上り変位にどれだけ影響するのか調査した。

<定数の設定条件>

- 減衰比は、10%と15%の2種類を設定
- Qy 値は、1 倍(側板重量含めないもの)と 1.4 倍(側板重量を含むもの)の2 種類を 設定

上記設定条件による調査結果を次表にまとめる。

ケース	減衰比	Qy の	D /U1	降伏変位	最大応答変位	最大浮き上がり変位	低減率
番号	(%)	増加倍率	U/ NI	∆y (cm)	∆max (cm)	δmax (cm)	(%)
1	10	1	11.91	2. 27	18.90	198. 1	-
2	15	1		2. 27	11. 72	112. 5	43.2
3	10	1.4		3.04	10. 15	84. 7	57. 2
4	15	1.4		3.04	6.36	39.5	80. 1

表 代表タンクモデルの旧法タンク No.6(100000KL)の浮上り変位解析結果

注)代表タンクモデルの旧法タンク No.6(100000KL)では側板重量分を加味すると Qyの値は約1.4倍となる。

本調査より、当該タンクにおいて Qy 値の補正(側板重量分を含むものと含めないもの) と、減衰比の変更(10%と 15%)では、タンクの最大浮上り変位に対する影響は同程度で あると確認した。

ケース1とケース2の比較では、減衰比10%から15%にすることで最大浮上り量は43% 小さくなるのに対し、ケース1とケース3の比較ではQy値を補正(1.4倍)することにより、 57%の減少となった。

参考資料4

動液圧の計算シート

(1) 仙台・広野特防区域の旧法タンク No.4 の動液圧の計算結果を以下に示す。

D	14630 mm		
Н	12123 mm		
Kh.1	0. 4169		
u .3	1. 39		
ρ 8.50E-07 kg/mm ²			

H/D	0. 82864
分割	100
ΔH	121.23 mm
g	9.8 m/sec ²
Z	3.07E+11 mm ³

C00	C01	C02	C03	C04	C05
0. 558969	-0. 13214	1.04432	-4. 24286	5. 670024	-2.88859
C10	C12	C12	C13	C14	C15
0.368103	0. 027991	2. 164487	-6. 08181	6. 824774	-3. 29167

			P = 2D*Ph(z)*π/4 より			
Z	Ph0(Z)	Ph1(Z)	Ph(Z)	Р	М	Q
(mm)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm)	(N.mm)	(N)
0.00	0.01693	0.00435	0.02128	488.99	2.5836E+10	4.9669E+06
121.23	0.01689	0.00435	0.02125	488.27	2.5238E+10	4.9077E+06
242.46	0.01686	0.00436	0.02123	487.79	2.4646E+10	4.8485E+06
363.69	0.01684	0.00438	0.02121	487.52	2.4062E+10	4.7894E+06
484.92	0.01681	0.00440	0.02121	487.44	2.3485E+10	4.7303E+06
606.15	0.01679	0.00442	0.02121	487.52	2.2915E+10	4.6712E+06
727.38	0.01678	0.00445	0.02122	487.74	2.2352E+10	4.6121E+06
848.61	0.01676	0.00447	0.02124	488.08	2.1797E+10	4.5530E+06
969.84	0.01675	0.00450	0.02126	488.52	2.1249E+10	4.4938E+06
1091.07	0.01674	0.00454	0.02128	489.05	2.0707E+10	4.4345E+06
1212.30	0.01673	0.00457	0.02131	489.64	2.0173E+10	4.3752E+06
1333.53	0.01673	0.00461	0.02133	490.29	1.9647E+10	4.3158E+06
1454.76	0.01672	0.00465	0.02136	490.97	1.9127E+10	4.2563E+06
1575.99	0.01671	0.00469	0.02139	491.67	1.8615E+10	4.1967E+06
1697.22	0.01670	0.00473	0.02143	492.38	1.8109E+10	4.1371E+06
1818.45	0.01669	0.00477	0.02146	493.09	1.7612E+10	4.0774E+06
1939.68	0.01668	0.00481	0.02149	493.78	1.7121E+10	4.0175E+06
2060.91	0.01666	0.00485	0.02152	494.45	1.6637E+10	3.9576E+06
2182.14	0.01665	0.00489	0.02154	495.08	1.6161E+10	3.8977E+06
2303.37	0.01663	0.00494	0.02157	495.67	1.5692E+10	3.8376E+06
2424.60	0.01661	0.00498	0.02159	496.21	1.5231E+10	3.7775E+06
2545.83	0.01659	0.00502	0.02161	496.69	1.4777E+10	3.7173E+06
2667.06	0.01657	0.00506	0.02163	497.11	1.4330E+10	3.6571E+06
2788.29	0.01654	0.00510	0.02165	497.46	1.3890E+10	3.5968E+06
2909.52	0.01652	0.00514	0.02166	497.73	1.3457E+10	3.5364E+06
3030.75	0.01648	0.00518	0.02167	497.93	1.3032E+10	3.4761E+06
3151.98	0.01645	0.00522	0.02167	498.04	1.2615E+10	3.4157E+06
3273.21	0.01641	0.00526	0.02167	498.06	1.2204E+10	3.3553E+06
3394.44	0.01637	0.00530	0.02167	497.99	1.1801E+10	3.2950E+06
3515.67	0.01633	0.00533	0.02166	497.84	1.1405E+10	3.2346E+06
3636.90	0.01628	0.00537	0.02165	497.58	1.1017E+10	3.1743E+06
3758.13	0.01624	0.00540	0.02164	497.23	1.0636E+10	3.1140E+06
3879.36	0.01618	0.00543	0.02162	496.78	1.0262E+10	3.0537E+06
4000.59	0.01613	0.00546	0.02159	496.24	9.8953E+09	2.9935E+06
4121.82	0.01607	0.00549	0.02157	495.59	9.5360E+09	2.9334E+06
4243.05	0.01601	0.00552	0.02153	494.85	9.1840E+09	2.8734E+06
4364.28	0.01595	0.00555	0.02150	494.00	8.8393E+09	2.8134E+06
4485.51	0.01588	0.00557	0.02146	493.05	8.5019E+09	2.7536E+06
4606.74	0.01581	0.00560	0.02141	492.00	8.1717E+09	2.6939E+06
4/2/.9/	0.015/4	0.00562	0.02136	490.86	7.848/E+09	2.6343E+06
4849.20	0.0156/	0.00564	0.02131	489.61	7.5330E+09	2.5/49E+06
49/0.43	0.01559	0.00566	0.02125	488.26	/.2244E+09	2.5156E+06
5091.66	0.01551	0.00568	0.02118	486.81	6.9230E+09	2.4565E+06
5212.89	0.01543	0.00569	0.02112	485.26	6.6288E+09	2.39/6E+06
5334.12	0.01534	0.00570	0.02104	483.61	6.341/E+09	2.3389E+06
5455.35	0.01525	0.005/2	0.02097	481.86	6.061/E+09	2.2803E+06
55/6.58	0.01516	0.00573	0.02089	480.01	5./888E+09	2.2220E+06
5697.81	0.01507	0.00573	0.02080	4/8.06	5.5229E+09	2.1640E+06
5819.04	0.01497	0.00574	0.020/1	4/6.00	5.2641E+09	2.1001E+06
5940.27	0.01487	0.00575	0.02062	4/3.85	5.0122E+09	2.0486E+06
6100.70	0.01467	0.00575	0.02052	4/1.59	4./0/4E+09	1.9912E+06
0182./3	0.01467	0.00575	0.02042	409.23	4.3294E+09	1.9342E+00
0303.90	0.01456	0.00574	0.02031	400./0	4.2904E+U9	1.0//JE+U0
0420.19	0.01440	0.00574	0.02020	404.18	4.0/42E+09	1.0211E+U0
0040.42	0.01434	0.00574	0.02008	401.49	3.0000E+09	1.7049E+00
6788.99	0.01423	0.00373	0.01990	450.09	3.4424F+00	1.6537E+06
I 0700.00	0.01411	0.00072	0.01903	+55.77	0.77272.03	1.00072.00

6910.11	0.01399	0.00571	0.01970	452.73	3.2453E+09	1.5987E+06
7031.34	0.01387	0.00569	0.01956	449.56	3.0548E+09	1.5440E+06
7152.57	0.01374	0.00568	0.01942	446.26	2.8709E+09	1.4897E+06
7273.80	0.01361	0.00566	0.01927	442.82	2.6936E+09	1.4358E+06
7395.03	0.01348	0.00564	0.01911	439.24	2.5227E+09	1.3823E+06
7516.26	0.01334	0.00561	0.01895	435.51	2.3584E+09	1.3293E+06
7637.49	0.01320	0.00558	0.01878	431.61	2.2004E+09	1.2767E+06
7758.72	0.01305	0.00555	0.01860	427.55	2.0488E+09	1.2247E+06
7879.95	0.01291	0.00552	0.01842	423.32	1.9035E+09	1.1731E+06
8001.18	0.01275	0.00548	0.01823	418.89	1.7643E+09	1.1220E+06
8122.41	0.01259	0.00544	0.01803	414.27	1.6314E+09	1.0715E+06
8243.64	0.01243	0.00539	0.01782	409.43	1.5045E+09	1.0216E+06
8364.87	0.01226	0.00534	0.01760	404.37	1.3836E+09	9.7227E+05
8486.10	0.01208	0.00529	0.01737	399.07	1.2687E+09	9.2357E+05
8607.33	0.01189	0.00523	0.01712	393.52	1.1597E+09	8.7553E+05
8728.56	0.01170	0.00517	0.01687	387.70	1.0564E+09	8.2818E+05
8849.79	0.01150	0.00510	0.01661	381.60	9.5882E+08	7.8155E+05
8971.02	0.01130	0.00503	0.01633	375.18	8.6686E+08	7.3567E+05
9092.25	0.01108	0.00495	0.01603	368.45	7.8040E+08	6.9060E+05
9213.48	0.01086	0.00487	0.01572	361.37	6.9936E+08	6.4636E+05
9334.71	0.01062	0.00478	0.01540	353.92	6.2363E+08	6.0300E+05
9455.94	0.01038	0.00468	0.01506	346.08	5.5310E+08	5.6057E+05
9577.17	0.01012	0.00458	0.01470	337.83	4.8766E+08	5.1912E+05
9698.40	0.00985	0.00447	0.01432	329.14	4.2718E+08	4.7869E+05
9819.63	0.00957	0.00436	0.01392	319.98	3.7153E+08	4.3934E+05
9940.86	0.00927	0.00423	0.01350	310.32	3.2058E+08	4.0114E+05
10062.09	0.00896	0.00410	0.01306	300.14	2.7420E+08	3.6413E+05
10183.32	0.00863	0.00396	0.01259	289.40	2.3222E+08	3.2840E+05
10304.55	0.00829	0.00381	0.01210	278.08	1.9449E+08	2.9400E+05
10425.78	0.00793	0.00365	0.01158	266.12	1.6085E+08	2.6101E+05
10547.01	0.00755	0.00349	0.01103	253.51	1.3112E+08	2.2952E+05
10668.24	0.00714	0.00331	0.01045	240.20	1.0511E+08	1.9959E+05
10789.47	0.00672	0.00312	0.00984	226.15	8.2624E+07	1.7132E+05
10910.70	0.00628	0.00292	0.00920	211.33	6.3462E+07	1.4480E+05
11031.93	0.00581	0.00270	0.00851	195.68	4.7403E+07	1.2013E+05
11153.16	0.00532	0.00248	0.00780	179.16	3.4217E+07	9.7412E+04
11274.39	0.00480	0.00224	0.00704	161.74	2.3660E+07	7.6748E+04
11395.62	0.00425	0.00199	0.00624	143.36	1.5477E+07	5.8254E+04
11516.85	0.00368	0.00172	0.00539	123.96	9.3971E+06	4.2051E+04
11638.08	0.00307	0.00144	0.00450	103.51	5.1351E+06	2.8262E+04
11759.31	0.00243	0.00114	0.00357	81.94	2.3903E+06	1.7021E+04
11880.54	0.00175	0.00082	0.00258	59.20	8.4543E+05	8.4655E+03
12001.77	0.00104	0.00049	0.00153	35.24	1.6615E+05	2.7410E+03
12123.00	0.00029	0.00014	0.00043	9.98	0.0000F+00	0.0000F+00

(2) 広野特防区域の新法タンク No.3 の動液圧の計算結果を以下に示す。

D	61000 mm		
Н	14562.35 mm		
Kh ₁	0. 493		
ν _{.3} 1.643			
ρ	9.50E-07 kg/mm ²		

H/D	0. 238727
分割	100
ΔH	145.6235 mm
g	9.8 m/sec ²
Z	2. 23E+13 mm ³

C00	C01	C02	C03	C04	C05
0.824775	-0. 13239	0.693809	-4. 24775	5. 721618	-2.85775
C10	C12	C12	C13	C14	C15
0.804867	0. 270873	-1. 3522	0.347311	0. 028917	-0. 10053

				P = 2D*Ph(-)*	<u>π/4</u> 上U	1
7	Ph0(7)	Ph1(7)	Ph(7)	P	<u>м</u>	0
- mm)	(N/mm2)	(N/mm^2)	(N/mm2)	(N/mm)	(N.mm)	(N)
0.00	0.03355	0.02105	0.05461	5232.28	3.1038E+11	5.4464E+07
145.62	0.03350	0.02112	0.05462	5233.83	3.0251E+11	5.3702E+07
291.25	0.03345	0.02118	0.05464	5235.14	2.9474E+11	5.2940E+07
436.87	0.03341	0.02123	0.05465	5236.15	2.8709E+11	5.2177E+07
582.49	0.03337	0.02128	0.05465	5236.75	2.7955E+11	5.1415E+07
728.12	0.03333	0.02132	0.05465	5236.89	2.7212E+11	5.0652E+07
873.74	0.03330	0.02135	0.05465	5236.48	2.6479E+11	4.9889E+07
1019.36	0.03326	0.02138	0.05464	5235.47	2.5759E+11	4.9127E+07
1164.99	0.03322	0.02140	0.05462	5233.78	2.5049E+11	4.8365E+07
1310.61	0.03319	0.02141	0.05460	5231.36	2.4350E+11	4.7603E+07
1456.24	0.03315	0.02142	0.05456	5228.16	2.3662E+11	4.6841E+07
1601.86	0.03310	0.02142	0.05452	5224.13	2.2986E+11	4.6080E+07
1747.48	0.03306	0.02141	0.05447	5219.22	2.2320E+11	4.5320E+07
1893.11	0.03301	0.02140	0.05441	5213.39	2.1666E+11	4.4560E+07
2038.73	0.03296	0.02138	0.05434	5206.60	2.1022E+11	4.3801E+07
2184.35	0.03291	0.02135	0.05426	5198.83	2.0390E+11	4.3044E+07
2329.98	0.03285	0.02132	0.0541/	5190.03	1.9/69E+11	4.228/E+U/
24/5.00	0.03278	0.02128	0.05406	5180.18	1.9158E+11	4.1532E+U/
2021.22	0.032/1	0.02124	0.05395	5169.20	1.0009E+11	4.07/9E+07
2/00.83	0.03204	0.02119	0.05382	5157.25	1./9/IE+II 1.7202E+11	4.002/E+07
2912.47	0.03250	0.02113	0.05309	5144.13	1.73935+11	3.9277E+07
3038.09	0.03247	0.02107	0.05334	511448	1.0027L+11	3.7783E+07
3203.72	0.03238	0.02100	0.05330	5007.04	1.0271L+11	3.7733E+07
3494 96	0.03218	0.02032	0.05302	5080.24	1.5192E+11	3.6298E+07
3640 59	0.03207	0.02076	0.05282	5061.37	1 4669F+11	3 5560E+07
3786.21	0.03195	0.02066	0.05261	5041.34	1.4157F+11	3.4824F+07
3931.83	0.03182	0.02057	0.05239	5020.14	1.3655E+11	3.4091E+07
4077.46	0.03169	0.02046	0.05216	4997.77	1.3164E+11	3.3362E+07
4223.08	0.03156	0.02036	0.05191	4974.23	1.2683E+11	3.2636E+07
4368.71	0.03141	0.02024	0.05166	4949.53	1.2213E+11	3.1913E+07
4514.33	0.03126	0.02012	0.05139	4923.66	1.1754E+11	3.1194E+07
4659.95	0.03111	0.02000	0.05110	4896.65	1.1305E+11	3.0479E+07
4805.58	0.03094	0.01987	0.05081	4868.49	1.0866E+11	2.9768E+07
4951.20	0.03077	0.01973	0.05050	4839.19	1.0438E+11	2.9062E+07
5096.82	0.03060	0.01959	0.05019	4808.76	1.0020E+11	2.8359E+07
5242.45	0.03042	0.01944	0.04986	4777.22	9.6117E+10	2.7661E+07
5388.07	0.03023	0.01929	0.04952	4/44.56	9.2140E+10	2.6968E+07
5533.69	0.03003	0.01913	0.04916	4/10.81	8.8263E+10	2.62/9E+0/
5079.32	0.02983	0.01897	0.04880	40/0.9/	8.4483E+10	2.3390E+07
5024.94	0.02902	0.01863	0.04643	4040.00	7 7228E+10	2.4010E+07
6116 19	0.02041	0.01845	0.04764	4565.05	7 3746F+10	2.3577F+07
6261.81	0 0 2 8 9 7	0.01827	0.04723	4525.98	7.0361F+10	2.2915F+07
6407.43	0.02873	0.01808	0.04682	4485.88	6.7072F+10	2.2259F+07
6553.06	0.02850	0.01789	0.04639	4444.75	6.3877E+10	2.1609E+07
6698.68	0.02825	0.01769	0.04595	4402.62	6.0778E+10	2.0964E+07
6844.30	0.02801	0.01749	0.04550	4359.48	5.7771E+10	2.0326E+07
6989.93	0.02775	0.01728	0.04504	4315.35	5.4857E+10	1.9695E+07
7135.55	0.02749	0.01707	0.04457	4270.23	5.2035E+10	1.9070E+07
7281.17	0.02723	0.01685	0.04408	4224.12	4.9303E+10	1.8451E+07
7426.80	0.02696	0.01663	0.04359	4177.04	4.6660E+10	1.7839E+07
7572.42	0.02669	0.01641	0.04309	4128.98	4.4106E+10	1.7235E+07
7718.05	0.02640	0.01618	0.04258	4079.95	4.1640E+10	1.6637E+07
7863.67	0.02612	0.01594	0.04206	4029.94	3.9260E+10	1.6047E+07
8009.29	0.02583	0.01570	0.04153	3978.95	3.6966E+10	1.5463E+07
8154.92	0.02553	0.01545	0.04098	3926.99	3.4756E+10	1.4888E+07

8300.54	0.02523	0.01520	0.04043	3874.03	3.2630E+10	1.4320E+07
8446.16	0.02492	0.01495	0.03987	3820.08	3.0585E+10	1.3759E+07
8591.79	0.02460	0.01469	0.03929	3765.11	2.8622E+10	1.3207E+07
8737.41	0.02428	0.01443	0.03871	3709.13	2.6738E+10	1.2663E+07
8883.03	0.02396	0.01416	0.03811	3652.10	2.4933E+10	1.2127E+07
9028.66	0.02362	0.01389	0.03751	3594.01	2.3205E+10	1.1599E+07
9174.28	0.02328	0.01361	0.03689	3534.85	2.1554E+10	1.1080E+07
9319.90	0.02294	0.01333	0.03626	3474.58	1.9978E+10	1.0570E+07
9465.53	0.02258	0.01304	0.03562	3413.17	1.8475E+10	1.0068E+07
9611.15	0.02222	0.01275	0.03497	3350.59	1.7045E+10	9.5760E+06
9756.77	0.02185	0.01245	0.03430	3286.81	1.5685E+10	9.0927E+06
9902.40	0.02147	0.01215	0.03362	3221.79	1.4396E+10	8.6188E+06
10048.02	0.02108	0.01185	0.03293	3155.48	1.3174E+10	8.1545E+06
10193.65	0.02069	0.01154	0.03223	3087.84	1.2020E+10	7.6999E+06
10339.27	0.02028	0.01122	0.03151	3018.82	1.0931E+10	7.2552E+06
10484.89	0.01987	0.01090	0.03077	2948.35	9.9063E+09	6.8207E+06
10630.52	0.01944	0.01058	0.03002	2876.39	8.9439E+09	6.3966E+06
10776.14	0.01900	0.01025	0.02925	2802.87	8.0425E+09	5.9831E+06
10921.76	0.01855	0.00992	0.02847	2727.71	7.2005E+09	5.5804E+06
11067.39	0.01808	0.00958	0.02767	2650.85	6.4164E+09	5.1888E+06
11213.01	0.01760	0.00924	0.02684	2572.20	5.6885E+09	4.8085E+06
11358.63	0.01711	0.00889	0.02600	2491.69	5.0151E+09	4.4398E+06
11504.26	0.01660	0.00854	0.02514	2409.23	4.3945E+09	4.0830E+06
11649.88	0.01608	0.00818	0.02426	2324.72	3.8251E+09	3.7383E+06
11795.50	0.01553	0.00782	0.02336	2238.05	3.3049E+09	3.4060E+06
11941.13	0.01497	0.00746	0.02243	2149.14	2.8321E+09	3.0866E+06
12086.75	0.01439	0.00709	0.02148	2057.86	2.4049E+09	2.7803E+06
12232.37	0.01379	0.00671	0.02050	1964.11	2.0214E+09	2.4874E+06
12378.00	0.01316	0.00633	0.01949	1867.75	1.6795E+09	2.2084E+06
12523.62	0.01252	0.00594	0.01846	1768.66	1.3772E+09	1.9437E+06
12669.24	0.01184	0.00555	0.01739	1666.71	1.1123E+09	1.6935E+06
12814.87	0.01114	0.00515	0.01630	1561.75	8.8282E+08	1.4585E+06
12960.49	0.01042	0.00475	0.01517	1453.63	6.8643E+08	1.2389E+06
13106.12	0.00966	0.00435	0.01401	1342.21	5.2083E+08	1.0353E+06
13251.74	0.00887	0.00393	0.01281	1227.33	3.8369E+08	8.4824E+05
13397.36	0.00805	0.00352	0.01157	1108.80	2.7255E+08	6.7814E+05
13542.99	0.00720	0.00309	0.01030	986.46	1.8490E+08	5.2558E+05
13688.61	0.00631	0.00267	0.00898	860.13	1.1816E+08	3.9113E+05
13834.23	0.00538	0.00223	0.00761	729.62	6.9627E+07	2.7538E+05
13979.86	0.00441	0.00179	0.00621	594.73	3.6547E+07	1.7895E+05
14125.48	0.00340	0.00135	0.00475	455.25	1.6055E+07	1.0250E+05
14271.10	0.00235	0.00090	0.00325	310.97	5.1908E+06	4.6707E+04
14416.73	0.00125	0.00044	0.00169	161.68	8.9501E+05	1.2292E+04
14562.35	0.00009	-0.00002	0.00007	7.14	0.0000F+00	0.0000F+00

質点系モデルの入力諸元の計算結果(南海トラフ検討用)

代表的な旧法タンク6基と新法タンク6基の質点系モデルの入力諸元の計算結果の一覧表を 付表1-1に示す。

代表的な旧法タンク6基の質点系モデルの入力諸元の計算シートを付表1-2に示す。 代表的な新法タンク6基の質点系モデルの入力諸元の計算シートを付表1-3に示す。

タンク 番号	容量 (KL)	板厚 (mm)	アニュラ: 材質	板 降伏強度 (N/mm ²)	側板自重に よる抵抗力 V ₀ (N/cm)	浮き上がり 抵抗力 q _y (N/cm)	保有水平 耐力 Q. _y (N)	Qy の 増加 倍率	降伏変位 Δ.y (cm)	タンク 周期 T₀ (sec)
旧法 No. 1	2500	9	SM41C	245	121. 2	405.4	3. 2E+06	1.30	0. 15	0. 1736
旧法 No. 2	7500	12	SS41	245	148. 2	648.0	1.9E+07	1.30	0. 45	0.1740
旧法 No. 3	30000	12	SM400C	245	195. 1	641.7	3. 5E+07	1.30	0. 76	0. 3388
旧法 No. 4	50000	12	WT62	490	320. 5	936.9	8. 5E+07	1.34	1. 44	0. 3717
旧法 No. 5	75000	12	HW50	450	318.6	879.0	1. 2E+08	1.36	1. 82	0. 3608
旧法 No. 6	100000	12	SPV490Q	450	343.6	861.4	1.9E+08	1.40	3. 04	0. 3890

付表 1-1 質点系モデルの入力諸元の計算結果の一覧表

タンク 番号	容量 (KL)	板厚 (mm)	アニュラ: 材質	板 降伏強度 (N/mm ²)	側板自重に よる抵抗力 V _{.0} (N/cm)	浮き上がり 抵抗力 q _{.y} (N/cm)	保有水平 耐力 Q. _y (N)	Qy の 増加 倍率	降伏変位 Δ.y (cm)	タンク 周期 T₅ (sec)
新法 No. 1	2500	12	SM400	245	140. 7	542.9	4.1E+06	1.26	0. 17	0.1655
新法 No. 2	7500	12	SM41C	245	107. 3	500. 1	1.8E+07	1.21	0. 39	0. 1683
新法 No. 3	30000	15	SPV490Q	490	244. 9	1147.4	6. 0E+07	1. 21	1. 19	0. 3368
新法 No. 4	50000	18	SPV50	490	578.5	1314.9	1.6E+08	1.44	2. 34	0. 3052
新法 No. 5	75000	18	SPV50	490	324. 7	1393.8	1. 7E+08	1. 24	2. 50	0.3670
新法 No. 6	100000	21	HW50	450	363. 1	1586. 7	2. 5E+08	1. 23	3. 33	0. 3882

付表 1-2 代表的な旧法タンク6基の質点系モデルの入力諸元の計算シート

[旧法タンク No.1]

公称容量	VOL(kI)	2500	(k)
貯槽内径	D	15500	(mm)
側板高さ	Hmax	15087	(mm)
最下段側板厚	t.s	10	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	8	(mm)
アニュラ板厚	t. _b	9	(mm)
鋼材のヤング率	E	205939.7	(N/mm².)
鋼材のポアソン比	ν	0. 3	(—)
降伏応力	σу	245	(N/mm².)
最高液高さ	Н	13344	(mm)
液密度	r	9.50E-07	(kg/mm ³)
直径/液高さ比	D/H	1.16	(—)
液高さ/直径比	H/D	0.86	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right)$	- 0.1172	0. 73	(—)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right)^2$) – 0.1634	0. 67	(—)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) +$	0.4096	0. 42	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.0207 \left(\frac{H}{D}\right)^4$	0.3644	0. 47	(—)
底板に作用する最大静液圧 $P_0 = g \gamma H$		0. 12	(N/mm²)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

側板重量	W _{.s0}	4. 13E+02	(KN)
側板附属品重量	W _{·s1}	5. 52E+01	(KN)
浮き屋根重量	W _{·r0}	0.00E+00	(KN)
浮き屋根附属品重量	W _{·r1}	1.08E+02	(KN)
固定屋根重量	W.cr0	6. 75E+01	(KN)
固定屋根附属品重量	W _{.cr1}	1. 22E+01	(KN)
固定屋根骨重量	W.cr2	4. 25E+01	(KN)
本体重量 合計	W _{.sr}	6. 99E+05	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 1736	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 2514	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	2.35E+07	(N)
合計重量 (W + W _{sr})	W+W _{.sr}	2. 42E+07	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(—)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		1.75E+07	(N)
$W_1 = f_{w1} * (W + W_{sr})$		1.61E+07	(N)
消防法/有効液重量率	f.w0	0. 73	(—)
	f. _{w1}	0. 67	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		556.65	(cm)
$H_1 = f_{h1} * H$		624. 33	(cm)
消防法/有効液の重心高さ	f. _{h0}	0. 42	(—)
	f. _{h1}	0. 47	(—)
側板自重による鉛直抵抗力	V.0	121. 23	(N/cm)
ばね係数	K₀	2.15E+07	(N/cm)
浮き上がり抵抗力	q. _y	405.55	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left(q_{y} + \mathit{V}_{0} ight)$	q_{vy} + V_{v0}	526. 78	(N/cm)
保有水平耐力(降伏耐力)	Q.y	3.18E+06	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	0. 15	(cm)
減衰係数	С	1.78E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	2. 48	(-)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	VOL(kI)	7500	(k)
貯槽内径	D	29000	(mm)
側板高さ	Hmax	12200	(mm)
最下段側板厚	t.s	16	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	12	(mm)
アニュラ板厚	t. _b	12	(mm)
鋼材のヤング率	E	205939.7	(N/mm²)
鋼材のポアソン比	ν	0.3	(—)
降伏応力	σу	245	(N/mm².)
最高液高さ	н	11410	(mm)
液密度	r	9. 50E-07	(kg/mm ³)
直径/液高さ比	D/H	2. 54	(-)
液高さ/直径比	H/D	0. 39	(—)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right)$	- 0.1172	0. 46	(—)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right)^2$) – 0.1634	0. 44	(—)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.0807 \left(\frac{H}{D}\right)^4$	0.4096	0. 40	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.0207 \left(\frac{H}{D}\right)^4$	0.3644	0. 40	(—)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 11	(N/mm².)

側板重量	W _{.s0}	8. 64E+02	(KN)
側板附属品重量	W _{·s1}	5. 92E+01	(KN)
浮き屋根重量	W _{·r0}	0. 00E+00	(KN)
浮き屋根附属品重量	W _{·r1}	0.00E+00	(KN)
固定屋根重量	W _{.cr0}	2. 40E+02	(KN)
固定屋根附属品重量	W _{.cr1}	1.75E+02	(KN)
固定屋根骨重量	W.cr2	1.18E+01	(KN)
本体重量 合計	W _{.sr}	1.35E+06	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 1740	(sec)
$\lambda = 0.067 (H/D)^2 - 0.30 * (H/D) + 0.46$		0.3523	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	7.02E+07	(N)
合計重量 (W + W _{sr})	W+W _{.sr}	7.16E+07	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(—)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		3. 28E+07	(N)
$W_1 = f_{w1} * (W + W_{sr})$		3.18E+07	(N)
消防法/有効液重量率	f.w0	0.46	(—)
	f.w1	0.44	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		457.83	(cm)
$H_1 = f_{h1} * H$		454.29	(cm)
消防法/有効液の重心高さ	f. _{h0}	0.40	(—)
	f₊ _{h1}	0.40	(—)
側板自重による鉛直抵抗力	V.o	148. 17	(N/cm)
ばね係数	K₀	4. 23E+07	(N/cm)
浮き上がり抵抗力	q. _y	500. 02	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left(\mathfrak{q}_{y}+V_{0} ight)$	q_{vy} + V_{v0}	648. 18	(N/cm)
保有水平耐力(降伏耐力)	Q. _y	1.88E+07	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	0.45	(cm)
減衰係数	С	3. 51E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	6. 38	(-)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	VOL(kI)	30000	(k1)
貯槽内径	D	45100	(mm)
側板高さ	Hmax	21270	(mm)
最下段側板厚	t.s	18	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	13	(mm)
アニュラ板厚	t. _b	12	(mm)
鋼材のヤング率	E	205939. 7	(N/mm²)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σу	245	(N/mm².)
最高液高さ	н	18802	(mm)
液密度	r	9.50E-07	(kg/mm ³ .)
直径/液高さ比	D/H	2. 40	(-)
液高さ/直径比	H/D	0. 42	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right)$	- 0.1172	0. 48	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right)^2$) – 0.1634	0. 47	(-)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.0807 \left(\frac{H}{D}\right)^4$	0.4096	0. 40	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.0207 \left($	0.3644	0. 40	(-)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 18	(N/mm².)

側板重量	W.so	2. 41E+03	(KN)
側板附属品重量	W _{·s1}	3. 50E+02	(KN)
浮き屋根重量	W _{r0}	1. 43E+03	(KN)
浮き屋根附属品重量	W _{.r1}	3. 51E+02	(KN)
固定屋根重量	W _{cr0}	0.00E+00	(KN)
固定屋根附属品重量	W _{.cr1}	0.00E+00	(KN)
固定屋根骨重量	W.cr2	0.00E+00	(KN)
本体重量 合計	W _{.sr}	4. 55E+06	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 3388	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 3466	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	2.80E+08	(N)
合計重量 (W + W _{sr})	W+W _{sr}	2.84E+08	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(—)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		1.36E+08	(N)
$W_1 = f_{w1} * (W + W_{sr})$		1.32E+08	(N)
消防法/有効液重量率	f.w0	0. 48	(—)
	f. _{w1}	0. 47	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		755. 38	(cm)
$H_1 = f_{h1} * H$		754. 51	(cm)
消防法/有効液の重心高さ	f. _{h0}	0. 40	(—)
	f. _{h1}	0. 40	(—)
側板自重による鉛直抵抗力	V. ₀	195. 11	(N/cm)
ばね係数	K. _b	4. 64E+07	(N/cm)
浮き上がり抵抗力	q. _y	641.86	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left({{ ext{q}}_{y}}+V_{0} ight)$	q_{yy} + V_0	836.97	(N/cm)
保有水平耐力(降伏耐力)	Q.y	3.54E+07	(N)
降伏変位 $(=Q_y/K_b)$	Δ _{-y}	0. 76	(cm)
減衰係数	С	7.51E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	5. 98	(-)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	VOL(kI)	73500	(k1)
貯槽内径	D	69765	(mm)
側板高さ	Hmax	21355	(mm)
最下段側板厚	t.s	29	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	23	(mm)
アニュラ板厚	t.b	12	(mm)
鋼材のヤング率	E	205939.7	(N/mm².)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σу	450	(N/mm².)
最高液高さ	н	19229	(mm)
液密度	r	9. 50E-07	(kg/mm ³ .)
直径/液高さ比	D/H	3. 63	(-)
液高さ/直径比	H/D	0. 28	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right) - 0.1172$		0. 33	(—)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0. 32	(-)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0. 40	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.3644$		0. 38	(-)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 18	(N /mm².)

側板重量	W _{.s0}	6. 29E+03	(KN)
側板附属品重量	W _{·s1}	6.89E+02	(KN)
浮き屋根重量	W _{·r0}	2. 34E+03	(KN)
浮き屋根附属品重量	W _{·r1}	5.05E+02	(KN)
固定屋根重量	W _{.cr0}	0. 00E+00	(KN)
固定屋根附属品重量	W _{.cr1}	0. 00E+00	(KN)
固定屋根骨重量	W.cr2	0.00E+00	(KN)
本体重量 合計	W _{.sr}	9.83E+06	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0.3608	(sec)
$\lambda = 0.067 (H/D)^2 - 0.30 * (H/D) + 0.46$		0. 3824	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	6.85E+08	(N)
合計重量 (W + W _{sr})	W+W _{.sr}	6.95E+08	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(—)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		2. 30E+08	(N)
$W_1 = f_{w1} * (W + W_{sr})$		2. 20E+08	(N)
消防法/有効液重量率	f.w0	0. 33	(—)
	f.w1	0. 32	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		769.06	(cm)
$H_1 = f_{h1} * H$		737.93	(cm)
消防法/有効液の重心高さ	f. _{h0}	0.40	(—)
	f₊ _{h1}	0.38	(—)
側板自重による鉛直抵抗力	V.0	318.63	(N/cm)
ばね係数	K₀	6.81E+07	(N/cm)
浮き上がり抵抗力	q. _y	8.80E+02	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left(\mathfrak{q}_{y}+V_{0} ight)$	q_{vy} + V_{v0}	1.20E+03	(N/cm)
保有水平耐力(降伏耐力)	Q. _y	1. 24E+08	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	1.82	(cm)
減衰係数	С	1.17E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	9. 45	(—)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	VOL(kI)	100000	(k1)
貯槽内径	D	83100	(mm)
側板高さ	Hmax	19985	(mm)
最下段側板厚	t.s	33	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	25	(mm)
アニュラ板厚	t. _b	12	(mm)
鋼材のヤング率	E	205939.7	(N/mm.².)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σу	450	(N/mm.².)
最高液高さ	н	18447	(mm)
液密度	r	9.50E-07	(kg/mm ³ .)
直径/液高さ比	D/H	4. 50	(—)
液高さ/直径比	H/D	0. 22	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right) - 0.1172$		0. 26	(—)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0. 25	(-)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0. 40	(—)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{R}\right)^4 - 0.1387 \left(\frac{H}{R}\right)^3 + 0.216 \left(\frac{H}{R}\right)^2 + 0.0207 \left(\frac{H}{R}\right) + 0.3644$		0. 38	(-)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 17	(N/mm²)

側板重量	W. _{so}	7. 79E+03	(KN)
側板附属品重量	W _{·s1}	1.18E+03	(KN)
浮き屋根重量	W _{r0}	2.65E+03	(KN)
浮き屋根附属品重量	W. _{r1}	6.58E+02	(KN)
固定屋根重量	W _{.cr0}	0. 00E+00	(KN)
固定屋根附属品重量	W _{er1}	0.00E+00	(KN)
固定屋根骨重量	W. _{cr2}	0.00E+00	(KN)
本体重量 合計	W _{.sr}	1. 23E+07	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 3890	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 3967	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	9.32E+08	(N)
合計重量 (W + W _{sr})	W+W _{sr}	9.44E+08	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		2. 47E+08	(N)
$W_1 = f_{w1} * (W + W_{sr})$		2.32E+08	(N)
消防法/有効液重量率	f.w0	0. 26	(—)
	f. _{w1}	0. 25	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		738. 25	(cm)
$H_1 = f_{h1} * H$		697.64	(cm)
消防法/有効液の重心高さ	f. _{h0}	0.40	(—)
	f. _{h1}	0. 38	(—)
側板自重による鉛直抵抗力	V.0	343. 57	(N/cm)
ばね係数	K _b	6.16E+07	(N/cm)
浮き上がり抵抗力	q. _y	861.64	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left({{ ext{q}}_y} + {V_0} ight)$	q_{y}	1205. 22	(N/cm)
保有水平耐力(降伏耐力)	Q.y	1.87E+08	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	3. 04	(cm)
減衰係数	С	1.14E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	11.91	(-)

付表 1-3 代表的な新法タンク6基の質点系モデルの入力諸元の計算シート

[新法タンク No.1]

公称容量	VOL(kI)	2535	(k)
貯槽内径	D	15500	(mm)
側板高さ	Hmax	15200	(mm)
最下段側板厚	t.s	14	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	9	(mm)
アニュラ板厚	t. _b	12	(mm)
鋼材のヤング率	E	205939.7	(N/mm²)
鋼材のポアソン比	ν	0. 3	(-)
降伏応力	σу	245	(N/mm²)
最高液高さ	Н	13459	(mm)
液密度	γ	9.50E-07	(kg/mm ³)
直径/液高さ比	D/H	1.15	(—)
液高さ/直径比	H/D	0. 87	(—)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right) - 0.1172$		0. 73	(—)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0. 67	(—)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0. 42	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.3644$		0. 47	(—)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 13	(N/mm²)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

側板重量	W _{s0}	4. 65E+02	(KN)
側板附属品重量	W _{·s1}	5. 65E+01	(KN)
浮き屋根重量	W _{·r0}	0. 00E+00	(KN)
浮き屋根附属品重量	W _{·r1}	1. 09E+02	(KN)
固定屋根重量	W _{.cr0}	7. 07E+01	(KN)
固定屋根附属品重量	W _{.cr1}	4.82E+01	(KN)
固定屋根骨重量	W.cr2	4. 44E+01	(KN)
本体重量 合計	W _{.sr}	7. 94E+05	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 1655	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 2500	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	2.37E+07	(N)
合計重量 (W + W _{sr})	W+W _{sr}	2. 45E+07	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(—)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		1.78E+07	(N)
$W_1 = f_{w1} * (W + W_{sr})$		1. 63E+07	(N)
消防法/有効液重量率	f.w0	0. 73	(—)
	f. _{w1}	0. 67	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		561.81	(cm)
$H_1 = f_{h1} * H$		631.20	(cm)
消防法/有効液の重心高さ	f. _{h0}	0. 42	(—)
	f. _{h1}	0. 47	(—)
側板自重による鉛直抵抗力	V.0	140. 66	(N/cm)
ばね係数	K _b	2.39E+07	(N/cm)
浮き上がり抵抗力	q. _y	543.06	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left(\mathrm{q}_{y}+V_{0} ight)$	q_{y} .+ V_0	683. 72	(N/cm)
保有水平耐力(降伏耐力)	Q.y	4. 09E+06	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	0. 17	(cm)
減衰係数	С	1.89E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	2. 46	(-)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	VOL(kI)	7600	(k1)
貯槽内径	D	29060	(mm)
側板高さ	Hmax	12945	(mm)
最下段側板厚	t.s	16	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	13	(mm)
アニュラ板厚	t. _b	12	(mm)
鋼材のヤング率	E	205939.7	(N/mm².)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σу	245	(N/mm².)
最高液高さ	н	11420	(mm)
液密度	r	9. 50E-07	(kg/mm. ³ .)
直径/液高さ比	D/H	2. 54	(-)
液高さ/直径比	H/D	0. 39	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right) - 0.1172$		0. 46	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0. 44	(-)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0. 40	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.3644$		0. 40	(-)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 11	(N/mm².)

側板重量	W _{.s0}	9. 20E+02	(KN)
側板附属品重量	W _{·s1}	5. 92E+01	(KN)
浮き屋根重量	W _{·r0}	0. 00E+00	(KN)
浮き屋根附属品重量	W _{·r1}	0.00E+00	(KN)
固定屋根重量	W _{.cr0}	1.01E+02	(KN)
固定屋根附属品重量	W _{.cr1}	0.00E+00	(KN)
固定屋根骨重量	W.cr2	0.00E+00	(KN)
本体重量 合計	W _{.sr}	1.99E+06	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 1683	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 3525	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	7.06E+07	(N)
合計重量 (W + W _{sr})	W+W _{.sr}	7.26E+07	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		3. 32E+07	(N)
$W_1 = f_{w1} * (W + W_{sr})$		3. 22E+07	(N)
消防法/有効液重量率	f.w0	0.46	(—)
	f. _{w1}	0. 44	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		458. 22	(cm)
$H_1 = f_{h1} * H$		454. 61	(cm)
消防法/有効液の重心高さ	f. _{h0}	0. 40	(—)
	f _{∙h1}	0. 40	(—)
側板自重による鉛直抵抗力	۷.0	107. 25	(N/cm)
ばね係数	K _b	4. 58E+07	(N/cm)
浮き上がり抵抗力	q. _y	500. 23	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left({{{q}_y} + {V_0}} ight)$	q_{y} .+ V_{0}	607.49	(N/cm)
保有水平耐力(降伏耐力)	Q. _y	1.77E+07	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	0. 39	(cm)
減衰係数	С	3. 68E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	6. 39	(-)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	VOL(kI)	31800	(k1)
貯槽内径	D	45900	(mm)
側板高さ	Hmax	23000	(mm)
最下段側板厚	t.s	21	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	14	(mm)
アニュラ板厚	t. _b	15	(mm)
鋼材のヤング率	E	205939.7	(N/mm².)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σу	490	(N/mm².)
最高液高さ	Н	19240	(mm)
液密度	r	9. 50E-07	(kg/mm ³ .)
直径/液高さ比	D/H	2. 39	(-)
液高さ/直径比	H/D	0. 42	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right) - 0.1172$		0. 48	(—)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0. 47	(-)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0. 40	(—)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.3644$		0. 40	(-)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 18	(N/mm²)

側板重量	W.so	3. 18E+03	(KN)
側板附属品重量	W _{·s1}	3. 50E+02	(KN)
浮き屋根重量	W _{r0}	1. 39E+03	(KN)
浮き屋根附属品重量	W _{.r1}	0.00E+00	(KN)
固定屋根重量	W _{cr0}	0. 00E+00	(KN)
固定屋根附属品重量	W _{.cr1}	0.00E+00	(KN)
固定屋根骨重量	W.cr2	0.00E+00	(KN)
本体重量 合計	W _{.sr}	4. 92E+06	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 3368	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 3460	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	2.97E+08	(N)
合計重量 (W + W _{sr})	W+W _{sr}	3.02E+08	(N)
減衰比	ζ	0. 15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		1.45E+08	(N)
$W_1 = f_{w1} * (W + W_{sr})$		1.41E+08	(N)
消防法/有効液重量率	f.w0	0. 48	(-)
	f.w1	0. 47	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		773. 07	(cm)
$H_1 = f_{h1} * H$		772.69	(cm)
消防法/有効液の重心高さ	f. _{h0}	0. 40	(—)
	f. _{h1}	0. 40	(—)
側板自重による鉛直抵抗力	V ₂₀	244. 86	(N/cm)
ばね係数	K _b	5.00E+07	(N/cm)
浮き上がり抵抗力	q. _y	1147.81	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left(\mathrm{q}_{y}+V_{0} ight)$	$q_{y} + V_0$	1392.67	(N/cm)
保有水平耐力(降伏耐力)	Q _{.y}	5.96E+07	(N)
降伏変位 $(=Q_y/K_b)$	Δ _{.y}	1. 19	(cm)
減衰係数	C	8.04E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	5. 94	(-)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(<mark>赤字:入力値</mark>)

公称容量	VOL(kI)	50000	(k1)
貯槽内径	D	61000	(mm)
側板高さ	Hmax	21000	(mm)
最下段側板厚	t.s	26	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	23	(mm)
アニュラ板厚	t. _b	18	(mm)
鋼材のヤング率	E	205939. 7	(N/mm²)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σу	490	(N/mm².)
最高液高さ	н	17545	(mm)
液密度	r	9. 50E-07	(kg/mm ³ .)
直径/液高さ比	D/H	3. 48	(-)
液高さ/直径比	H/D	0. 29	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right) - 0.1172$		0. 35	(—)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0. 33	(—)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0. 40	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.3644$		0. 39	(-)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 16	(N /mm².)

側板重量	W _{s0}	6. 77E+03	(KN)
側板附属品重量	W _{·s1}	0.00E+00	(KN)
浮き屋根重量	W _{·r0}	0.00E+00	(KN)
浮き屋根附属品重量	W _{·r1}	0.00E+00	(KN)
固定屋根重量	W _{.cr0}	4. 32E+03	(KN)
固定屋根附属品重量	W _{.cr1}	0.00E+00	(KN)
固定屋根骨重量	W.cr2	0.00E+00	(KN)
本体重量 合計	W _{.sr}	1. 11E+07	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 3052	(sec)
$\lambda = 0.067 (H/D)^2 - 0.30 * (H/D) + 0.46$		0. 3793	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	4.78E+08	(N)
合計重量 (W + W _{sr})	W+W _{.sr}	4.89E+08	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(—)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		1.69E+08	(N)
$W_1 = f_{w1} * (W + W_{sr})$		1.62E+08	(N)
消防法/有効液重量率	f.w0	0.35	(—)
	f.w1	0. 33	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		701.76	(cm)
$H_1 = f_{h1} * H$		675.65	(cm)
消防法/有効液の重心高さ	f. _{h0}	0.40	(—)
	f. _{h1}	0. 39	(—)
側板自重による鉛直抵抗力	V.0	578. 45	(N/cm)
ばね係数	K₀	7.01E+07	(N/cm)
浮き上がり抵抗力	q. _y	1315.30	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left(\mathfrak{q}_{y}+V_{0} ight)$	q_{vy} + V_{v0}	1893. 75	(N/cm)
保有水平耐力(降伏耐力)	Q. _y	1. 64E+08	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	2.34	(cm)
減衰係数	С	1.02E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	9. 03	(-)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	VOL(kI)	74600	(k1)
貯槽内径	D	69750	(mm)
側板高さ	Hmax	21855	(mm)
最下段側板厚	t.s	29	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	23	(mm)
アニュラ板厚	t. _b	18	(mm)
鋼材のヤング率	E	205939. 7	(N/mm²)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σу	490	(N/mm².)
最高液高さ	Н	19715	(mm)
液密度	r	9. 50E-07	(kg/mm ³)
直径/液高さ比	D/H	3. 54	(-)
液高さ/直径比	H/D	0. 28	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right) - 0.1172$		0. 34	(—)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0. 33	(-)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0. 40	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.3644$		0. 38	(-)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 18	(N/mm².)

側板重量	W. _{so}	6. 43E+03	(KN)
側板附属品重量	W _{·s1}	6.89E+02	(KN)
浮き屋根重量	W _{r0}	2.81E+03	(KN)
浮き屋根附属品重量	W. _{r1}	0.00E+00	(KN)
固定屋根重量	W _{.cr0}	0.00E+00	(KN)
固定屋根附属品重量	W _{er1}	0.00E+00	(KN)
固定屋根骨重量	W. _{cr2}	0.00E+00	(KN)
本体重量 合計	W _{.sr}	9. 93E+06	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 3670	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 3806	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	7. 02E+08	(N)
合計重量 (W + W _{sr})	W+W _{sr}	7.12E+08	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(—)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		2. 42E+08	(N)
$W_1 = f_{w1} * (W + W_{sr})$		2.32E+08	(N)
消防法/有効液重量率	f.w0	0. 34	(—)
	f. _{w1}	0.33	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		788. 52	(cm)
$H_1 = f_{h1} * H$		758. 12	(cm)
消防法/有効液の重心高さ	f. _{h0}	0. 40	(—)
	f₊ _{h1}	0. 38	(—)
側板自重による鉛直抵抗力	V.0	324. 73	(N/cm)
ばね係数	K _b	6.93E+07	(N/cm)
浮き上がり抵抗力	q. _y	1394. 27	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left({{{q}_y} + {V_0}} ight)$	q_{y} .+ V_0	1719.00	(N/cm)
保有水平耐力(降伏耐力)	Q.y	1. 41E+08	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	2. 03	(cm)
減衰係数	С	1.21E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	9. 20	(-)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	VOL(kI)	102700	(k1)
貯槽内径	D	80000	(mm)
側板高さ	Hmax	22000	(mm)
最下段側板厚	t.s	35	(mm)
最高液面高さの 1/3 高さにおける側板厚	t.1/3	27	(mm)
アニュラ板厚	t. _b	21	(mm)
鋼材のヤング率	E	205939.7	(N/mm²)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σу	450	(N/mm².)
最高液高さ	Н	20440	(mm)
液密度	r	9. 50E-07	(kg/mm ³ .)
直径/液高さ比	D/H	3. 91	(-)
液高さ/直径比	H/D	0. 26	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{p}\right)^4 + 0.8427 \left(\frac{H}{p}\right)^3 - 1.916 \left(\frac{H}{p}\right)^2 + 2.0933 \left(\frac{H}{p}\right) - 0.1172$		0. 31	(—)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{H}{D}\right)^4 + 0.9653 \left(\frac{H}{D}\right)^3 - 2.2807 \left(\frac{H}{D}\right)^2 + 2.3017 \left(\frac{H}{D}\right) - 0.1634$		0. 29	(-)
消防法/有効液の重心高さ係数 f_{h0} $f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0. 40	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.3644$		0. 38	(-)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 19	(N/mm².)

側板重量	W _{s0}	7. 95E+03	(KN)
側板附属品重量	W _{·s1}	1.18E+03	(KN)
浮き屋根重量	W _{·r0}	3.95E+03	(KN)
浮き屋根附属品重量	W _{·r1}	0.00E+00	(KN)
固定屋根重量	W _{.cr0}	0.00E+00	(KN)
固定屋根附属品重量	W _{.cr1}	0.00E+00	(KN)
固定屋根骨重量	W.cr2	0.00E+00	(KN)
本体重量 合計	W _{.sr}	1. 31E+07	(N)

タンク本体重量(赤字:入力値)

貯槽の固有周期			
$T_b = 2/\lambda \operatorname{sqrt}(W/(g\pi E * t_{1/3})) * j$		0. 3882	(sec)
$\lambda = 0.067(H/D)^2 - 0.30 * (H/D) + 0.46$		0. 3877	(—)
液重量 $W = g\gamma \pi D^2 H/4$	W	9. 57E+08	(N)
合計重量 (W + W _{sr})	W+W _{.sr}	9. 70E+08	(N)
減衰比	ξ	0. 15	(—)
基礎地盤と貯槽本体の連成振動補正係数	j=	1	(-)
有効液重量			
$W_0 = f_{w0} * (W + W_{sr})$		2.97E+08	(N)
$W_1 = f_{w1} * (W + W_{sr})$		2.83E+08	(N)
消防法/有効液重量率	f.w0	0. 31	(—)
	f.w1	0. 29	(—)
有効液の重心高さ			
$H_0 = f_{h0} * H$		817. 54	(cm)
$H_1 = f_{h1} * H$		779.96	(cm)
消防法/有効液の重心高さ	f. _{h0}	0. 40	(—)
	f. _{h1}	0. 38	(—)
側板自重による鉛直抵抗力	V.0	363.06	(N/cm)
ばね係数	K₀	7.55E+07	(N/cm)
浮き上がり抵抗力	q. _y	1587. 24	(N/cm)
浮き上がり抵抗カ+鉛直抵抗カ $\left({{{q}_y} + {V_0}} ight)$	q_{vy} + V_{v0}	1950. 30	(N/cm)
保有水平耐力(降伏耐力)	Q.y	2.51E+08	(N)
降伏変位 $(=Q_y/K_b)$	Δ.,γ	3. 33	(cm)
減衰係数	C	1.40E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H.1	10. 26	(-)

参考資料6

動液圧計算結果

(1) 旧法タンク No.3 の動液圧計算結果

D	45100 mm
Н	18802 mm
Kh.1	0. 504
$ u_{-3}$	1. 68
ρ	9.50E-07 kg/mm ²

H/D	0. 416896
分割	100
ΔH	188.02 mm
g	9.8 m/sec ²
Z	9.01E+12 mm ³

C00	C01	C02	C03	C04	C05
0. 782173	-0. 12951	0. 723741	-4. 12859	5.558585	-2.80014
C10	C12	C12	C13	C14	C15
0.716301	0. 23289	-0. 34748	-1. 52302	1.928093	-1.00475

付図 2-1 側板の高さにおける動液圧の分布(旧法タンク No. 3)

Ζ	Ph0(7)	Ph1(7)	Ph(Z)	P	M	Q
_ (mm)	(N/mm^2)	(N/mm^2)	(N/mm2)	(N/mm)	(N.mm)	(N)
0.00	0.04108	0.02558	0.06665	4721.95	5.0051E+11	6.6342E+0
188.02	0.04101	0.02566	0.06667	4723.18	4.8812E+11	6.5454E+0
376.04	0.04095	0.02574	0.06669	4724.67	4.7590E+11	6.4566E+0
564.06	0.04090	0.02582	0.06672	4726.30	4.6384E+11	6.3678E+0
752.08	0.04085	0.02589	0.06674	4727.98	4.5195E+11	6.2789E+0
940.10	0.04080	0.02596	0.06676	4729.60	4.4023E+11	6.1900E+0
1128.12	0.04076	0.02602	0.06678	4731.09	4.2868E+11	6.1010E+0
1316.14	0.04072	0.02608	0.06680	4732.35	4.1729E+11	6.0121E+0
1504.16	0.04067	0.02614	0.06681	4/33.31	4.060/E+11	5.9231E+0
1692.18	0.04063	0.02619	0.06682	4/33.89	3.9502E+11	5.8341E+0
1880.20	0.04059	0.02624	0.06682	4/34.03	3.8413E+11	5./451E+0
2000.22	0.04034	0.02020	0.00082	4/33.00	3./341E+11 2.6206E±11	5.6501E+0
2230.24	0.04043	0.02032	0.06678	4732.72	3.0200L+11	5.3071E+0
2632.28	0.04043	0.02033	0.06675	4728.92	3 4226E+11	5 3892E+0
2820.30	0.04031	0.02640	0.06671	4725.97	3 3221E+11	5 3003E+0
3008.32	0.04025	0.02641	0.06666	4722.25	3.2233E+11	5.2115F+0
3196.34	0.04017	0.02642	0.06659	4717.72	3.1262E+11	5.1227E+0
3384.36	0.04010	0.02642	0.06652	4712.36	3.0307E+11	5.0341E+0
3572.38	0.04001	0.02642	0.06643	4706.13	2.9369E+11	4.9455E+0
3760.40	0.03992	0.02641	0.06633	4699.00	2.8447E+11	4.8571E+0
3948.42	0.03982	0.02639	0.06622	4690.95	2.7542E+11	4.7688E+0
4136.44	0.03972	0.02637	0.06609	4681.96	2.6654E+11	4.6807E+0
4324.46	0.03961	0.02634	0.06595	4671.99	2.5782E+11	4.5928E+0
4512.48	0.03949	0.02631	0.06579	4661.05	2.4927E+11	4.5050E+0
4700.50	0.03936	0.02627	0.06563	4649.11	2.4088E+11	4.4175E+0
4888.52	0.03922	0.02622	0.06544	4636.17	2.3266E+11	4.3302E+0
5076.54	0.03908	0.02616	0.06525	4622.21	2.2460E+11	4.2432E+0
5264.56	0.03893	0.02610	0.06503	4607.22	2.1670E+11	4.1564E+0
5452.58	0.03877	0.02603	0.06481	4591.20	2.089/E+11	4.0699E+0
5640.60	0.03861	0.02596	0.06457	45/4.16	2.0139E+11	3.9838E+0
0828.02	0.03844	0.02588	0.06431	4556.07	1.9398E+11	3.89/9E+0
620466	0.03825	0.02579	0.06404	4536.95	1.80/4E+11 1.7065E+11	3.8123E+0
620269	0.03800	0.02509	0.00370	4010.00	1.790JE+11 1.7979E+11	3.7273E+0
6580.70	0.03766	0.02535	0.00340	4473.40	1.6595E+11	3.5583E+0
6768 72	0.03745	0.02537	0.06282	4450 15	1.5030E+11	3 4744F+0
6956 74	0.03723	0.02524	0.06247	4425.89	1.5288F+11	3 3910E+0
7144.76	0.03700	0.02511	0.06212	4400.61	1.4659F+11	3.3080F+0
7332.78	0.03677	0.02498	0.06175	4374.32	1.4044E+11	3.2255E+0
7520.80	0.03653	0.02483	0.06136	4347.02	1.3446E+11	3.1435E+0
7708.82	0.03628	0.02468	0.06096	4318.72	1.2862E+11	3.0620E+0
7896.84	0.03602	0.02453	0.06055	4289.43	1.2294E+11	2.9811E+0
8084.86	0.03576	0.02436	0.06012	4259.14	1.1741E+11	2.9007E+0
8272.88	0.03549	0.02419	0.05968	4227.88	1.1203E+11	2.8210E+0
8460.90	0.03521	0.02401	0.05922	4195.63	1.0680E+11	2.7418E+0
8648.92	0.03493	0.02383	0.05876	4162.41	1.0172E+11	2.6632E+0
8836.94	0.03464	0.02364	0.05827	4128.21	9.6789E+10	2.5853E+0
9024.96	0.03434	0.02344	0.05778	4093.05	9.2001E+10	2.5080E+0
9212.98	0.03403	0.02323	0.05727	4056.91	8.7357E+10	2.4314E+0
9401.00	0.03372	0.02302	0.05674	4019.80	8.2857E+10	2.3554E+0
9589.02	0.03341	0.02280	0.05620	3981./2	7.8499E+10	2.2802E+0
9///.04	0.03308	0.0225/	0.05565	3942.66	7.4282E+10	2.205/E+0
9905.06	0.03275	0.02234	0.05509	3902.01	7.0204E+10	2.1320E+0
10103.08	0.03241	0.02209	0.00401	3001.38	0.0204E+10 6.2461E+10	1 0080E+0
1052912	0.03207	0.02100	0.05392	3776.40	5 8702F+10	1.9000E+0
1071714	0.03136	0.02139	0.05269	373242	5.5752E+10	1 8447F+0
1090516	0.03100	0.02105	0.05205	3687.30	5 1855E+10	1 7750F+0
11093 18	0.03062	0.02103	0.05140	3641 12	4.8582F+10	1.7061E+0
11281 20	0.03024	0 02049	0.05073	3593.85	4.5438F+10	1.6381E+0
11469.22	0.02985	0 0 2 0 1 9	0.05005	354547	4.2421F+10	1.5710F+0
11657 24	0.02946	0.01989	0.04935	3495.95	3.9530F+10	1.5048F+0
11845.24	0.02905	0.01958	0.04863	3445.25	3.6762F+10	1.4395F+0
12033 28	0.02864	0.01926	0.04790	3393 35	3.4116F+10	1.3752F+0
12221.30	0.02822	0.01893	0.04715	3340.20	3.1590F+10	1,3119F+0

12597.34	0.02734	0.01825	0.04559	3229.99	2.6889E+10	1.1884E+07
12785.36	0.02689	0.01790	0.04479	3172.82	2.4712E+10	1.1282E+07
12973.38	0.02642	0.01754	0.04396	3114.21	2.2646E+10	1.0691E+07
13161.40	0.02594	0.01717	0.04311	3054.09	2.0690E+10	1.0111E+07
13349.42	0.02545	0.01679	0.04224	2992.41	1.8843E+10	9.5425E+06
13537.44	0.02495	0.01640	0.04135	2929.08	1.7101E+10	8.9858E+06
13725.46	0.02443	0.01599	0.04043	2864.05	1.5463E+10	8.4412E+06
13913.48	0.02390	0.01558	0.03948	2797.22	1.3926E+10	7.9090E+06
14101.50	0.02335	0.01516	0.03851	2728.51	1.2487E+10	7.3895E+06
14289.52	0.02279	0.01473	0.03752	2657.84	1.1146E+10	6.8832E+06
14477.54	0.02220	0.01429	0.03649	2585.11	9.8977E+09	6.3903E+06
14665.56	0.02160	0.01383	0.03543	2510.21	8.7413E+09	5.9113E+06
14853.58	0.02098	0.01337	0.03434	2433.04	7.6735E+09	5.4466E+06
15041.60	0.02033	0.01289	0.03322	2353.49	6.6917E+09	4.9966E+06
15229.62	0.01966	0.01240	0.03206	2271.44	5.7932E+09	4.5618E+06
15417.64	0.01897	0.01190	0.03087	2186.76	4.9749E+09	4.1427E+06
15605.66	0.01825	0.01138	0.02963	2099.32	4.2338E+09	3.7397E+06
15793.68	0.01751	0.01085	0.02836	2008.99	3.5670E+09	3.3535E+06
15981.70	0.01674	0.01030	0.02704	1915.61	2.9712E+09	2.9846E+06
16169.72	0.01593	0.00974	0.02568	1819.03	2.4430E+09	2.6335E+06
16357.74	0.01510	0.00917	0.02427	1719.10	1.9791E+09	2.3009E+06
16545.76	0.01423	0.00858	0.02281	1615.65	1.5760E+09	1.9874E+06
16733.78	0.01332	0.00797	0.02129	1508.51	1.2299E+09	1.6936E+06
16921.80	0.01237	0.00735	0.01973	1397.49	9.3719E+08	1.4205E+06
17109.82	0.01139	0.00671	0.01810	1282.40	6.9380E+08	1.1685E+06
17297.84	0.01036	0.00605	0.01642	1163.05	4.9570E+08	9.3862E+05
17485.86	0.00929	0.00538	0.01467	1039.24	3.3869E+08	7.3159E+05
17673.88	0.00817	0.00468	0.01286	910.74	2.1837E+08	5.4827E+05
17861.90	0.00700	0.00397	0.01097	777.34	1.3020E+08	3.8957E+05
18049.92	0.00578	0.00323	0.00902	638.81	6.9470E+07	2.5644E+05
18237.94	0.00451	0.00248	0.00699	494.90	3.1274E+07	1.4986E+05
18425.96	0.00318	0.00170	0.00488	345.38	1.0523E+07	7.0866E+04
18613.98	0.00178	0.00090	0.00268	189.99	1.9305E+06	2.0535E+04
18802.00	0.00033	0.00007	0.00040	28.45	0.0000F+00	0.0000F+00
(2) 新法タンク No.3 の動液圧計算結果

D	45900 mm
Н	19240 mm
Kh ₁	0. 5037
$ u_{\cdot,3}$	1.679
ρ	9.50E-07 kg/mm ²

H/D	0. 419172
分割	100
ΔH	192.4 mm
g	9.8 m/sec ²
Z	9.49E+12 mm ³

C00	C01	C02	C03	C04	C05
0. 78058	-0. 12958	0. 726131	-4. 13109	5. 56109	-2. 8015
C10	C12	C12	C13	C14	C15
0. 71432	0. 231797	-0. 3307	-1.55307	1.958823	-1.01887

付図 2-2 側板の高さにおける動液圧の分布 (新法タンク No. 3)

Z	Ph0(Z)	Ph1(Z)	Ph(Z)	P	M	Q
_ mm)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm)	(N.mm)	(N)
0.00	0.04195	0.02606	0.06801	4903.50	5.4473E+11	7.0539E+0
192.40	0.04188	0.02615	0.06803	4904.75	5.3125E+11	6.9595E+0
384.80	0.04182	0.02623	0.06805	4906.28	5.1795E+11	6.8651E+0
577.20	0.04177	0.02631	0.06807	4907.96	5.0483E+11	6.7707E+0
769.60	0.04172	0.02638	0.06810	4909.70	4.9189E+11	6.6763E+0
962.00	0.04167	0.02645	0.06812	4911.40	4.7914E+11	6.5818E+0
1154.40	0.04162	0.02652	0.06814	4912.96	4.6657E+11	6.4873E+0
1346.80	0.04158	0.02658	0.06816	4914.29	4.5418E+11	6.3928E+0
1539.20	0.04154	0.02664	0.0681/	4915.32	4.419/E+11	6.2982E+0
1/31.60	0.04149	0.02669	0.06818	4915.96	4.2994E+11	6.2036E+0
1924.00	0.04145	0.02674	0.06819	4916.15	4.1810E+11	6.1090E+0
2110.40	0.04140	0.02078	0.00818	4915.82	4.0043E+11	0.0143E+0
2500.00	0.04135	0.02002	0.00017	4914.90	3.9495E+11	5.91992+0
2603.60	0.04123	0.02083	0.00813	4913.33	3.7254E+11	5 7308E+0
2886.00	0.04123	0.02088	0.00812	4911.07	3.6160E+11	5.6364E+0
3078.40	0.04110	0.02692	0.06802	4904.28	3 5085E+11	5 5420E+0
3270.80	0.04103	0.02693	0.06796	4899.65	3 4028E+11	5 4477E+0
3463.20	0.04095	0.02693	0.06788	4894.16	3.2989F+11	5.3534F+0
3655.60	0.04086	0.02693	0.06779	4887.77	3.1968E+11	5.2593E+0
3848.00	0.04077	0.02692	0.06769	4880.44	3.0965E+11	5.1654E+0
4040.40	0.04067	0.02691	0.06758	4872.16	2.9980E+11	5.0715E+0
4232.80	0.04056	0.02689	0.06745	4862.90	2.9013E+11	4.9779E+0
4425.20	0.04045	0.02686	0.06730	4852.64	2.8064E+11	4.8844E+0
4617.60	0.04033	0.02682	0.06715	4841.36	2.7134E+11	4.7912E+0
4810.00	0.04020	0.02678	0.06698	4829.05	2.6221E+11	4.6981E+0
5002.40	0.04006	0.02673	0.06679	4815.69	2.5326E+11	4.6054E+0
5194.80	0.03991	0.02668	0.06659	4801.28	2.4449E+11	4.5128E+0
5387.20	0.03976	0.02662	0.06638	4785.80	2.3589E+11	4.4206E+0
5579.60	0.03960	0.02655	0.06615	4769.26	2.2748E+11	4.3287E+0
5772.00	0.03943	0.02647	0.06590	4751.64	2.1923E+11	4.2371E+0
5964.40	0.03925	0.02639	0.06564	4732.95	2.1117E+11	4.1459E+0
6156.80	0.03907	0.02630	0.06537	4713.18	2.0328E+11	4.0550E+0
6349.20	0.03887	0.02621	0.06508	4692.33	1.9557E+11	3.9645E+0
6541.60	0.03867	0.02610	0.06478	4670.42	1.8803E+11	3.8744E+0
6734.00	0.03846	0.02599	0.06446	4647.43	1.8066E+11	3.7848E+0
6926.40	0.03825	0.02588	0.06412	4623.38	1./346E+11	3.6956E+0
/118.80	0.03802	0.025/5	0.06378	4598.26	1.6644E+11	3.6069E+0
7311.20	0.03779	0.02562	0.06341	45/2.09	1.5958E+11	3.518/E+0
7503.60	0.03755	0.02548	0.06304	4544.87	1.5290E+11	3.4310E+0
7090.00	0.03731	0.02534	0.00204	4010.00	1.4038E+11	3.3438E+0
8080.40	0.03703	0.02519	0.00224	4407.29	1.4003L+11	3.2372L+0
8273.20	0.03652	0.02303	0.06138	4425 58	1.0004E+11	3.0857E+0
8465.60	0.03624	0.02460	0.06093	439319	1.2702E+11	3 0009E+0
8658.00	0.03596	0.02451	0.06047	4359 78	1.1628F+11	2.9167F+0
8850.40	0.03567	0.02432	0,05999	4325.36	1.1075E+11	2.8331E+0
9042.80	0.03537	0.02413	0.05950	4289.92	1.0537E+11	2.7502E+0
9235.20	0.03507	0.02392	0.05899	4253.47	1.0016E+11	2.6680E+0
9427.60	0.03476	0.02371	0.05847	4216.01	9.5107E+10	2.5866E+0
9620.00	0.03444	0.02350	0.05794	4177.55	9.0208E+10	2.5058E+0
9812.40	0.03412	0.02327	0.05739	4138.07	8.5464E+10	2.4258E+0
10004.80	0.03379	0.02304	0.05683	4097.57	8.0873E+10	2.3466E+0
10197.20	0.03345	0.02281	0.05626	4056.05	7.6433E+10	2.2682E+0
10389.60	0.03311	0.02256	0.05567	4013.50	7.2144E+10	2.1905E+0
10582.00	0.03275	0.02231	0.05506	3969.91	6.8003E+10	2.1137E+0
10774.40	0.03240	0.02205	0.05444	3925.26	6.4010E+10	2.0378E+0
10966.80	0.03203	0.02178	0.05381	3879.55	6.0161E+10	1.9627E+0
11159.20	0.03166	0.02150	0.05316	3832.75	5.6456E+10	1.8885E+0
11351.60	0.03128	0.02122	0.05249	3784.84	5.2893E+10	1.8152E+0
11544.00	0.03089	0.02093	0.05181	3735.80	4.9470E+10	1.7429E+0
11736.40	0.03049	0.02063	0.05112	3685.61	4.6186E+10	1.6715E+0
11928.80	0.03009	0.02032	0.05041	3634.22	4.3038E+10	1.6011E+C
12121.20	0.02967	0.02000	0.04968	3581.62	4.0024E+10	1.5317E+0
12313.60	0.02925	0.01968	0.04893	3527.76	3./143E+10	1.4633E+0
1050000	// ////////////////////////////////////	0 0 1 0 0 -	/\ /\ /\ # /\ # /\			

12890.80	0.02792	0.01865	0.04658	3358.19	2.9275E+10	1.2645E+07
13083.20	0.02746	0.01829	0.04575	3298.84	2.6904E+10	1.2004E+07
13275.60	0.02698	0.01793	0.04491	3237.99	2.4654E+10	1.1376E+07
13468.00	0.02650	0.01755	0.04404	3175.57	2.2525E+10	1.0759E+07
13660.40	0.02600	0.01716	0.04316	3111.51	2.0513E+10	1.0154E+07
13852.80	0.02548	0.01676	0.04224	3045.74	1.8617E+10	9.5614E+06
14045.20	0.02495	0.01635	0.04131	2978.19	1.6833E+10	8.9819E+06
14237.60	0.02441	0.01593	0.04034	2908.77	1.5159E+10	8.4156E+06
14430.00	0.02385	0.01551	0.03935	2837.39	1.3593E+10	7.8628E+06
14622.40	0.02327	0.01507	0.03834	2763.97	1.2132E+10	7.3239E+06
14814.80	0.02267	0.01461	0.03729	2688.39	1.0774E+10	6.7994E+06
15007.20	0.02206	0.01415	0.03621	2610.55	9.5145E+09	6.2897E+06
15199.60	0.02142	0.01367	0.03510	2530.35	8.3519E+09	5.7951E+06
15392.00	0.02076	0.01319	0.03395	2447.66	7.2830E+09	5.3162E+06
15584.40	0.02008	0.01269	0.03277	2362.37	6.3047E+09	4.8535E+06
15776.80	0.01937	0.01217	0.03154	2274.33	5.4138E+09	4.4075E+06
15969.20	0.01864	0.01165	0.03028	2183.41	4.6070E+09	3.9786E+06
16161.60	0.01788	0.01110	0.02898	2089.47	3.8811E+09	3.5676E+06
16354.00	0.01709	0.01055	0.02763	1992.35	3.2325E+09	3.1749E+06
16546.40	0.01626	0.00998	0.02624	1891.90	2.6576E+09	2.8012E+06
16738.80	0.01541	0.00939	0.02480	1787.95	2.1526E+09	2.4472E+06
16931.20	0.01452	0.00879	0.02331	1680.32	1.7139E+09	2.1136E+06
17123.60	0.01359	0.00817	0.02176	1568.84	1.3373E+09	1.8010E+06
17316.00	0.01262	0.00753	0.02016	1453.31	1.0188E+09	1.5103E+06
17508.40	0.01162	0.00688	0.01850	1333.54	7.5398E+08	1.2422E+06
17700.80	0.01057	0.00621	0.01677	1209.32	5.3851E+08	9.9757E+05
17893.20	0.00947	0.00551	0.01499	1080.44	3.6777E+08	7.7729E+05
18085.60	0.00833	0.00480	0.01313	946.67	2.3698E+08	5.8228E+05
18278.00	0.00713	0.00407	0.01120	807.79	1.4119E+08	4.1350E+05
18470.40	0.00588	0.00332	0.00920	663.54	7.5247E+07	2.7196E+05
18662.80	0.00458	0.00255	0.00712	513.69	3.3816E+07	1.5871E+05
18855.20	0.00322	0.00175	0.00497	357.98	1.1347E+07	7.4855E+04
19047.60	0.00179	0.00093	0.00272	196.13	2.0731E+06	2.1549E+04
19240.00	0.00030	0.00008	0.00039	27.87	0.0000F+00	0.0000F+00

参考資料7

1 質点減衰付きロッキング系モデル

1 質点減衰付きロッキング系モデルの概念図を付図 7.1 に示す。

付図 7.1 1 質点減衰付きロッキング系モデルの概念図

ラグランジュの方程式を用いて、1 質点減衰付きロッキング系モデルの運動方程式は次式で 求められる。

$$\begin{bmatrix} m_1 & m_1 h_1 \\ m_1 h_1 & m_1 h_1^2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{\theta}_B \end{bmatrix} + \begin{bmatrix} C_1 & 0 \\ 0 & C_\theta \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{\theta}_B \end{bmatrix} + \begin{bmatrix} k_1 & 0 \\ 0 & k_\theta \end{bmatrix} \begin{bmatrix} x_1 \\ \theta_B \end{bmatrix} = -\begin{bmatrix} m_1 \\ m_1 h_1 \end{bmatrix} \ddot{x}_g$$
(7.1)

一方、ベースシアQ及び転倒モーメントMEBPは、次式で表される。

$$Q(t) = m_1(\ddot{x}_1 + \ddot{x}_g + \ddot{\theta}_B \cdot h_1) + C_1 \dot{x}_1$$
(7.2)

$$M_{EBP}(t) = m_1(\ddot{x}_1 + \ddot{x}_g + \ddot{\theta}_B \cdot h_1)h_1 + \dot{C}_{\theta}\theta_B$$
(7.3)

ここで、

m1:バルジング振動有効液質量(kg)
 h1:バルジング有効液質量高さ(cm)
 C1:バルジング振動減衰係数(N.s/cm)
 C0:タンク基部のロッキング減衰係数(N.s.cm/rad)
 k1:バルジング振動ばね定数(N/mm)
 k0:タンク基部のロッキングばね定数(N.cm/rad)

$$egin{aligned} &X_1: 質点の変位(cm)\ &\dot{x}_1: 速度(cm/s)\ &\dot{x}_1: 速度(cm/s^2)\ η_B: タンク基部のロッキング角変位(rad)\ &\dot{ heta}_B: 角速度(rad/s)\ &\ddot{ heta}_B: 角速度(rad/s)\ &\ddot{ heta}_B: 角速度(rad/s)\ &\ddot{ heta}_B: 角加速度(rad/s^2)\ &X_g: タンク基礎の変位(cm)\ &\dot{x}_g: 速度(cm/s)\ &\ddot{x}_g: m速度(cm/s^2) \end{aligned}$$

また、 $u_1 = x_1 + h_1 \theta_B$ とおくと、式 (7.1) は次式のように表される。

$$m_1 \ddot{u}_1 + C_e \dot{u}_1 + k_e u_1 = -m_1 \ddot{x}_g \tag{7.4}$$

$$\begin{aligned}
\dot{\tau} \dot{\tau} \dot{\tau} & \bigcup, \\
\frac{1}{k_e} = \left[\frac{1}{k_1} + \frac{h_1^2}{k_\theta}\right] \\
\frac{1}{C_e} = \left[\frac{1}{C_1} + \frac{h_1^2}{C_\theta}\right]
\end{aligned} (7.5)$$

以下、式の誘導過程を示す。

[運動方程式の誘導]

ラグランジュの方程式は、

$$\frac{\partial}{\partial t}\left(\frac{\partial T}{\partial \dot{x}_{1}}\right) - \frac{\partial T}{\partial x_{1}} + \frac{\partial F}{\partial \dot{x}_{1}} + \frac{\partial V}{\partial x_{1}} = 0$$
(7.7)

$$\frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \dot{\theta}_B} \right) - \frac{\partial T}{\partial \theta_B} + \frac{\partial F}{\partial \dot{\theta}_B} + \frac{\partial V}{\partial \theta_B} = 0$$
(7.8)

運動エネルギーとポテンシャルエネルギー及び粘性減衰エネルギーは、

$$T = \frac{1}{2}m_{1}(\dot{x}_{1} + \dot{x}_{g} + \dot{\theta}_{B} \cdot h_{1})^{2}$$
(7.9)

$$V = \frac{1}{2}k_{1}x_{1}^{2} + \frac{1}{2}k_{\theta}\theta_{B}^{2}$$
(7.10)

$$F = \frac{1}{2}C_{1}\dot{x}_{1}^{2} + \frac{1}{2}C_{\theta}\dot{\theta}_{B}^{2}$$
(7.11)

$$\mathcal{E} \cup \mathcal{T},$$

$$\frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \dot{x}_1} \right) = m_1 \left(\ddot{x}_1 + \ddot{x}_g + \ddot{\theta}_B \cdot h_1 \right)$$

$$\frac{\partial}{\partial t} \left(\frac{\partial T}{\partial \dot{\theta}_B} \right) = m_1 h_1 \left(\ddot{x}_1 + \ddot{x}_g + \ddot{\theta}_B \cdot h_1 \right)$$
(7.12)
(7.13)

さらに、

$$\frac{\partial T}{\partial x_1} = 0 \tag{7.14}$$

$$\frac{\partial T}{\partial \theta_B} = 0 \tag{7.15}$$

そして、

$$\frac{\partial V}{\partial x_1} = k_1 x_1 \tag{7.16}$$

$$\frac{\partial V}{\partial \theta_B} = k_\theta \theta_B \tag{7.17}$$

一方、

$$\frac{\partial F}{\partial \dot{x}_1} = C_1 \dot{x}_1 \tag{7.18}$$

$$\frac{\partial F}{\partial \dot{\theta}_B} = C_\theta \dot{\theta}_B \tag{7.19}$$

これより、運動方程式は、

$$m_1(\ddot{x}_1 + \ddot{x}_g + \ddot{\theta}_B \cdot h_1) + C_1 \dot{x}_1 + k_1 x_1 = 0$$
(7.20)

$$m_1 h_1 (\ddot{x}_1 + \ddot{x}_g + \ddot{\theta}_B \cdot h_1) + C_\theta \dot{\theta}_B + k_\theta \theta_B = 0$$
(7.21)

マトリックス表示すれば、

$$\begin{bmatrix} m_1 & m_1 h_1 \\ m_1 h_1 & m_1 h_1^2 \end{bmatrix} \begin{bmatrix} \ddot{x}_1 \\ \ddot{\theta}_B \end{bmatrix} + \begin{bmatrix} C_1 & 0 \\ 0 & C_\theta \end{bmatrix} \begin{bmatrix} \dot{x}_1 \\ \dot{\theta}_B \end{bmatrix} + \begin{bmatrix} k_1 & 0 \\ 0 & k_\theta \end{bmatrix} \begin{bmatrix} x_1 \\ \theta_B \end{bmatrix} = -\begin{bmatrix} m_1 \\ m_1 h_1 \end{bmatrix} \ddot{x}_g$$
(7.22)

また、質点の絶対変位を用いた表示形式は以下のように求められる。

 $u_1 = x_1 + h_1 \theta_B$ とおくと、運動方程式は、

$$m_1(\ddot{u}_1 + \ddot{x}_g) + C_1\dot{x}_1 + k_1x_1 = 0 \tag{7.23}$$

$$m_1 h_1 (\ddot{u}_1 + \ddot{x}_g) + C_\theta \dot{\theta}_B + k_\theta \theta_B = 0$$
(7.24)

上式 (7.24) を書き直して、

$$m_1(\ddot{u}_1 + \ddot{x}_g) + \frac{C_{\theta}}{h_1^2}(\dot{u}_1 - \dot{x}_1) + \frac{k_{\theta}}{h_1^2}(u_1 - x_1) = 0$$
(7.25)

式 (7.23)、(7.26) 及び (7.25) を比較して、

$$C_1 \dot{x}_1 = (\frac{C_{\theta}}{h_1^2}) h_1 \dot{\theta}_B$$
 (7.26)

$$k_{1}x_{1} = (\frac{k_{\theta}}{h_{1}^{2}})h_{1}\theta_{B}$$
(7.27)

ここで、 u_1 に関する運動方程式を導入する。この場合、減衰係数を C_e 及びばね係数を k_e と する。

$$m_1(\ddot{u}_1 + \ddot{x}_g) + C_e \dot{u}_1 + k_e u_1 = 0$$
(7.28)

これより、式(3.26)及び式(1..27)の関係を用いて、

$$C_{e}\dot{u}_{1} = C_{e}(\dot{x}_{1} + h_{1}\dot{\theta}_{B}) = C_{e}\left[\frac{1}{C_{1}} + \frac{h_{1}^{2}}{C_{\theta}}\right]C_{1}\dot{x}_{1}$$
(7.29)

$$k_e u_1 = k_e (x_1 + h_1 \theta_B) = k_e \left[\frac{1}{k_1} + \frac{h_1^2}{k_\theta}\right] k_1 x_1$$
(7.30)

これより、

$$\dot{x}_{1} = \frac{1}{C_{1}\left[\frac{1}{C_{1}} + \frac{h_{1}^{2}}{C_{\theta}}\right]} \dot{u}_{1}$$
(7.31)

$$x_{1} = \frac{1}{k_{1}\left[\frac{1}{k_{1}} + \frac{h_{1}^{2}}{k_{\theta}}\right]} u_{1}$$
(7.32)

上式の関係を用い、式(7..23)と式(7..28)比較すれば、次式が得られる。

$$\frac{1}{C_{e}} = \left[\frac{1}{C_{1}} + \frac{h_{1}^{2}}{C_{\theta}}\right]$$
(7.33)

$$\frac{1}{k_e} = [\frac{1}{k_1} + \frac{h_1^2}{k_\theta}]$$
(7.34)

算式の一覧表を以下に示す。

ロッキングばねが非線形の場合には、復元力特性を以下のように置き換えることになる。

- (1) 2 元連立微分方程式表示 (x_1, θ_B) 運動方程式: $k_{\theta}\theta_B \rightarrow M(\theta_B)$
- (2)1元微分方程式表示 (x_1) 運動方程式: $k_e u_1 \rightarrow Q(u_1)$

	2 元連立微分方程式表示 $(x_1, heta_B)$	1 元微分方程式表示 $u_1 = x_1 + h_1 \theta_B$
運動 方程式	$\begin{bmatrix} m_{1} & m_{1}h_{1} \\ m_{1}h_{1} & m_{1}h_{1}^{2} \end{bmatrix} \begin{bmatrix} \ddot{x}_{1} \\ \ddot{\theta}_{B} \end{bmatrix} + \begin{bmatrix} C_{1} & 0 \\ 0 & C_{\theta} \end{bmatrix} \begin{bmatrix} \dot{x}_{1} \\ \dot{\theta}_{B} \end{bmatrix} + \begin{bmatrix} k_{1} & 0 \\ 0 & k_{\theta} \end{bmatrix} \begin{bmatrix} x_{1} \\ \theta_{B} \end{bmatrix} = -\begin{bmatrix} m_{1} \\ m_{1}h_{1} \end{bmatrix} \ddot{x}_{g}$	$m_1\ddot{u}_1 + C_e\dot{u}_1 + k_eu_1 = -m_1\ddot{x}_g$
ばね定数	k_{1} , $k_{ heta}$	$\frac{1}{k_{e}} = \frac{1}{k_{1}} + \frac{h_{1}^{2}}{k_{\theta}}$
減衰係数	C_1 , $C_ heta$	$\frac{1}{C_{e}} = \frac{1}{C_{1}} + \frac{h_{1}^{2}}{C_{\theta}}$
相対変位	x_1	$x_1 = \frac{k_e}{k_1} u_1$
回転変位	$h_1 heta_B$	$h_1 \theta_B = \frac{k_e h_1^2}{k_\theta} u_1$
地動変位	x_{g}	x _g
絶対変位	$x_1 + h_1 \theta_B + x_g$	$u_1 + x_g$

付表 7.1 1 質点減衰付き R モデルー覧表 [線形ロッキングばね k_θの場合]

参考資料8

動液圧の影響を考慮したタンク全体の浮き上がりロッキング特性 「Wozniak モデル」に基づく方法

1 計算手順

動液圧の影響を考慮したタンク全体の浮き上がりロッキング特性計算手順は、以下の 5 段 階に分かれる(付図 8.1 参照)。

第1段階:隅角部浮き上がり特性計算 第2段階:全体タンク基部の非線形ロッキング特性計算 第3段階:1質点モデルの非線形ロッキング等価復元力特性計算 第4段階:1質点非線形ばね系モデルの復元力特性計算 第5段階:具体的復元力特性計算

ただし、タンク自重の影響及び水平地震動によるタンク転倒モーメントに係る動液圧の影響 は無視する。

付図 8.1 動液圧の影響を考慮したタンク全体の浮き上がりロッキング特性計算手順

2 隅角部浮き上がり特性計算

Wozniak モデルを用いて計算する。この場合の主な仮定条件は下記のとおりである。 なお、側板下端に作用する自重の影響は別途取り扱うこととする。

- ① タンク基礎は剛基礎とする。
- ② タンク隅角部に作用する内圧は(静液圧+動液圧)とする。
- ③ 隅角部アニュラ板の曲げ剛性 D_sは∞とする。隅角部浮き上がり位置のアニュラ板端 部は回転拘束(固定)で浮き上がりは可能な境界条件とする。
- ④ アニュラ板は微小変形弾性理論に立脚する単位幅のはりとする。

隅角部浮き上がりモデルは、付図 8.2 に示す通りで、隅角部浮き上がり特性計算手順は付図 8.3 のとおりである。隅角部アニュラ板の曲げモーメント muを設定した場合、浮き上がり抵抗力と浮き上がり変位の関係は、次式で表される。

付図 8.2 隅角部浮き上がり・Wozniak モデル

$$q_{u} = \sqrt[4]{\frac{128}{9}D_{a}} \sqrt[4]{P_{u}^{3}} \sqrt[4]{\delta_{u}}$$
(8.1)

ただし、

$$P_u = P_0(1 - \alpha) \tag{8.2}$$

$$\alpha = \frac{ph_1}{P_0} \tag{8.3}$$

$$\delta_u = \frac{1}{2D_a} \left(\frac{m_u^2}{P_u}\right) \tag{8.4}$$

$$m_u = \sigma_u t_a^2 / 6 \tag{8.5}$$

隅角部アニュラ板が降伏モーメント m_y に達するとき、 $\sigma_u=\sigma_y$ として、降伏浮き上がり抵抗 カ q_y と降伏変位 δ_y の関係が得られる。また、隅角部アニュラ板に全塑性モーメント m_p に達 するとき、 $\sigma_u=1.5\sigma_y$ として、全塑性降伏浮き上がり抵抗力 q_p と降伏変位 δ_p の関係が得られ る。

付図 8.3 隅角部浮き上がり特性計算手順(第1段階)

3 全体タンク基部の非線形ロッキング特性計算

主な仮定条件は下記のとおりである。 なお、側板下端に作用する自重の影響は別途取り扱うこととする。

① 隅角部内圧は、円周にわたって余弦分布し次式で与える(付図 8.4 参照)。

 $P(\varphi) = P_0(1 - \alpha \cos \varphi)$

② 隅角部浮き上がり変位は、円周にわたって一様傾斜分布し次式で与える(付図 8.5 参照)。

$$\delta(\varphi) = \frac{1}{2}(1 + \cos\varphi)\delta_u$$

③ 円周任意点の隅角部の抵抗力は、次式で与える(付図 8.6 参照)。

$$q(\varphi) = \sqrt[4]{\frac{(1+\cos\varphi)}{2} \left\{\frac{(1-\alpha\cos\varphi)}{(1-\alpha)}\right\}^3} \cdot q_u$$

付図 8.5 側板下端の片浮き上がり抵抗力分布と転倒抵抗モーメント

付図 8.6 側板下端の片浮き上がり抵抗力分布と転倒抵抗モーメント

片浮き上がり状態におけるタンク全体基部の非線形ロッキング特性計算手順は付図 8.7 の とおりである。

抵抗転倒モーメント・回転角の関係は次式で表される(付図 8.4 及び付図 8.6 参照)。

$$M_{R} = C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}p_{0}^{3}}\sqrt[4]{\theta_{t}}$$
(8.6)
$$\hbar \hbar \tilde{L}, \quad C_{M}(\alpha) = -5.9588\alpha + 13.381$$
(8.7)

上式は、以下のように求められる。

抵抗転倒モーメント MRと隅角部浮き上がり抵抗力 quの関係式は、

$$M_{R} = 2\int_{0}^{\pi} q(\varphi) \cdot (1 + \cos\varphi) R^{2} d\varphi = 2q_{u}R^{2} \int_{0}^{\pi} \sqrt[4]{\frac{(1 + \cos\varphi)}{2} \{\frac{(1 - \alpha\cos\varphi)}{(1 - \alpha)}\}^{3}} (1 + \cos\varphi) d\varphi$$
$$= 2q_{u}R^{2} \int_{0}^{\pi} \sqrt[4]{\frac{(1 + \cos\varphi)^{5}}{2} \{\frac{(1 - \alpha\cos\varphi)}{(1 - \alpha)}\}^{3}} d\varphi$$
(8.8)

これより、積分を実行して二次曲線近似すれば、

$$M_R = 2q_u R^2 f_{\varphi}(\alpha) \tag{8.9}$$

$$f_{\varphi}(\alpha) = 2.0571\alpha^2 + 0.7074\alpha + 2.8963 \tag{8.10}$$

一方、片浮き上がりしたタンクの傾斜角 θ_t と隅角部の最大浮き上がり変位 δ_u の関係式は、

$$\theta_t = \frac{\delta_u}{2R} \tag{8.11}$$

これより、隅角部の最大浮き上がり点の抵抗力は、

$$q_{u} = \sqrt[4]{\frac{128}{9}} D_{a} P_{u}^{3} \cdot \sqrt[4]{\delta_{u}} = \sqrt[4]{\frac{256}{9}} R D_{a} P_{u}^{3} \cdot \sqrt[4]{\theta_{t}}$$

$$= \sqrt[4]{\frac{256}{9}} R D_{a} P_{0}^{3} (1-\alpha)^{3} \cdot \sqrt[4]{\theta_{t}}$$
(8.12)

したがって、

$$M_{R} = 2q_{u}R^{2}f_{\varphi}(\alpha) = \left[2\sqrt[4]{\frac{256}{9}}f_{\varphi}(\alpha)\sqrt[4]{(1-\alpha)^{3}}\right] \times R^{2}\sqrt[4]{RD_{a}P_{0}^{3}} \cdot \sqrt[4]{\theta_{t}}$$

$$= C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}P_{0}^{3}} \cdot \sqrt[4]{\theta_{t}}$$
(8.13)

ここで、

$$C_M(\alpha) = -5.9588\alpha + 13.381 \tag{8.14}$$

298

付図 8.7 全体タンク基部の非線形ロッキング特性計算手順(第2段階)

4 1 質点モデルにおける非線形ロッキング等価復元力特性計算

片浮き上がり状態におけるタンク全体基部の非線形ロッキング等価復元力特性計算手順は 次のとおりである。

付図 8.9 質点ばね系モデルにおける非線形ロッキング復元カ特性計算手順(第3段階)

非線形ロッキング復元力特性は、次式で表される(付図 8.10 参照)。

$$Q_{R} = \frac{C_{M}(\alpha)R^{2}}{H_{1}} \sqrt[4]{RD_{a}P_{0}^{3}} \sqrt[4]{\frac{\Delta_{R}}{H_{1}}}$$
(8.15)

上式は、式(2.15)に、以下に示す式(2.16)と式(2.17)を代入して求められる。 抵抗転倒モーメント M_Rと抵抗水平力 Q_Rの関係式は、

$$M_R = Q_R \cdot H_1 \tag{8.16}$$

片浮き上がりしたタンクの傾斜角 θ_t と水平変位 Δ_R の関係式は、

$$\theta_t = \frac{\Delta_R}{H_1} \tag{8.17}$$

付図 8.10 1 質点モデルにおけるロッキングに関する抵抗水平力と水平変位

5 1 質点モデルにおける非線形復元力特性計算

1 質点非線形ばね系モデル(SDOF-Ke モデル)の運動方程式は、

$$(\frac{W_1}{g})\ddot{\Delta} + C_1\dot{\Delta} + K_e\Delta = -(\frac{W_1}{g})\ddot{z}_0$$
(8.18)

非線形復元力は、次式で表される(付図 2.11 参照)。

$$Q(\Delta) = K_{e}\Delta \tag{8.19}$$

この場合、水平変位は、

$$\Delta = \Delta_b + \Delta_R = \frac{Q(\Delta)}{K_b} + \Delta_R = \frac{Q_R(\Delta_R)}{K_b} + \Delta_R$$
(8.20)

ただし、

$$K_{b} = (\frac{2\pi}{T_{b}})^{2} (\frac{W_{1}}{g})$$
(8.21)

ここで、

Ke:非線形ばね係数
 Tb:バルジング固有周期
 W1:有効液重量
 C1:減衰係数

付図 8.11 1 質点モデル (SDOF-NR モデル)抵抗水平力と水平変位

自重の影響を考慮した場合の算式のついては、次表にまとめて示す。

	自重無視	自重考慮
動液圧比	$\alpha = Ph_1 / P_0$	$\alpha = Ph_1 / P_0$
最大浮き上が り点の内圧	$P_u = P_0(1-\alpha)$	$P_u = P_0(1-\alpha)$
qu.—δu 関係式	$q_{u} = \sqrt[4]{\frac{128}{9}D_{a}} \sqrt[4]{P_{u}^{3}} \sqrt[4]{\delta_{u}}$	$q_{u} = \sqrt[4]{\frac{128}{9}} D_{a} \sqrt[4]{P_{u}^{3}} \sqrt[4]{\delta_{u}} + q_{t}$
M _R -θι 関係式	$M_{R} = C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}P_{0}^{3}}\sqrt[4]{\theta_{t}}$ $C_{M}(\alpha) = -5.9588\alpha + 13.381$	$M_{R} = C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}P_{0}^{3}}\sqrt[4]{\theta_{t}} + 2\pi R^{2}q_{t}$ $C_{M}(\alpha) = -5.9588\alpha + 13.381$
Q _R .−Δ _R 関係式	$Q_R = \frac{C_M(\alpha)R^2}{H_1} \sqrt[4]{RD_a P_0^3} \sqrt[4]{\frac{\Delta_R}{H_1}}$	$Q_{R} = \frac{C_{M}(\alpha)R^{2}}{H_{1}} \sqrt[4]{RD_{a}P_{0}^{3}} \sqrt[4]{\frac{\Delta_{R}}{H_{1}}} + \frac{2\pi R^{2}q_{t}}{H_{1}}$
Q−∆ 関係式	$Q = Q_R$ $\Delta = \Delta_b + \Delta_R = \frac{Q_R}{K_b} + \Delta_R$	$Q = Q_R$ $\Delta = \Delta_b + \Delta_R = \frac{Q_R}{K_b} + \Delta_R$

付表 8.1 動液圧の影響を考慮した場合の算式 (自重の影響を考慮した場合の算式等)

比較のため、動液圧の影響を無視した場合の算式について、次表に示す。

	(自重の影響を考	·慮した場合の算式等)
	自重無視	自重考慮
動液圧比	$\alpha = 0$	$\alpha = 0$
最大浮き上が り点の内圧	$p_u = p_0$	$p_u = p_0$
qu.—δu 関係式	$q_{u} = \sqrt[4]{\frac{128}{9}D_{a}} \sqrt[4]{P_{0}^{3}} \sqrt[4]{\delta_{u}}$	$q_{u} = \sqrt[4]{\frac{128}{9}D_{a}}\sqrt[4]{P_{0}^{3}}\sqrt[4]{\delta_{u}} + q_{t}$
M _R -θ _t 関係式	$M_{R} = 2\pi R^{2} \sqrt[4]{\frac{256RD_{a}}{9}P_{0}^{3}} \sqrt[4]{\theta_{t}}$	$M_{R} = 2\pi R^{2} \sqrt[4]{\frac{256RD_{a}}{9}P_{0}^{3}} \sqrt[4]{\theta_{t}} + 2\pi R^{2}q_{t}$
Q _R .−∆ _R 関係式	$Q_{R} = \frac{2\pi R^{2}}{H_{1}} \sqrt[4]{\frac{256RD_{a}}{9}P_{0}^{3}} \sqrt[4]{\frac{\Delta_{R}}{H_{1}}}$	$Q_{R} = \frac{2\pi R^{2}}{H_{1}} \sqrt[4]{\frac{256RD_{a}}{9}} P_{0}^{3} \sqrt[4]{\frac{\Delta_{R}}{H_{1}}} + \frac{2\pi R^{2}q_{t}}{H_{1}}$
0-1	$Q = Q_R$	$Q = Q_R$
Q-4 関係式	$\Delta = \Delta_b + \Delta_R = \frac{Q_R}{K_b} + \Delta_R$	$\Delta = \Delta_b + \Delta_R = \frac{Q_R}{K_b} + \Delta_R$

付表 8.2 動液圧の影響を無視した場合の算式

(注) 消防法の保有水平耐力計算においては、自重無視の算式が用いられている。

6 具体的復元力特性計算

(1)動液圧比とベースシア・転倒モーメントの関係地震動により発生する動液圧、ベースシア及び転倒モーメントは以下のよう表される。

$$Ph_{1} = [Kh_{1}\{(C_{00} - C_{10})\frac{1}{\nu_{3}} + C_{10}\}]P_{0} \approx Kh_{1}C_{10}P_{0}$$
(8.21)

$$Q = Kh_1\{(W_0 - W_1)\frac{1}{\nu_3} + W_1\} \approx Kh_1W_1$$
(8.22)

$$M = Kh_1\{(W_0H_0 - W_1H_1)\frac{1}{\nu_3} + W_1H_1\} \approx Kh_1W_1H_1$$
(8. 23)

一方、動液圧比は次式で定義されている。

$$\alpha = \frac{Ph_1}{P_0} \tag{8.24}$$

したがって、上式と式(8.21)より、

$$\alpha = Kh_1C_{10} \tag{8.25}$$

これより、ベースシア及び転倒モーメントと動液圧比の関係式は、次式で表される。

$$Q = \frac{\alpha}{C_{10}} W_1 \tag{8.26}$$

$$M = \frac{\alpha}{C_{10}} W_1 H_1$$
 (8.27)

- (2) 全体タンク基部の非線形ロッキング特性計算 具体的計算手順は、以下のとおりである。
 - M_Rを設定する。
 - ② $M=M_R$ とおいて、 α を計算する。

$$\alpha = \frac{M_R}{W_1 H_1} C_{10}$$

③ $M=M_R$ より、 $\theta=\theta_t$ を計算する。

$$\theta_{t} = \left[\frac{\{\frac{\alpha}{C_{10}}W_{1}H_{1}\}}{\{C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}P_{0}^{3}}\}}\right]^{4}$$

④ ステップ①~③を繰返して、非線形ロッキングばね特性 [M-θ] 線図を求める。

参考資料 16 参照

- (3) 1 質点モデルにおける非線形ばねの復元力特性 具体的計算手順は、以下のとおりである。
 - Q_Rを設定する。
 - ② $Q=Q_R$ とおいて、 α を計算する。

$$\alpha = \frac{Q_R}{W_1} C_{10}$$

③ $[Q_R - \Delta_R]$ 関係式より、 Δ_R を計算する。

$$\Delta_{R} = \left[\frac{\{\frac{\alpha}{C_{10}}W_{1}\}}{\frac{C_{M}(\alpha)R^{2}}{H_{1}}\sqrt[4]{RD_{a}P_{0}^{3}}\sqrt[4]{\frac{1}{H_{1}}}\right]^{4}$$

④ 質点の水平変位 Δ を計算する。

$$\Delta = \frac{Q_R}{K_b} + \Delta_R$$

 ⑤ ステップ①~④を繰返して、1 質点モデルにおける非線形水平ばねの復元力特性 [Q-Δ] 線図を求める。

参考資料 15 参照

非線形水平ばね特性を表現する Q-ム線図の整理と定式化

剛基部上に置かれている満液円筒形貯槽を1質点でモデル化し、非線形水平ばねにより質点 に作用する水平力と水平変位の復元力特性線図を付図 9.1 に示す。

付図 9.1 水平力と水平変位の復元力特性線図

各点における浮き上がり状態及び各点の水平変位と水平抵抗力の計算手順は以下に示す。

Point T ······ (Q_{Rt}, Δ_{et}) 浮き上がり開始点
 Point Y ······ (Q_{Ry}+Q_{Rt}, Δ_{ey}) 弾性限界浮き上がり点
 Point P ······ (Q_{Rp}+Q_{Rt}, Δ_{ep}) 塑性関節発生浮き上がり点
 Point 4 ······ (Q_{R4}+Q_{Rt}, Δ_{e4}) 想定される最大浮き上がり変位における点
 必要に応じて、Point 4 の算定式を用いて、線図上に任意点の追加も可能となる。

(1) <u>Point T ----- (Q_Rt_, Δ_et</u>) の計算手順

① 側板下端に作用する自重抵抗力 qt に対応するタンク水平抵抗力 Q_Rt を計算する。

$$Q_{Rt} = \frac{2\pi R^2 q_t}{H_1} \tag{9.1}$$

(注) QRtは、自重による抵抗転倒モーメント MRtを H1で除して求める。

$$Q_{Rt} = M_{Rt} / H_1 = \frac{2\pi R^2 q_t}{H_1}$$
(9.2)

② QRtと短周期水平地震動による作用水平力Qatを等しいとおいて、atを計算する。

$$Q_{Rt} = Q_{\alpha t} = \frac{\alpha_t}{C_{10}} \times (\pi f_{W1} P_0 R^2)$$
(9.3)

これより、

$$\alpha_{t} = \frac{Q_{t}C_{10}}{(\pi f_{w1}P_{0}R^{2})}$$
(9.4)

(注) Qatは、有効液重量 W1による作用水平力(ベースシア)として近似的に求めている。

$$Q_{\alpha t} = Kh_1 W f_{W1} = \frac{\alpha_t}{C_{10}} \times (\pi f_{W1} P_0 R^2)$$
(9.5)

関係式は以下の通りである。

水平抵抗力:
$$Q = Kh_1W\{(f_{W0} - f_{W1})\frac{1}{\nu_3} + f_{W1}\} \approx Kh_1Wf_{W1}$$
 (9.6)

動液圧:
$$P_h = [Kh_1\{(C_{00} - C_{10})\frac{1}{V_3} + C_{10}\}]P_0 \approx Kh_1C_{10}P_0$$
 (9.7)

動液圧と静液圧との比:
$$\alpha = \frac{P_h}{P_0} = Kh_1C_{10}$$
 (9.8)

ここに、

R: タンクの半径
W: 内溶液重量
有効液重量:
$$W_1 = f_{W1}W$$
 (9.9)
有効液重量係数:

$$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$$
(9. 10)

質点重心高さ: $H_1 = f_{H1}H$ (9.11) 重心高さ係数:

$$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$$
(9.12)

 C_{00} と C_{10} は、特定屋外貯蔵タンクの最高液面高さHと直径Dとの比により求めた係数である。

③ $a=a_t$ に対応する Δ_t を求める。

$$Q_{t} = \frac{\alpha_{t}}{C_{10}} \times (\pi f_{W1} P_{0} R^{2}) = Q_{Rt} = C_{M} (\alpha_{t}) \frac{R^{2}}{H_{1}} \sqrt[4]{R D_{a} P_{0}^{3}} \sqrt[4]{\frac{\Delta_{t}}{H_{1}}} + \frac{2\pi R^{2} q_{t}}{H_{1}}$$
(9.13)

これより、

$$C_{M}(\alpha_{t})\frac{R^{2}}{H_{1}}\sqrt[4]{RD_{a}P_{0}^{3}}\sqrt[4]{\frac{\Delta_{t}}{H_{1}}}=0$$

これより、

- **Δ**,=0 ----- 浮き上がりは生じない。
- (注) タンク側板下端が片浮き上がり状態にある水平抵抗力と水平変位の関係は、次式で表される。 この場合、浮き上がり傾斜 θ_t は最大浮き上がり変位 $\delta_u \& 2R$ で除した値 ($\theta_t=\delta_u$ /2R) として、 円周方向単位幅当りの浮き上がり抵抗力 q (φ) は、当該円周角位置の動液圧の影響を考慮して 求める。そして、浮き上がり抵抗力 q (φ) によるタンク側板下端の浮き上がり抵抗モーメント $M_R \&$ 計算し、これを H_1 で除して水平抵抗力 $Q_R \&$ 求め、その時の水平変位 $\Delta = \theta_t \times H_1 \&$ 関係づ けている。

$$Q_{R} = C_{M}(\alpha) \frac{R^{2}}{H_{1}} \sqrt[4]{RD_{a}P_{0}^{3}} \sqrt[4]{\frac{\Delta}{H_{1}}} + \frac{2\pi R^{2}q_{t}}{H_{1}}$$
(9.14)

関係式は、

$$M_{R} = C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}P_{0}^{3}}\sqrt[4]{\theta_{t}} + 2\pi R^{2}q_{t}$$
(9.15)

$$C_{M}(\alpha) = -5.9588\alpha + 13.381 \tag{9.16}$$

 ④ 1 質点の水平変位 Δet は、次式により求める。この場合、質点には、水平力 Qat=QRt が作用しているので、基礎固定の弾性有効重量 W1の一次固有周期 Tbから定まるばね係 数 Kbに関する変形 Qt/Kbを考慮する。

$$\Delta_{et} = \Delta_t + \frac{Q_{Rt}}{K_b} = \frac{Q_{Rt}}{K_b}$$
(9.17)

ただし、

$$K_{b} = (\frac{2\pi}{T_{b}})^{2} (\frac{W_{1}}{g}) = (\frac{2\pi}{T_{b}})^{2} (\frac{f_{W1}W}{g})$$
(9.18)

⑤ Point T は次の座標となる。

$$Q_{Rt} = \frac{2\pi R^2 q_t}{H_1}$$
(9.19)

$$\Delta_{et} = \frac{Q_{Rt}}{K_b} \tag{9.20}$$

- (2) <u>Point Y ------ (Q_{-Ry}+Q_{-Rt}, Δ_{ey})</u>の計算手順
 - ① 弾性限界水平耐力 Q_{Ry}を設定する。

$$Q_{Ry} = \frac{2\pi R^2 q_y}{H_1}$$
(9.21)

$$q_{y} = \frac{4}{\sqrt{6}} \sqrt{m_{y} P_{0}}$$
(9.22)

(Wozniak モデルにおける弾性限界(降伏)抵抗力)

 ② [Q_{Ry}+Q_{Rt}]と短周期水平地震動による作用水平力Q_(ay+at)を等しいとおいて、a_y+a_t を計算する。

$$Q_{Ry} + Q_{Rt} = Q_{(\alpha_y + \alpha_t)} = \frac{(\alpha_y + \alpha_t)}{C_{10}} \times (\pi f_{W1} P_0 R^2)$$
(9.23)

これより、

$$\alpha_{y} + \alpha_{t} = \frac{[Q_{Ry} + Q_{Rt}]C_{10}}{(\pi f_{W1} P_{0} R^{2})}$$
(9.24)

 ③ a_y +a_tに対応する、Δy を計算する。この場合、質点に作用する応答加速度に対応する a は ay+a_tである。

$$Q_{(\alpha_{y}+\alpha_{t})} = \frac{(\alpha_{y}+\alpha_{t})}{C_{10}} \times (\pi f_{W1}P_{0}R^{2})$$
$$= Q_{Ry} + Q_{Rt} = C_{M}(\alpha_{y}+\alpha_{t})\frac{R^{2}}{H_{1}}\sqrt[4]{RD_{a}P_{0}^{3}}\sqrt[4]{\frac{\Delta_{y}}{H_{1}}} + \frac{2\pi R^{2}q_{t}}{H_{1}}$$

これより、

$$\Delta_{y} = \frac{H_{1}[Q_{Ry}]^{4}}{RD_{a}P_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$$
(9.25)

④ 1 質点の Δeyは、次式により求める。

$$\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$$
(9.26)

⑤ Point Y は次の座標となる。

$$Q_{Ry} + Q_{Rt} = \frac{2\pi R^2 q_y}{H_1} + \frac{2\pi R^2 q_t}{H_1}$$
$$\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rt}]}{K_b}$$

- (3) <u>Point P ------ (Q_{-Rp}+Q_{-Rt}, Δ_{ep})</u>の計算手順
 - ① 弾性限界水平耐力 Q_{Ry}を設定する。

$$Q_{Rp} = \frac{2\pi R^2 q_p}{H_1}$$
(9.27)

$$q_{p} = \frac{4}{\sqrt{6}} \sqrt{m_{p} P_{0}}$$
(9.28)

(Wozniak モデルにおける第1塑性関節発生時の抵抗力)

 ② [Q_{Rp}+Q_{Rt}]と短周期水平地震動による作用水平力Q_(ap+at)を等しいとおいて、a_p+a_t を計算する。

$$Q_{Rp} + Q_{Rt} = Q_{(\alpha p + \alpha t)} = \frac{(\alpha_p + \alpha_t)}{C_{10}} \times (\pi f_{W1} P_0 R^2)$$
(9.29)

これより、

$$\alpha_{p} + \alpha_{t} = \frac{[Q_{Rp} + Q_{Rt}]C_{10}}{(\pi f_{W1} P_{0} R^{2})}$$
(9.30)

 ③ α_p+α_tに対応する、Δ_pを計算する。この場合、質点に作用する応答加速度に対応する α は α_p+α_tである。

$$\begin{aligned} Q_{(\alpha p + \alpha t)} &= \frac{\alpha_{p} + \alpha_{t}}{C_{10}} \times (\pi f_{W1} P_{0} R^{2}) \\ Q_{Rp} + Q_{Rt} &= C_{M} (\alpha_{p} + \alpha_{t}) \frac{R^{2}}{H_{1}} \sqrt[4]{RD_{a} P_{0}^{3}} \sqrt[4]{\frac{\Delta_{p}}{H_{1}}} + \frac{2\pi R^{2} q_{t}}{H_{1}} \end{aligned}$$

これより、

$$\Delta_{p} = \frac{H_{1}[Q_{Rp}]^{4}}{RD_{a}P_{0}^{3}[C_{M}(\alpha_{p} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$$
(9. 31)

④ 1 質点系の Δep は、次式により求める。

$$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$$
(9.32)

⑤ Point P は次の座標となる。

$$Q_{Rp} = \frac{2\pi R^2 q_p}{H_1} + \frac{2\pi R^2 q_t}{H_1}$$
$$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$$

- (4) <u>Point 4 ------ (Q_{R4}+Q_{Rt}, Δ_{e4})</u>の計算手順
 - 水平耐力 Q_{R4}を設定する。

$$Q_{R4} = \frac{2\pi R^2 q_4}{H_1} \tag{9.33}$$

ただし、

$$q_4 = \frac{4}{\sqrt{6}} \sqrt{m_4 P_0} \tag{9.34}$$

(Wozniak モデルにおけるモーメント m4発生時抵抗力)

 ② Q_{R4}+Q_{Rt}と短周期水平地震動による作用水平力 Q_(α4+αt)を等しいとおいて、α₄₊α_tを計 算する。

$$Q_{R4} + Q_{Rt} = Q_{(\alpha 4 + \alpha t)} = \frac{\alpha_4 + \alpha_t}{C_{10}} \times (\pi f_{W1} P_0 R^2)$$
(9.35)

これより、

$$\alpha_4 + \alpha_t = \frac{[Q_{R4} + Q_{Rt}]C_{10}}{(\pi f_{W1} P_0 R^2)}$$
(9.36)

 ③ α₄₊α_t に対応する Δ₄を計算する。この場合、質点に作用する応答加速度に対応する α は α₄₊α_t である。

$$Q_{(\alpha^{4}+\alpha^{t})} = \frac{(\alpha_{4} + \alpha_{t})}{C_{10}} \times (\pi f_{W1} P_{0} R^{2})$$
$$= Q_{R4} + Q_{Rt} = C_{M} (\alpha_{4} + \alpha_{t}) \frac{R^{2}}{H_{1}} \sqrt[4]{RD_{a} P_{0}^{3}} \sqrt[4]{\frac{\Delta_{4}}{H_{1}}} + \frac{2\pi R^{2} q_{t}}{H_{1}}$$

これより、

$$\Delta_4 = \frac{H_1[Q_{R4}]^4}{RD_a P_0^3 [C_M(\alpha_4 + \alpha_t) \frac{R^2}{H_1}]^4}$$
(9.37)

④ 1 質点の Δ_{e4}は、次式により求める。

$$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{K_b}$$
(9.38)

⑤ Point 4 は次の座標となる。

$$Q_{R4} + Q_{Rt} = \frac{2\pi R^2 q_4}{H_1} + \frac{2\pi R^2 q_t}{H_1}$$
$$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{K_b}$$

基部に回転ばねありの質点系モデル用の非線形回転ばね特性 (M-θ線図)の整理と定式化

非線形回転ばねの抵抗モーメントと回転角度の復元モーメント特性線図を付図 10.1 に示す。

付図 10.1 抵抗モーメントと回転角度の復元モーメント特性線図

上図における各 Point は下記するとおりであり、計算方法は以下に続いて記述する。

- ① Point T ----- (M_{Rt}, 0) 弾性浮き上がり開始点
- ② Point Y ----- (M_{Ry}+M_{Rt}, θ_{ty}) 弾性限界浮き上がり点
- ③ Point P ------ (M_{Rp}+M_{Rt}, θ_{tp}) 塑性関節発生浮き上がり点
- ④ Point 4 ----- (M_{R4}+M_{Rt}, θ_{t4}) 想定される最大浮き上がり変位における点

必要に応じて、Point 4 の算定式を用いて、線図上に任意点の追加も可能となる。

動液圧の変動を考慮した転倒抵抗モーメント M_R と動液圧変動係数 $C_M(\alpha)$ の関係式は、以下に示す;

$$M_{R} = C_{M}(\alpha)R^{2}\sqrt[4]{RD_{a}P_{0}^{3}}\sqrt[4]{\theta_{t}} + 2\pi R^{2}q_{t}$$
(10.1)

 $C_M(\alpha) = -5.9588\alpha + 13.381 \tag{10.2}$

313

- (1) <u>Point T …… (M_{Rt}, 0) の計算手順</u>
 - ① 側板下端に作用する自重抵抗力 qt に対応するタンク転倒抵抗モーメント MRt を計算 する。

$$M_{Rt} = 2\pi R^2 q_t \tag{10.3}$$

② MRtと短周期水平地震動による転倒モーメント Matを等しいとおいて、atを計算する。

$$M_{Rt} = Q_{\alpha t} H_1 = \frac{\alpha_t}{C_{10}} \times (\pi f_{W1} P_0 R^2) H_1$$
(10.4)

これより、

$$\alpha_{t} = \frac{M_{Rt}C_{10}}{H_{1}(\pi f_{W1}P_{0}R^{2})}$$
(10.5)

注) Qatは、有効液重量 W1による作用水平力(ベースシア)として近似的に求めている。

$$Q_{\alpha t} = Kh_1 W f_{W1} = \frac{\alpha_t}{C_{10}} \times (\pi f_{W1} P_0 R^2)$$
(10.6)

関係式は以下の通りである。

$$Q = Kh_1 W\{(f_{W0} - f_{W1})\frac{1}{\nu_3} + f_{W1}\} \approx Kh_1 Wf_{W1}$$
(10.7)

$$P_{h} = [Kh_{1}\{(C_{00} - C_{10})\frac{1}{\nu_{3}} + C_{10}\}]P_{0} \approx Kh_{1}C_{10}P_{0}$$
(10.8)

$$\alpha = \frac{Ph}{P_0} = Kh_1 C_{10} \tag{10.9}$$

③ $a=a_t$ に対応する θ t-tを求める。

$$M_{\alpha t} = \frac{\alpha_{t}}{C_{10}} \times (\pi f_{W1} P_{0} R^{2}) H_{1} = M_{Rt} = C_{M} (\alpha_{t}) R^{2} \sqrt[4]{R D_{a} P_{0}^{3}} \sqrt[4]{\theta_{t-t}} + 2\pi R^{2} q_{t}$$
(10. 10)

これより、

$$C_M(\alpha_t)R^2\sqrt[4]{RD_aP_0^3}\sqrt[4]{\theta_{t-t}} = 0$$

これより、

$$\theta_{t-t} = 0$$
 ----- 浮き上がりは生じない。

④ Point T は次の座標となる。

$$M_{Rt} = 2\pi R^2 q_t$$
$$\theta_{t-t} = 0$$

- (2) <u>Point Y ------ (M_{-Ry}+M_{-Rt}, θ_{-ty})</u>の計算手順
 - ① 弾性限界タンク転倒抵抗モーメント M_Ry を設定する。

$$M_{Ry} = 2\pi R^2 q_y$$
 (10. 11)

$$q_{y} = \frac{4}{\sqrt{6}} \sqrt{m_{y} P_{0}}$$
(10. 12)

(Wozniak モデルにおける弾性限界(降伏)抵抗力)

 ② [M_{Ry}+ M_{Rt}]と短周期水平地震動による作用水平力 M_(ay+at)を等しいとおいて、a_y+a_t を計算する。

$$M_{Ry} + M_{Rt} = M_{(\alpha_y + \alpha_t)} = \frac{(\alpha_y + \alpha_t)}{C_{10}} \times (\pi f_{W1} P_0 R^2) H_1$$
(10.13)

これより、

$$\alpha_{y} + \alpha_{t} = \frac{[M_{Ry} + M_{Rt}]C_{10}}{H_{1}(\pi f_{W1}P_{0}R^{2})}$$
(10.14)

 ③ a_y +a_tに対応するθtyを計算する。この場合、質点に作用する応答加速度に対応する a は ay+a_tである。

$$M_{(\alpha_{y}+\alpha_{t})} = \frac{(\alpha_{y}+\alpha_{t})}{C_{10}} \times (\pi f_{W1}P_{0}R^{2})H_{1}$$

$$= M_{Ry} + M_{Rt} = C_{M}(\alpha_{y}+\alpha_{t})R^{2}\sqrt[4]{RD_{a}P_{0}^{3}}\sqrt[4]{\theta_{ty}} + 2\pi R^{2}q_{t}$$
(10. 15)

これより、

$$\theta_{ty} = \frac{[M_{Ry}]^4}{RD_a P_0^3 [C_M(\alpha_y + \alpha_t)R^2]^4}$$
(10.16)

④ Point Y は次の座標となる。

$$M_{Ry} + M_{Rt} = 2\pi R^2 q_y + 2\pi R^2 q_t$$

$$\theta_{ty} = \frac{[M_{Ry}]^4}{RD_a P_0^3 [C_M (\alpha_y + \alpha_t) R^2]^4}$$

- (3) <u>Point P ----- (M _{Rp} + M _{Rt} , θ _{tp})</u>の計算手順
 - ① 塑性関節発生時タンク転倒抵抗モーメント M_{Rp}を設定する。

$$M_{Rp} = 2\pi R^2 q_p \tag{10.17}$$

$$q_p = \frac{4}{\sqrt{6}} \sqrt{m_p P_0}$$
(10.18)

(Wozniak モデルにおける塑性関節発生時抵抗力)

 ② [M_{Rp}+ M_{Rt}]と短周期水平地震動による作用水平力 M_(ap+at)を等しいとおいて、a_p+a_t を計算する。

$$M_{Rp} + M_{Rt} = M_{(\alpha_p + \alpha_t)} = \frac{(\alpha_p + \alpha_t)}{C_{10}} \times (\pi f_{W1} P_0 R^2) H_1$$
(10. 19)

これより、

$$\alpha_{y} + \alpha_{t} = \frac{[M_{Rp} + M_{Rt}]C_{10}}{H_{1}(\pi f_{W1}P_{0}R^{2})}$$
(10. 20)

 ③ a_p+a_tに対応する θ_{tp}を計算する。この場合、質点に作用する応答加速度に対応する a は a_p+a_tである。

$$M_{(\alpha_{p}+\alpha_{t})} = \frac{(\alpha_{p}+\alpha_{t})}{C_{10}} \times (\pi f_{W1}P_{0}R^{2})H_{1}$$

$$= M_{Ry} + M_{Rt} = C_{M}(\alpha_{y}+\alpha_{t})R^{2}\sqrt[4]{RD_{a}P_{0}^{3}}\sqrt[4]{\theta_{tp}} + 2\pi R^{2}q_{t}$$
(10. 21)

これより、

$$\theta_{tp} = \frac{\left[M_{Rp}\right]^4}{RD_a P_0^3 \left[C_M(\alpha_p + \alpha_t)R^2\right]^4}$$
(10.22)

④ Point P は次の座標となる。

$$M_{Rp} + M_{Rt} = 2\pi R^2 q_p + 2\pi R^2 q_t \qquad (10.23)$$

$$\theta_{tp} = \frac{[M_{Rp}]^4}{RD_a P_0^3 [C_M (\alpha_p + \alpha_t) R^2]^4}$$
(10. 24)

- (4) <u>Point 4 ……(M_{R4}+M_{Rt}, θ_{t4})の計算手順</u>
 - ① 転倒抵抗モーメント MR4を設定する。

$$M_{R4} = 2\pi R^2 q_4 \tag{10.25}$$

$$q_4 = \frac{4}{\sqrt{6}} \sqrt{m_4 P_0} \tag{10. 26}$$

(Wozniak モデルにおけるモーメント m4発生時抵抗力)

 [M_{R4}+ M_{Rt}]と短周期水平地震動による作用水平力 M_{(a4+at})を等しいとおいて、a4+at を計算する。

$$M_{R4} + M_{Rt} = M_{(\alpha_4 + \alpha_t)} = \frac{(\alpha_4 + \alpha_t)}{C_{10}} \times (\pi f_{W1} P_0 R^2) H_1$$
(10. 27)

これより、

$$\alpha_4 + \alpha_t = \frac{[M_{R4} + M_{Rt}]C_{10}}{H_1(\pi f_{W1} P_0 R^2)}$$
(10.28)

 ③ α₄+α_tに対応する、θ_{t4}を計算する。この場合、質点に作用する応答加速度に対応する α は α₄+α_tである。

$$M_{(\alpha_4+\alpha_t)} = \frac{(\alpha_4 + \alpha_t)}{C_{10}} \times (\pi f_{W1} P_0 R^2) H_1$$

$$= M_{R4} + M_{Rt} = C_M (\alpha_4 + \alpha_t) R^2 \sqrt[4]{RD_a P_0^3} \sqrt[4]{\theta_{t4}} + 2\pi R^2 q_t$$
(10. 29)

これより、

$$\theta_{t4} = \frac{[M_{R4}]^4}{RD_a P_0^3 [C_M (\alpha_4 + \alpha_t) R^2]^4}$$
(10.30)

④ Point 4 は次の座標となる。

$$M_{R4} + M_{Rt} = 2\pi R^2 q_4 + 2\pi R^2 q_t$$

$$\theta_{t4} = \frac{[M_{R4}]^4}{RD_a P_0^3 [C_M(\alpha_p + \alpha_t)R^2]^4}$$

質点系モデルの入力諸元の計算シート

付表 11.1 質点系モデルの諸元計算シート (No.1)

質点系モデルによる側板下端の浮き上がり変位計算用諸元(赤字:入力値)

公称容量	VOL(kI)	30000	(k)
貯槽内径	D	45100	(mm)
側板高さ	Hmax	21270	(mm)
最下段側板厚	t.s	18	(mm)
最高液面高さの 1/3 高さにおける側板厚	t. _{1/3}	13	(mm)
アニュラ板厚	t. _b	12	(mm)
鋼材のヤング率	E	205939. 7	(N/mm.².)
鋼材のポアソン比	ν	0. 3	(-)
降伏応力	σу	245	(N/mm.².)
最高液高さ	н	18802	(mm)
液密度	r	9. 50E - 07	(kg/mm. ³ .)
直径/液高さ比	D/H	2.40	(-)
液高さ/直径比	H/D	0. 42	(-)
消防法/有効液重量率 f_{w0} $f_{w0} = -0.1408 \left(\frac{H}{D}\right)^4 + 0.8427 \left(\frac{H}{D}\right)^3 - 1.916 \left(\frac{H}{D}\right)^2 + 2.0933 \left(\frac{H}{D}\right) - 0.1172$	2	0. 48	(-)
消防法/有効液重量率 f_{w1} $f_{w1} = -0.1429 \left(\frac{\mu}{D}\right)^4 + 0.9653 \left(\frac{\mu}{D}\right)^3 - 2.2807 \left(\frac{\mu}{D}\right)^2 + 2.3017 \left(\frac{\mu}{D}\right) - 0.163$	34	0. 47	(-)
消防法/有効液の重心高さ係数 f_{ho} $f_{Ho} = 0.0384 \left(\frac{\mu}{p}\right)^4 - 0.1493 \left(\frac{\mu}{p}\right)^3 + 0.204 \left(\frac{\mu}{p}\right)^2 - 0.0807 \left(\frac{\mu}{p}\right) + 0.4096$		0. 40	(-)
消防法/有効液の重心高さ係数 f_{h1} $f_{H1} = 0.0256 \left(\frac{H}{D}\right)^4 - 0.1387 \left(\frac{H}{D}\right)^3 + 0.216 \left(\frac{H}{D}\right)^2 + 0.0207 \left(\frac{H}{D}\right) + 0.3644$		0. 40	(-)
底板に作用する最大静液圧 $P_0 = g\gamma H$		0. 18	(N/mm²)

タンク本体重量(赤字:入力値)

側板重量	W _{·s0}	2. 41E+03	(KN)
側板附属品重量	W _{.s1}	3. 50E+02	(KN)
浮き屋根重量	W _{.r0}	1. 43E+03	(KN)
浮き屋根附属品重量	W _{.r1}	3. 51E+02	(KN)
側板+附属品 重量合計	M.t	2. 82E+05	(kg)

付表 11.2 質点系モデルの諸元計算シート (No.2)

[計算式と質点系モデルの入力数値](紫字:入力値)

貯槽の固有周期(バルジング振動)			
$T_b = \frac{2}{\lambda} \sqrt{\frac{W}{\pi g E t_{1/3}}}$	T. _b	0. 336	(sec)
$\lambda = 0.067 (H/D)^2 - 0.30 (H/D) + 0.46$	λ	0. 347	(—)
固有周期(スロッシング振動)			
$T_{s} = 2\pi \sqrt{\frac{D}{3.68g} \operatorname{coth}\left(\frac{3.68H}{D}\right)}$	T.s	7. 359	(sec)
有効液重量			
固定液重量 $M_0 = f_{w0} * M$	M.o	1. 37E+07	(kg)
自由液重量 $M_1 = f_{w1} * M$	M .1	1. 33E+07	(kg)
スロッシング液重量 $M_2 = f_{W2} * M$	M. ₂	1. 42E+07	(kg)
側板重量 M_t	M.t	2.82E+05	(kg)
底板重量 M _b	Mb	1.05E+05	(kg)
自由液+側板 M ₁₁	M . ₁₁	1. 36E+07	(kg)
有効液の重心高さ			
$H_0 = f_{h0} * H$	H.o	7. 55E+02	(cm)
$H_1 = f_{h1} * H$	H. ₁	7. 55E+02	(cm)
$H_2 = f_{h2} * H$	H. ₂	1. 09E+03	(cm)
ばね係数			
バルジング振動ばね係数	K .1	4. 74E+07	(N/cm)
スロッシング振動ばね係数	K.2	1.03E+05	(N/cm)
減衰係数			
バルジング振動減衰係数 $C_1 = 2\zeta_1 \sqrt{M_{11} \cdot k_1}$	C.1	7.61E+05	(N/(cm/s))
スロッシング振動減衰係数 $C_2=2\zeta_2\sqrt{M_2\cdot k_2}$	C.2	2. 42E+03	(N/(cm/s))

Delint T	Q _{Rt}	8.26E+06	(N)
Point 1 $Q_{Rt} = \frac{2\pi R^2 q_1}{H_1}$ $\alpha_1 = \frac{[Q_{Rt}]C_{10}}{(\pi f_{W1}P_0R^2)}$ $\Delta_{et} = \frac{Q_{Rt}}{Kh_1}$	C.10	0. 71	(-)
	$lpha_{\cdot t}$	0.04	(-)
	Δ _{·et}	0. 17	(cm)
	m. _y	5.88E+03	(N)
Point Y	q.y	5. 24E+02	(N/cm)
$q_{y} = \frac{4}{\sigma_{z}} \sqrt{m_{y} P_{0}} \qquad m_{y} = \frac{\sigma_{y}}{\sigma_{z}} t_{a}^{2} \qquad Q_{Ry} = \frac{2\pi R^{2} q_{y}}{r^{2}}$	Q. _{Ry}	2. 22E+07	(N)
	α _{·y}	0.12	(-)
$D_{\alpha}\left(=\frac{Et_{a}^{3}}{2}\right) \qquad \alpha_{\nu}=\frac{[Q_{Ry}]c_{10}}{2}$	C.M	12.39	(-)
$\int u \left(\frac{12(1-v^2)}{12(1-v^2)} \right) \qquad $	D.a	3. 26E+06	(N. cm)
$\Delta_{y} = \frac{H_{1}[Q_{Ry}]^{4}}{RD_{a}P_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}} \qquad \Delta_{ey} = \Delta_{y} + \frac{Q_{Ry} + Q_{Rt}}{K_{b}}$	Δ.y	0. 10	(cm)
	Δ _{.ey}	0.74	(cm)
	Q. _{Ry.} +Q. _t	3. 05E+07	(N)
Point D	m.p	8. 82E+03	(N)
	q.p	6. 42E+02	(N/cm)
$q_p = \frac{4}{\sqrt{5}} \sqrt{m_p P_0} \qquad m_p = \frac{\sigma_y}{4} t_a^2 \qquad Q_{Rp} = \frac{2\pi R^2 q_p}{H}$	Q _{Rp}	2. 72E+07	(N)
	α.,p	0. 15	(-)
$\alpha_n = \frac{[Q_{Rp}]C_{10}}{(Q_{Rp})^2 - Q_{10}}$	C. _M	12. 23	(-)
$\mathcal{V} = (\pi f_{W1} P_0 R^2)$	D.a	3. 26E+06	(N. cm)
$\Delta_n = \frac{H_1[Q_{Rp}]^4}{\Delta_{cn} = \Delta_n + \frac{Q_{Rp} + Q_{Rt}}{2}$	Δ.p	0. 23	(cm)
$RD_a P_0^3 \Big[C_M (\alpha_p + \alpha_t) \frac{R^2}{H_1} \Big]^{-1} \qquad \qquad$	Δ.ep	0.97	(cm)
	Q. _{Rp.} +Q. _t	3. 54E+07	(N)
Point 4	m.4	2. 94E+04	(N)
	q.4	1. 17E+03	(N/cm)
$q_4 = \frac{4}{\sqrt{6}}\sqrt{m_4 P_0} \qquad Q_{R4} = \frac{2\pi R^2 q_4}{H_1} \qquad \alpha_4 = \frac{[Q_{R4}]C_{10}}{(\pi f_{W1} P_0 R^2)}$	Q _{.R4}	4. 96E+07	(N)
	α.4	0.27	(-)
$\Delta_4 = \frac{H_1[Q_{R4}]^4}{RD_1 R^3[C_1(\alpha_1 + \alpha_1)\frac{R^2}{2}]^4} \qquad \Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{R4}}{K_b}$	C.M	11.50	(-)
$\kappa D_a P_0 [c_M (u_p + u_t)_{H_1}]$	D.a	3. 26E+06	(N. cm)
	Δ.4	3. 21	(cm)
	Δ.e4	4.43	(cm)
	Q _{R4} .+Q _{Rt}	5. 79E+07	(N)
Point 5	m .5	5. 41E+04	(N)
$a_r = \frac{4}{2} \sqrt{m_r P_0}$	q.5	1. 59E+03	(N/cm)
45 √6 V ··· 5- 0	Q. _{R5}	6. 73E+07	(N)
	α.5	0.37	(-)
	C.M	10.93	(-)
	D _{.a}	3. 26E+06	(N. cm)
	Δ.5	13.32	(cm)
	∆ .e5	14. 918	(cm)
	Q _{R5} +Q _{Rt}	7. 56E+07	(N)

付表 11.3	質点系モデルの諸元計算シート	(No. 3)	
---------	----------------	---------	
Deint T	Q_{Rt}	8.26E+06	(N)
--	-------------------------------------	------------	---------
	C.10	0. 71	(-)
$Q_{Rt} = \frac{2\pi R^2 q_1}{\mu}$ $\alpha_1 = \frac{[Q_{Rt}]C_{10}}{(\pi f - R R^2)}$ $M_{Rt} = 2\pi R^2 = Q_{Rt}H_1$	<i>a</i> .t	0.04	(-)
	M _{Rt}	6. 23E+09	(N. cm)
$\theta_{t-t} = 0$	heta .to	0.006	(rad)
Daint V	m. _y	5. 88E+03	(N)
	q.y	5. 24E+02	(N/cm)
$q_{y} = \frac{4}{\sqrt{c}} \sqrt{m_{y} P_{0}} \qquad m_{y} = \frac{\sigma_{y}}{c} t_{a}^{2} \qquad Q_{Ry} = \frac{2\pi R^{2} q_{y}}{H}$	Q _{Ry}	2. 22E+07	(N)
	Q' .y	0.12	(-)
$D_{a}\left(=\frac{Et_{a}^{3}}{2}\right) \qquad \alpha_{v}=\frac{[Q_{Ry}]c_{10}}{2}$	C. _M	12. 39	(-)
$= u \left(\frac{12(1-v^2)}{12} \right) = \frac{1}{v} \left(\pi f_{W1} P_0 R^2 \right)$	D _{.a}	3. 26E+06	(N. cm)
$M = O H = O = \frac{[M_{Ry}]^4}{[M_{Ry}]^4}$	M _{Ry}	1.67E+10	(N. cm)
$M_{Ry} - Q_{Ry} \Pi_1 \qquad \theta_{ty} - \frac{1}{R D_a P_0^3 [C_M(\alpha_y + \alpha_t) R^2]^4}$	heta .ty	1.26E-04	(rad)
	M. _{Ry.} +M. _{Rt}	2. 30E+10	(N. cm)
Daint D	m. _p	8. 82E+03	(N)
	q. _p	6. 42E+02	(N/cm)
$q_p = \frac{4}{\sqrt{c}} \sqrt{m_p P_0} \qquad m_p = \frac{\sigma_y}{4} t_a^2 \qquad Q_{Rp} = \frac{2\pi R^2 q_p}{4}$	Q. _{Rp}	2. 72E+07	(N)
$v_{0}v_{0}v_{1}v_{1}v_{1}v_{1}v_{1}v_{1}v_{1}v_{1$	α .p	0. 15	(-)
$\alpha_p = \frac{[Q_{Rp}]c_{10}}{(\pi f_{W1}P_0R^2)} \qquad M_{Rp} = Q_{Rp}H_1$	C. _M	12. 23	(-)
	D _{.a}	3. 26E+06	(N. cm)
$\theta_{tp} = \frac{H_1[M_{Rp}]^4}{RD_a P_0^3 [C_M(\alpha_p + \alpha_t)R^2]^4}$	M. _{Rp}	2. 05E+10	(N. cm)
	heta .tp	2.99E-04	(rad)
	M. _{Rp.} +M. _{Rt}	2.67E+10	(N. cm)
Paint 1	m.4	2. 94E+04	(N)
	q .4	1.17E+03	(N/cm)
$q_4 = \frac{4}{\sqrt{5}} \sqrt{m_4 P_0}$ $Q_{R4} = \frac{2\pi R^2 q_4}{H}$ $\alpha_4 = \frac{[Q_{R4}] C_{10}}{(\pi f_{11}, P_1, P^2)}$	Q _{R4}	4. 96E+07	(N)
	α.4	0. 27	(-)
$M_{R4} = Q_{R4}H_1$ $\theta_{t4} = \frac{H_1[M_{R4}]^4}{1-1-2^{3(2-1)/4}}$	C. _M	11.50	(-)
$RD_a P_0^{\circ} [C_M(\alpha_p + \alpha_t)R^2]$	D.a	3. 26E+06	(N. cm)
	M. _{R4}	3. 74E+10	(N. cm)
	$ heta_{\cdot t4}$	4. 25E-03	(rad)
	$M_{R4}+M_{Rt}$	4. 37E+10	(N. cm)
Point 5	m. ₅	5. 41E+04	(N)
$a = \frac{4}{m}$	q .5	1. 59E+03	(N/cm)
$q_5 = \frac{1}{\sqrt{6}}\sqrt{m_5}P_0$	Q _{R5}	6. 73E+07	(N)
	α.5	0. 366	(-)
	C. _M	10.93	(-)
	D.a	3. 26E+06	(N. cm)
	M _{·R5}	5. 08E+10	(N. cm)
	heta .t5	1. 766E-02	(rad)
	M P5 + M D1	5 70F+10	(N cm)

付表 11.4	質点系モデルの諸元計算シート	(No. 4)
---------	----------------	---------

参考資料 12

FEM モデルによる抵抗モーメントと回転角度の関係に関する検討

1 3D シェルモデルによる解析結果から求めた抵抗モーメントと回転角度の関係

付図 12.1 に示す 3D シェルモデル (平成 26 年度作成したモデル使用)を使用することにより、抵抗モーメントと回転角度の関係を調査するために、以下の FEM 解析を実施した。

(1) 弾塑性、大変形の静解析

荷重は静液圧と動液圧(平成26年度で算定した動液圧使用)の両方の分布を考慮した。 材料には弾塑性特性を使用した(付図12.2参照)。

解析結果から求めた抵抗モーメントと回転角度の関係線図(M-θ線図)を付図 12.3 に 示す。

付図 12.1 3D シェルモデルの変形図

付図 12.2 モデルに使用した応力-ひずみ特性

付図 12.3 3D シェルモデルの M-θ線図

2 各 M-θ線図の比較

以上の 3D シェルモデルの $M-\theta$ 線図と定式化による $M-\theta$ 線図との比較図は以下の付図 12.4 に示す。算定された $M-\theta$ 線図は FEM 解析から求めた線図より低めの線図であることが 確認されたため、この線図を使用して計算される質点系の応答はより厳しい側の結果になると 考えられる。

付図 12.4 各 M- θ線図の比較

これらの **M**-θ線図の算出において、タンク基礎条件や材料物性などの条件はそれぞれ異なる。以下表にその条件一覧を記載する。

		タンク基礎	タンク側板	材料特性	幾何学的な 条件など	液圧の 変動
1	マルチリニア型ばね 3D シェルモデルより算出	ばね支持 (249N/mm ²)	側板の剛性を 考慮	<u> </u>	3D の形状 (大変形も考慮)	あり
2	マルチリニア型ばね 式より算出	岡山	剛 (モーメント は考慮)	弾完全塑性 ^{,*2}	なし	あり
3	バイリニア型ばね 式より算出 (平成 26 年度使用)	岡リ	岡川	弾完全塑性. ^{※2}	なし	なし

※1 弾塑性特性は付図 12.2 に示すとおり(10%ひずみ時の硬化率 do/de:約 900N/mm²/-)。

※2 アニュラ板、底板の材料(SM400C, SS41)の降伏強度は245N/mm²を使用。

減衰係数の設定に関する検討

付図 13.1 に示す基部に回転ばねありの 1 質点モデルの水平ばね k_1 と基部の回転ばね k_0 は線 形ばねである場合、系全体の等価的なばね定数 k_e と等価的減衰係数 C_e が以下の関係式から求 められる。

付図 13.1 減衰係数設定用の1質点系モデル

$$\frac{1}{k_e} = \frac{1}{k_1} + \frac{H_1^2}{k_{\theta}}$$
(13.1)
$$\frac{1}{C_e} = \frac{1}{C_1} + \frac{H_1^2}{C_{\theta}}$$
(13.2)

ここで、

$$C_e = 2\varsigma_e \sqrt{M_1 k_e} \tag{13. 3}$$

$$C_1 = 2\varsigma_1 \sqrt{M_1 k_1}$$
 (13. 4)

$$C_{\theta} = 2\zeta_{\theta} \sqrt{M_1 H_1^2 k_{\theta}} \tag{13.5}$$

以上の線形関係式を整理して、等価的な減衰比 ζ_eが設定された場合、系の減衰比 ζ₁と ζ₀は 次式より算定できる。

$$\varsigma_1 = \varsigma_e \frac{1}{\sqrt{1 - \alpha}} \tag{13.6}$$

$$\varsigma_{\theta} = \varsigma_e \frac{1}{\sqrt{\alpha}} \tag{13.7}$$

ここで、αは以下の式となる。

$$\alpha = 1 - \frac{1}{k_1 (\frac{1}{k_1} + \frac{H_1^2}{k_{\theta}})}$$
(13.8)

回転ばねが非線形の場合、すなわち $M-\theta$ 線図を使う場合、 k_{θ} が時時刻に変化されるため、 以上の関係は成り立っていないことが分かった。

ここで、一つの近似的なやり方としては、 $M-\theta$ 線図上の各点(4点の平均)の k_{θ} の平均値 を求め、それを用いて、線形関係の式(13.1)によって、系の等価的なばね定数 k_{e} を求める。 k_{1} と k_{e} が既知であれば、 C_{1} を変数として、以下の1997年Malhotra(文献[1])に提案され た関係式によって C_{θ} を概算することができる。

$$C_{e} = C_{1}\left(\frac{k_{e}}{k_{1}}\right) + C_{\theta}\frac{1}{H_{1}^{2}}\left(1 - \frac{k_{e}}{k_{1}}\right)$$
(13.9)

線形関係式の式(13.3)、式(13.4)と式(13.5)を式(13.9)に代入して、整理すると、回転ばねの減衰比のζ_θの計算式が以下の式(13.10)に書き換えられる。

$$\varsigma_{\theta} = \frac{[\varsigma_{e} - \varsigma_{1}(\beta / \sqrt{\beta})]H_{1}}{\sqrt{\frac{k_{\theta}}{k_{e}}}(1 - \beta)}$$
(13.10)
$$\Xi \equiv \tilde{\mathcal{C}} k_{e} + \frac{k_{e}}{k_{1}} \geq U \hbar_{0}$$

旧法タンク No.3 の M- θ 線図は以下の付図 13.1 に示します。線図から各点の回転ばね剛性 k₀.及び計算した 4 点の平均値 k₀*を付表 13.1 に示す。

付図 13.2 旧法タンク No.3の定式化による M-θ 線図

	記号	heta (rad)	M (N·cm)	$K_{\theta i}$ (N. cm/rad)
		0. 00E+00	0. 00E+00	—
Point 1		0. 00E+00	6. 23E+09	—
Point 2	∆ty	1.26E-04	2. 30E+10	1. 82E+14
Point 3	∆tp	2.99E-04	2.67E+10	8. 94E+13
Point 4	∆t4	4. 25E-03	4. 37E+10	1.03E+13
Point 5	∆t5	1. 77E-02	5. 70E+10	3. 23E+12
			平均值 K _θ *	7. 12E+13

付表 13.1 旧法タンク No.3 の M-θ 線図の数値と k_θの平均値

付表 13.2 平均値の K₀*を用いて算定された各パラメータの数値

k . θ*	k. _e	$\beta = k_{e}/k_{1}$	k ., _θ *./k. _e
N.cm/rad	N/cm	-	cm²/rad
7. 12E+13	3. 44E+07	7. 25E-01	2. 07E+06

基部固定の1 質点モデルの減衰係数 C_1 を系全体の等価減衰係数 C_e (すなわち、 $\zeta_e=0.15$) とする。基部固定の1 質点モデルの応答に対する減衰効果に合わせるため、基部に回転ばねあ りの1 質点モデルの ζ_1 を変数とする場合、 ζ_0 の計算値は付表 13.3 に示す数値となる。

H₁ ζ.e ζ.1 ζ.θ (cm)— — _ 755 0.15 0.21 0.05 0.1 0.124 採用 0.15 0

付表 13.3 く θの計算値

算定された減衰比 $\zeta_1=0.1$ 、 $\zeta_0=0.124$ を採用し、これらの結果を用いて算定した 1 質点モデル、2 質点モデル及び 3 質点モデルの減衰係数 $C_1 \ge C_0$ を付表 13.4 に示す。

付表 7.4 減衰係数 C₁ と C_θ の算定値

モデル	回転慣性モーメント	減衰係数	減衰係数
基部に回転ばねあり	I_{0} (kg. cm ²)	C ₁₁ (N. s/cm)	$C_{e\theta}$ (N.s.cm/rad)
1 質点	7. 72E+12	5. 07E+05	5.81E+11
2 質点	1.55E+13	5. 07E+05	8. 25E+11
3 質点	3. 24E+13	5. 07E+05	1.19E+12

各質点系の回転慣性モーメントIo及び回転に対する減衰係数Coは以下の式より算定される。

1 質点モデル:
$$I_0 = M_1 H_1^2$$
 $C_{\theta} = 2\zeta_{\theta} \sqrt{(M_1 H_1^2) k_{\theta}^*}$
2 質点モデル: $I_0 = M_1 H_1^2 + M_0 H_0^2$ $C_{\theta} = 2\zeta_{\theta} \sqrt{(M_1 H_1^2 + M_0 H_0^2) k_{\theta}^*}$
3 質点モデル: $I_0 = M_1 H_1^2 + M_0 H_0^2 + M_2 H_2^2$ $C_{\theta} = 2\zeta_{\theta} \sqrt{(M_1 H_1^2 + M_0 H_0^2 + M_2 H_2^2) k_{\theta}^*}$

減衰の効果を検証するため、付図 13.3 に示す基部固定(定式化による $Q-\Delta$ 線図使用)と、 基部に回転ばねありの 2 つの 1 質点モデル(定式化による $M-\theta$ 線図使用)を作成した。以下 の 2 ケースの解析を実施し、結果の比較と検証を行った。

ケース1:等価減衰係数 C_e=7.61E+5N.s/cm(モデル上 C₁)(相当減衰比:ζ_e=0.15)を 使用

ケース2: 付表 13.4 に示す1 質点の減衰係数 C1と減衰係数 Ceを使用

両モデルの質点 M₁に 20cm の水平方向強制変位を与えて、求めた質点 M₁の応答変位の比較 図を付図 13.4 示す。両モデルの結果はよく合っていることが確認された。

付図 13.3 検証用の 2 つの 1 質点非線形ばね系モデルの概念図

付図 13.4 質点 M₁の応答変位の時刻歴(荷重:水平方向強制変位 20cm)
 (赤色破線:算定された減衰比 ζ_θ=0.124、ζ₁=0.1 を使用
 黒色実線:等価減衰比 ζ_e=0.15 を使用)

3 質点非線形ロッキングばね系モデルによる時刻歴地震応答解析

14.1 3 質点非線形ロッキングばね系モデル

タンクのバルジング振動有効固定液質量 M_0 、バルジング振動有効液質量 M_1 及びスロッシング振動有効液質量 M_2 の 3 質点ロッキングばね付きモデルを付図 14.1 に示す。この場合、 運動方程式は次式で表される。

$$\begin{vmatrix} m_{2} & 0 & m_{2}h_{2} \\ 0 & m_{1} & m_{1}h_{1} \\ m_{2}h_{2} & m_{1}h_{1} & m_{2}h_{2}^{2} + m_{1}h_{1}^{2} + m_{0}h_{0}^{2} \end{vmatrix} \begin{vmatrix} \ddot{x}_{2} \\ \ddot{x}_{1} \\ \ddot{\theta}_{B} \end{vmatrix}$$

$$+ \begin{bmatrix} C_{2} & 0 & 0 \\ 0 & C_{1} & 0 \\ 0 & 0 & C_{\theta} \end{bmatrix} \begin{bmatrix} \dot{x}_{2} \\ \dot{x}_{1} \\ \dot{\theta}_{B} \end{bmatrix} + \begin{bmatrix} k_{2} & 0 & 0 \\ 0 & k_{1} & 0 \\ 0 & 0 & k_{\theta} \end{bmatrix} \begin{bmatrix} x_{2} \\ x_{1} \\ \theta_{B} \end{bmatrix} = -\begin{bmatrix} m_{2} \\ m_{1} \\ m_{2}h_{2} + m_{1}h_{1} + m_{0}h_{0} \end{bmatrix} \ddot{x}_{g}$$

$$(14.1)$$

ここで、

m₀:バルジング振動有効固定液質量(kg)
m₁:バルジング振動有効液質量(kg)
m₂:スロッシング振動有効液質量(kg)
h₀ (=H₀):バルジング有効固定液質量高さ(cm)
h₁ (=H₁):バルジング有効液質量高さ(cm)
h₂ (=H₂):スロッシング有効液質量高さ(cm)
C₁:バルジング振動減衰係数(N.s/cm)
C₂:スロッシング振動減衰係数(N.s/cm)
C_H:タンク基部のスウェイ減衰係数(N.s/cm)

C₀: タンク基部のロッキング減衰係数 (N.s.cm/rad)

- k1:バルジング振動ばね定数(N/cm)
- k2:スロッシング振動ばね定数 (N/cm)
- k_H:タンク基部のスウェイばね定数(N/cm)
- k₀:タンク基部のロッキングばね定数(N.cm/rad)
- x₁:バルジング質点の変位 (cm)
- \dot{x}_1 :速度(cm/s)
- \ddot{x}_1 :加速度(cm/s²)
- x₂:スロッシング質点の変位 (cm)
- \dot{x}_{2} : 速度 (cm/s)
- \ddot{x}_2 :加速度(cm/s²)
- x_{R} : タンク基部のスウェイ変位 (cm)
- \dot{x}_{R} : 速度 (cm/s)
- \ddot{x}_{R} :加速度(cm/s²)
- $\dot{\theta}_{\scriptscriptstyle B}$:角速度 (rad/s)
- $\ddot{\theta}_{B}$:角加速度 (rad/s²)
- x_a : タンク基部の変位 (cm)
- _{*x*}:速度(cm/s)
- \ddot{x}_a :加速度(cm/s²)
- k1は、基部固定のタンクのバルジング振動の固有周期から求められる Kbである。

K2は、基部固定のタンクスロッシングの固有周期から求められる Ksである。

上式の基部のロッキングばね k_{θ} は非線形ロッキングばね特性 $M-\theta$ 線図による変数である。 すなわち、ある回転角度 θ と抵抗モーメントMにおける $k_{\theta}=M/\theta$ と計算される。

本検討においては、地盤の弾性ロッキングばね及び地盤の弾性スウェイばねは考慮しない。 ロッキングばねが非線形の場合、解析用の3質点モデルは付図14.2のように現せるこの場 合、タンク基部の復元モーメント特性(M=k₀θ_B)を付図14.3に示す非線形回転ばね特性を 表現する M-0線図に置換することとなる。

付図 14.2 3 質点非線形ロッキングばね系モデルの概念図

付図 14.3 定式化による M-θ線図

14.2 解析対象タンク及び解析条件

- (1) 解析対象タンクの主な諸元 本文に示す表 3.2.3 と同じである。
- (2)3質点非線形ロッキングばね系モデルの諸元
 消防法の算式を用いて計算した3質点系非線形ロッキングばねモデルの諸元を付表14.1
 に示す(参考資料11に示す諸元計算シート参照)。
 - バルジング振動減衰係数 C_1 とタンク基部のロッキング減衰係数 C_0 は参考資料 13 に示す 1997 年 Praveen K.Malhotra に提案された計算方法で算定したものである。

固有周期(バルジング振動)	T.b	3. 36E-01	S	
固有周期(スロッシング振動)	T.s	7. 36E+00	S	
固定液有効質量	M.o	1. 37E+07	kg	
自由液有効質量	M. ₁ . (+M. _t .)	1. 36E+07	kg	
スロッシング液有効質量	M. ₂	1. 42E+07	kg	
固定液の重心高さ	H _{.0}	7. 55E+02	cm	
自由液の重心高さ	H ₋₁	7. 55E+02	cm	
スロッシング液の重心高さ	H. ₂	1. 09E+03	cm	
バルジング振動 ばね係数	K. ₁	4. 74E+07	N/cm	
スロッシング振動 ばね係数	K.2	1. 03E+05	N/cm	
スロッシング振動 減衰係数	C.2	2. 42E+03	N.s/cm	
バルジング振動 減衰係数	C.1	5. 07E+05	N. s/cm	
ロッキング・減衰係数	С. _{<i>ө</i>}	1. 19E+12	N.cm.s/rad	
復元モーメント特性	図 3.2.10 に示す Mー θ線図使用			

付表 14.1 3 質点非線形ロッキングばね系モデルの諸元

注:Mttは側板の重量分

(3) 入力地震波の諸元

本文 3.2.3 節に示す A 地区 EW 波を使用した。

(4) 浮き上がり変位の計算方法

基部に回転ばねありの3質点モデルの場合、時刻歴応答解析から求めた基部の最大回転 角度を用いて、最大浮き上がり変位δu-maxは近似的に次式より計算される。

$$\delta_{u-\max} = \theta_{\max} D \tag{14.2}$$

14.3 時刻歴地震応答解析結果

付表 14.1 に示す 3 質点モデルの諸元を使用して、A 地区の想定地震動の EW 波を作用した 場合の以下の 2 ケースの解析を実施した。

ケース1: 定式化による M-θ線図使用(付図 14.3 参照)

ケース2:3D シェルモデルの M-θ線図使用(別添資料 12 参照)

(1) 定式による M-0線図を使用した3質点モデルの時刻歴地震応答解析結果

解析対象タンクとする旧法タンク No.3 について、定式化による M-θ 線図を 3 質点モ デルの非線形回転ばね特性として使用し、A 地区の想定地震動の EW 波に対して、時刻歴 地震応答解析を実施した。得られた当該タンク基部の回転ばねの回転角度、浮き上がり変 位及び回数を付表 14.2、応答解析結果を付図 14.4 から付図 14.7 に示す。

付表 14.2 定式による M-θ線図を使用した3質点モデルの解析結果のまとめ (想定地震動:A地区 EW 波)

最大/最小	最大/最小	最大	
地震加速度	回転角度	浮き上がり変位	浮き上がり回数
(cm/s^{2})	(rad)	(cm)	
672.2/-767.1	0. 010/-0. 018	81.2	35

付図 14.4 回転角度の時刻歴(定式化による M- θ線図使用)

付図 14.5 浮き上がり変位の時刻歴 (定式化による M-θ線図使用)

付図 14.6 回転ばねに発生した回転モーメントの時刻歴 (定式化による M-θ線図使用)

付図 14.7 非線形回転ばねの復元モーメント特性線図 (定式化による M-θ線図使用)

最大浮き上がり変位(81.2cm)発生時(78.8秒における)の回転モーメント、本文に示 す式(3.2.4)から式(3.2.7)によって算定された最大応答水平震度及び動液圧比を次表に 示す。

 回転モーメント
 応答水平震度
 動液圧
 動液圧比
 動液圧比
 小

 M
 Kh1
 N/mm2)
 0.38

 5.36E+10
 0.533
 0.067
 0.38

付表 14.3 最大浮き上がり変位発生時(78.8秒)の 最大応答水平震度及び動液圧比

(2) 3D シェルモデルの M-0線図を使用した3質点非線形ばね系モデルの時刻歴地震応答解 析結果

解析対象タンクとする旧法タンク No.3 について、3D シェルモデルの M-0 線図を 3 質 点モデルの非線形回転ばねの復元モーメント特性として使用し、A 地区の想定地震動の EW 波に対して、時刻歴地震応答解析を実施した。得られた当該タンク基部の回転ばねの 回転角度、浮き上がり変位及び回数を付表 14.4、結果の時刻歴出力を付図 14.8 から付図 14.11 に示す。

付表 14.4 3D シェルモデルの M-θ線図を使用した 3 質点モデルの

最大/最小	最大/最小	最大	
地震加速度	回転角度	浮き上がり変位	浮き上がり回数
(cm/s^2)	(rad)	(cm)	
672. 2/-767. 1	0. 012/-0. 017	76.7	40

付図 14.8 回転角度の時刻歴(3D シェルモデルの M-θ線図使用)

付図 14.9 浮き上がり変位の時刻歴 (3D シェルモデルの M-θ線図使用)

付図 14.10 回転ばねに発生した回転モーメントの時刻歴 (3D シェルモデルの M-θ線図使用)

付図 14.11 非線形回転ばねの復元モーメント特性線図 (3D シェルモデルの M-θ線図使用)

最大浮き上がり変位(76.7cm)発生時(78.7秒における)の回転モーメントを用いて、 本文に示す式(3.2.4)から式(3.2.7)によって算定された最大応答水平震度及び動液圧比 を次表に示す。

 回転モーメント
 応答水平震度
 動液圧

 M
 Kh.1
 Ph.1
 動液圧比

 (N. cm)
 0.78
 0.097
 0.55

付表 14.5 最大浮き上がり変位発生時(78.7秒)の 最大応答水平震度及び動液圧比

(3)3質点非線形ばね系モデルの解析結果の比較

2 ケースの 3 質点非線形ばね系モデルの時刻歴地震応答解析結果の比較を付表 14.6 と 付表 14.7 に示す。

付表 14.6 3 質点非線形ばね系モデルの地震応答解析結果の比較

М <i>— Ө</i>	密长结甲	回転	角度	質点M₀.(ネ	相対変 位)	質点 M.1.(オ	相対変 位)	質点 M.2.(オ	泪対変位)
線図	所们而 未	角度(rad)	時間(秒)	変位(cm)	時間(秒)	変位(cm)	時間(秒)	変位(cm)	時間(秒)
ウォル	最大値	0. 010	80. 2	13. 8	78.8	14. 6	78.8	37.4	77.8
正式化	最小値	-0. 018	78.8	-7.8	80. 2	-9. 1	80. 2	-32.6	72. 4
3D シェル	最大値	0.012	79. 1	12.6	78. 7	13.6	78. 7	37.3	77.8
モデル	最小値	-0.017	78. 7	-9.1	79. 1	-11.0	79. 1	-32.5	72. 4

付表 14.7 浮き上がり変位の算定結果の比較

M-θ線図	最大回転角度(rad)	最大浮き上がり変位(cm)
定式化	0. 018	81.2
3D シェルモデル	0. 017	76.7

(4) 照査比較検討

定式化による Q-Δ線図及び定式化による M-θ線図を使用した1質点非線形水平ばね 系モデルと3質点非線形ロッキングばね系モデルの解析結果の比較を付表14.8に示す。

付表 14.8 定式化による復元力・復元モーメント特性を用いた

1 質点と3 質点モデルの解析結果の比較

	1 質点非線形水平ばね系モデル	3 質点非線形ロッキングばね系モデル	
	(定式化によるQ−Δ線図使用)	(定式化による M-θ線図使用)	
最大浮き上がり変位	75 1	01.0	
δ _{u-max} (cm)	/0.1	81. Z	
最大浮き上がり変位	0.05	0.00	
発生時の動液圧比 α ^{_*1}	0.35	U. 38	

*1 消防法式で計算した動液圧比 α =0.38

タンク全体の 3D シェルの M-θ線図を用いた1質点非線形水平ばね系モデルと3質点 非線形ロッキングばね系モデルの解析結果の比較を付表14.9に示す。

付表 14.9 3D シェルモデルの M-θ線図を用いた

	1 質点非線形水平ばね系モデル	3 質点非線形ロッキングばね系モデル
	(定式化によるQ−Δ線図使用)	(定式化による M-θ線図使用)
最大浮き上がり変位	45.0	
δ _{u-max} (cm)	45.0	/6. /
最大浮き上がり変位	0.55	0.55
発生時の動液圧比 α ^{_*1}	0.55	0. 55

1 質点と3 質点モデルの解析結果の比較

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2 の算定式による応力-ひずみ線図

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2 の算定式で計算した旧 法タンク No.3 の側板(材料: HW50)及びアニュラ板(材料: SS41)と底板(材料: SM400C) の応力-ひずみ線図の数値を付表 15.1 と付表 15.2及び付図 15.1 に示す。

σ _{ys}	490	MPa				
σ_{uts}	610	MPa				
R	0.803279					
К	0. 32621					
m ₂	0. 118033					
A ₂	883. 334					
€ _p	2.00E-05					
E.ys	2.00E-03					
M .1	4. 80E-02					
A ₁	6. 62E+02					
E.y	205939.7	MPa				

付表 15.1 側板(材料:HW50)の応カーひずみ線図の計算値

$\sigma_{ m st}$	Н	ε.,	ε.2	$oldsymbol{\gamma}$.1	Y .2	€ .ts
490	-2	1.92E-03	6.79E-03	0. 001882083	0. 000122083	0.004383503
500	-1. 48908	2. 92E-03	8. 05E-03	0. 002777976	0. 000390025	0.005595896
520	-0. 46725	6.61E-03	1.12E-02	0. 004744693	0. 003166872	0.010436576
550	1. 06551	2. 13E-02	1.81E-02	0. 002255762	0.016144203	0.021070651
600	3. 620102	1.30E-01	3. 77E-02	9. 33161E-05	0. 037720572	0.040727362
650	6.174693	6.90E-01	7.44E-02	2.98867E-06	0. 074370384	0.077529636
700	8. 729285	3. 23E+00	1.39E-01	8. 45288E-08	0. 139340602	0. 14273974
750	11. 28388	1.36E+01	2. 50E-01	2.1491E-09	0. 249995839	0.253637684
800	13. 83847	5. 21E+01	4. 32E-01	4.97979E-11	0. 431915069	0. 435799701
850	16. 39306	1.84E+02	7. 22E-01	1.07438E-12	0. 721876619	0.726004041
900	18. 94765	6.06E+02	1. 17E+00	0	1.171585245	1.175955456

Stress Strain Curve

付表 15.2 アニュラ板(材料: SS41)と底板(材料: SM400C)

の応カーひずみ線図の計算値

Stress Strain Curve

σ _{ys}	245	MPa
$\sigma_{ ext{uts}}$	400	MPa
R	0. 6125	
К	0. 392399	
m ₂	0. 2325	
A ₂	708. 5004	
ε.,p	2.00E-05	
ε _{ys}	2. 00E-03	
M .1	1.07E-01	
A ₁	4. 77E+02	
E.y	205939. 7	MPa

σ. _t	Н	₁ . ع	ε. ₂	γ .1	γ2	ε _{ts}
245	-2	1.96E-03	1.04E-02	0.001925735	0. 000186808	0.003302212
270	-1. 17793	4.87E-03	1.58E-02	0. 004445078	0. 001366084	0.007122226
300	-0. 19144	1.30E-02	2. 48E-02	0. 007752831	0. 010061834	0.019271402
350	1. 452709	5.51E-02	4.82E-02	0. 002861343	0. 045662654	0.050223523
400	3.096857	1.92E-01	8.55E-02	0. 000391944	0. 08535765	0. 08769191
450	4. 741004	5.79E-01	1.42E-01	4. 41059E-05	0. 141940466	0. 144169678
500	6. 385152	1.55E+00	2. 23E-01	4. 41043E-06	0. 223328681	0. 225760986
550	8.029299	3.78E+00	3.36E-01	4. 01425E-07	0. 3364951	0. 339166186
600	9.673446	8.54E+00	4.89E-01	3. 38073E-08	0. 489226792	0. 4921403
650	11. 31759	1.80E+01	6.90E-01	2.66751E-09	0. 690279014	0. 69343528
700	12. 96174	3. 61E+01	9. 49E-01	1.99111E-10	0. 949409156	0. 95280821
800	16. 25004	1.26E+02	1.69E+00	9.64416E-13	1. 686091523	1. 689976155
900	19. 53833	3. 79E+02	2. 80E+00	0	2. 79828532	2.802655531

付図 15.1 応力-ひずみ特性

参考資料 16

旧法タンク No.3の動液圧の計算結果

付表 16.1 旧法タンク No.3 の動液圧計算用入力データ

D	45100 mm				
Н	18802 mm				
Kh ₁	0. 504				
u .3	1.68				
ρ	9.50E-07 kg/mm ²				

H/D	0. 416896				
分割	100				
ΔH	188.02 mm				
g	9.8 m/sec ²				
Z	9.01E+12 mm ³				

C00	C01	C02	C03	C04	C05
0. 782173	-0. 12951	0. 723741	-4. 12859	5. 558585	-2. 80014
C10	C12	C12	C13	C14	C15
0.716301	0. 23289	-0. 34748	-1. 52302	1.928093	-1. 00475

付図 16.1 側板の高さにおける動液圧の分布(旧法タンク No.3)

付表 16.2 旧法タンク No.3の動液圧計算結果

				P = 2D*Ph(z)*	π/4 より	
Z	Ph0(Z)	Ph1(Z)	Ph(Z)	Р	М	Q
(mm)	(N/mm2)	(N/mm2)	(N/mm2)	(N/mm)	(N.mm)	(N)
0.00	0.04108	0.02558	0.06665	4721.95	5.0051E+11	6.6342E+07
188.02	0.04101	0.02566	0.06667	4723.18	4.8812E+11	6.5454E+07
3/6.04	0.04095	0.025/4	0.06669	4/24.6/	4./590E+11	6.4566E+07
564.06	0.04090	0.02582	0.06672	4/26.30	4.6384E+11	6.36/8E+0/
/52.08	0.04085	0.02589	0.06676	4/2/.98	4.5195E+11	6.2/89E+0/
940.10	0.04080	0.02596	0.06679	4729.00	4.4023E+11	6.1900E+07
121614	0.04070	0.02002	0.00078	4731.09	4.2000E+11	6.0121E+07
1504 16	0.04072	0.02008	0.06681	4732.33	4.1723L+11	5 9231E+07
1692.18	0.04063	0.02619	0.06682	4733.89	3 9502E+11	5.8341E+07
1880.20	0.04059	0.02624	0.06682	4734.03	3 8413E+11	57451E+07
2068.22	0.04054	0.02628	0.06682	4733.66	3.7341E+11	5.6561E+07
2256.24	0.04049	0.02632	0.06681	4732.72	3.6286E+11	5.5671E+07
2444.26	0.04043	0.02635	0.06678	4731.16	3.5248E+11	5.4781E+07
2632.28	0.04038	0.02638	0.06675	4728.92	3.4226E+11	5.3892E+07
2820.30	0.04031	0.02640	0.06671	4725.97	3.3221E+11	5.3003E+07
3008.32	0.04025	0.02641	0.06666	4722.25	3.2233E+11	5.2115E+07
3196.34	0.04017	0.02642	0.06659	4717.72	3.1262E+11	5.1227E+07
3384.36	0.04010	0.02642	0.06652	4712.36	3.0307E+11	5.0341E+07
3572.38	0.04001	0.02642	0.06643	4706.13	2.9369E+11	4.9455E+07
3760.40	0.03992	0.02641	0.06633	4699.00	2.8447E+11	4.8571E+07
3948.42	0.03982	0.02639	0.06622	4690.95	2./542E+11	4./688E+0/
4136.44	0.03972	0.02637	0.06609	4681.96	2.6654E+11	4.6807E+07
4324.40	0.03961	0.02634	0.06595	4671.99	2.5/82E+11	4.5928E+07
4312.48	0.03949	0.02031	0.06563	4001.03	2.492/E+11	4.3030E+07
4700.50	0.03930	0.02027	0.00503	4045.11	2.4000L+11	4.4173L+07
5076 54	0.03922	0.02022	0.00544	4622.21	2.3200E+11	4.3302E+07
5264 56	0.03893	0.02610	0.06503	4607.22	21670F+11	4 1564F+07
5452.58	0.03877	0.02603	0.06481	4591.20	2.0897E+11	4.0699E+07
5640.60	0.03861	0.02596	0.06457	4574.16	2.0139E+11	3.9838E+07
5828.62	0.03844	0.02588	0.06431	4556.07	1.9398E+11	3.8979E+07
6016.64	0.03825	0.02579	0.06404	4536.95	1.8674E+11	3.8125E+07
6204.66	0.03806	0.02569	0.06376	4516.80	1.7965E+11	3.7273E+07
6392.68	0.03787	0.02559	0.06346	4495.61	1.7272E+11	3.6426E+07
6580.70	0.03766	0.02548	0.06315	4473.40	1.6595E+11	3.5583E+07
6768.72	0.03745	0.02537	0.06282	4450.15	1.5934E+11	3.4744E+07
6956.74	0.03/23	0.02524	0.06247	4425.89	1.5288E+11	3.3910E+07
/144./6	0.03700	0.02511	0.06212	4400.61	1.4659E+11	3.3080E+07
7520.90	0.03677	0.02498	0.06175	43/4.32	1.4044E+11	3.2255E+07
7520.80	0.03033	0.02463	0.00130	4347.02	1.3440E+11 1.2962E+11	3.1435E+07
7896.84	0.03602	0.02408	0.06055	4318.72	1.2002L+11	2 9811E+07
8084 86	0.03576	0.02436	0.06012	4259.14	1 1741F+11	2 9007E+07
8272.88	0.03549	0.02419	0.05968	4227.88	1 1203E+11	2 8210F+07
8460.90	0.03521	0.02401	0.05922	4195.63	1.0680E+11	2.7418E+07
8648.92	0.03493	0.02383	0.05876	4162.41	1.0172E+11	2.6632E+07
8836.94	0.03464	0.02364	0.05827	4128.21	9.6789E+10	2.5853E+07
9024.96	0.03434	0.02344	0.05778	4093.05	9.2001E+10	2.5080E+07
9212.98	0.03403	0.02323	0.05727	4056.91	8.7357E+10	2.4314E+07
9401.00	0.03372	0.02302	0.05674	4019.80	8.2857E+10	2.3554E+07
9589.02	0.03341	0.02280	0.05620	3981.72	7.8499E+10	2.2802E+07
9777.04	0.03308	0.02257	0.05565	3942.66	7.4282E+10	2.2057E+07
9965.06	0.03275	0.02234	0.05509	3902.61	7.0204E+10	2.1320E+07
10153.08	0.03241	0.02209	0.05451	3801.58	0.0204E+10	2.0590E+07
10541.10	0.03207	0.02165	0.05392	2776.40	0.2401E+10	1.9000E+07
1071714	0.03172	0.02139	0.05331	3732 12	5.5752E+10	184476+07
10905 16	0.03100	0.02102	0 05205	3687.30	5 1855F+10	17750F+07
11093 18	0.03062	0.02077	0.05140	3641 12	4.8582F+10	1.7061F+07
11281.20	0.03024	0.02049	0.05073	3593.85	4.5438E+10	1.6381E+07
11469.22	0.02985	0.02019	0.05005	3545.47	4.2421E+10	1.5710E+07
11657.24	0.02946	0.01989	0.04935	3495.95	3.9530E+10	1.5048E+07
11845.26	0.02905	0.01958	0.04863	3445.25	3.6762E+10	1.4395E+07
12033.28	0.02864	0.01926	0.04790	3393.35	3.4116E+10	1.3752E+07
12221.30	0.02822	0.01893	0.04715	3340.20	3.1590E+10	1.3119E+07
12409.32	0.02778	0.01860	0.04638	3285.76	2.9181E+10	1.2496E+07

	12597.34	0.02734	0.01825	0.04559	3229.99	2.6889E+10	1.1884E+07
	12785.36	0.02689	0.01790	0.04479	3172.82	2.4712E+10	1.1282E+07
	12973.38	0.02642	0.01754	0.04396	3114.21	2.2646E+10	1.0691E+07
	13161.40	0.02594	0.01717	0.04311	3054.09	2.0690E+10	1.0111E+07
	13349.42	0.02545	0.01679	0.04224	2992.41	1.8843E+10	9.5425E+06
	13537.44	0.02495	0.01640	0.04135	2929.08	1.7101E+10	8.9858E+06
	13725.46	0.02443	0.01599	0.04043	2864.05	1.5463E+10	8.4412E+06
	13913.48	0.02390	0.01558	0.03948	2797.22	1.3926E+10	7.9090E+06
	14101.50	0.02335	0.01516	0.03851	2728.51	1.2487E+10	7.3895E+06
	14289.52	0.02279	0.01473	0.03752	2657.84	1.1146E+10	6.8832E+06
	14477.54	0.02220	0.01429	0.03649	2585.11	9.8977E+09	6.3903E+06
	14665.56	0.02160	0.01383	0.03543	2510.21	8.7413E+09	5.9113E+06
	14853.58	0.02098	0.01337	0.03434	2433.04	7.6735E+09	5.4466E+06
	15041.60	0.02033	0.01289	0.03322	2353.49	6.6917E+09	4.9966E+06
	15229.62	0.01966	0.01240	0.03206	2271.44	5.7932E+09	4.5618E+06
	15417.64	0.01897	0.01190	0.03087	2186.76	4.9749E+09	4.1427E+06
	15605.66	0.01825	0.01138	0.02963	2099.32	4.2338E+09	3.7397E+06
	15793.68	0.01751	0.01085	0.02836	2008.99	3.5670E+09	3.3535E+06
	15981.70	0.01674	0.01030	0.02704	1915.61	2.9712E+09	2.9846E+06
	16169.72	0.01593	0.00974	0.02568	1819.03	2.4430E+09	2.6335E+06
	16357.74	0.01510	0.00917	0.02427	1719.10	1.9791E+09	2.3009E+06
	16545.76	0.01423	0.00858	0.02281	1615.65	1.5760E+09	1.9874E+06
	16733.78	0.01332	0.00797	0.02129	1508.51	1.2299E+09	1.6936E+06
	16921.80	0.01237	0.00735	0.01973	1397.49	9.3719E+08	1.4205E+06
	17109.82	0.01139	0.00671	0.01810	1282.40	6.9380E+08	1.1685E+06
	17297.84	0.01036	0.00605	0.01642	1163.05	4.9570E+08	9.3862E+05
	17485.86	0.00929	0.00538	0.01467	1039.24	3.3869E+08	7.3159E+05
	17673.88	0.00817	0.00468	0.01286	910.74	2.1837E+08	5.4827E+05
	17861.90	0.00700	0.00397	0.01097	777.34	1.3020E+08	3.8957E+05
	18049.92	0.00578	0.00323	0.00902	638.81	6.9470E+07	2.5644E+05
	18237.94	0.00451	0.00248	0.00699	494.90	3.1274E+07	1.4986E+05
	18425.96	0.00318	0.00170	0.00488	345.38	1.0523E+07	7.0866E+04
	18613.98	0.00178	0.00090	0.00268	189.99	1.9305E+06	2.0535E+04
L	18802.00	0.00033	0.00007	0.00040	28.45	0.0000E+00	0.0000E+00

第3章 基礎・地盤の耐震安全性の解析

1 基礎・地盤の耐震安全性の解析条件の設定

1.1 基礎・地盤の耐震安全性の解析の流れ

南海トラフ地震に対する屋外貯蔵タンク直下の基礎・地盤の耐震安全性を、図1.1.1のとおり解析する。

図1.1.1 南海トラフ地震に対する基礎・地盤の耐震安全性の解析の流れ

1.2 解析対象地区の選定

解析対象地区は、検討目的である「屋外貯蔵タンク本体直下の地盤改良効果とその周辺地盤の影響を 確認する」ために適した地区を選定する。地区の選定の条件としては、南海トラフ巨大地震によって、 大きな揺れ(計測震度 6.4 以上)が想定されている地区であることとする。そのうち、西日本の代表的 な特防区域 5 地区を候補に挙げたうえ、対象とする 2 地区を選定した。

なお、2地区の選定においては以下の3項目を考慮しながら総合的に判断した。

- 砂層の有無:地盤変形の可能性が高いか。
- 解析精度:既存資料により解析精度が担保できるか。
- 液状化対策効果:地盤改良の実施状況を確認できるか

上記により総合的に判断した結果、地盤変形の可能性が高い3地区(B、C、E地区)のうち、サンドコンパクションパイル(SCP)工法及び浸透固化処理工法を実施している地区のうち、計測震度が大きいB地区と、動圧密工法を実施しているE地区を解析対象地区とした。 候補となった5地区の項目の比較を表1.2.1に示す。

	A地区	B地区	C地区	D地区	E地区
想定震度階 (計測震度)	7 (6.8)	7 (6.8)	7 (6.5)	6強 (6.4)	6強 (6.4)
液状化可能性 (N値≦15程度の砂・ 砂礫層で高い)	低い N値> 20の砂 礫層が続く	高い N値 <10の砂 と粘土の互層	高い N値4~20の 砂礫層(含む 埋土)	中くらい N値0~30の シルト層に砂 層挟在	高い N値3~30の 砂・砂礫層
解析精度 (既存資料)	非常に良い	良い	良い	良い	非常に良い
地盤改良 (既存資料)	_	サント、コンパ。クション 注入固化 改良後N値	サント、コンパ。クション 一部調査中 改良後N値	バイブロ コンポーザー 改良後N値	動圧密 改良後N値
二次元動的解析の 対象とする地区	-	対象	-	-	対象

表 1.2.1 特防区域の計測震度・地盤状況等の比較

1.3 解析対象地区の地層構成概要

選定した解析対象地区の地層について概要を示す。

1.3.1 B地区

B地区における地質層序表を表 1.3.1 に示す。B地区は、表層に埋土層が薄く分布しており、その下位 は完新世の粘性土層と砂質土層が互層状に分布している。完新世の粘性土は比較的軟らかく、砂質土層は 緩い~中位の締まり具合である。これらの地層の下位は、岩盤が風化した礫質土が堆積し、その下位に工 学的基盤と考えうる泥岩・砂岩が分布する。このような堆積状況において、地盤の変形が懸念される層は、 埋土層・第一砂質土層・第二砂質土層及び第三砂質土層である。

地質時代		地層名		構成	N値		
現世			埋土層	玉石混り砂礫・砂礫	7~17		
新生代		完新世	沖積層	第一粘性土層	砂質シルト	3~5	
	第四紀			第一砂質土層	シルト質砂	3~7	
				第二粘性土層	砂質シルト	1~6	
				第二砂質土層	シルト質砂・細砂・中砂	6 ~ 13	
					第三粘性土層	砂質シルト	2~4
					第三砂質土層	シルト質砂	4~7
				第四粘性土層	粘土質シルト・シルト質粘土	2 ~ 5	
		更新世	洪積層	礫質土層	砂礫	38~ 50以上	
	第三紀	中新世		岩盤層	泥岩·砂岩	50以上	

表1.3.1 B地区における地質層序表

1.3.2 E地区

E地区における地質層序表を表 1.3.2 に示す。E地区は、表層に盛土層が分布しており、その下位は完 新世の砂質土層と礫質土層が互層状に分布している。完新世の砂質土層は比較的緩い締まり具合であり、 礫質土層においても締まり具合が中位程度である。これらの地層の下位は、更新世の締まった礫質土層が 堆積し、その下位に工学的基盤と考えうる泥岩・砂岩・頁岩が分布する。このような堆積状況において、地 盤の変形が懸念される層は、盛土層・第一砂質土層および第二砂質土層である。

地質時代		地層名		構成	N値	
現世			盛土層	玉石混り砂礫・礫混り中砂 シルト混り細砂	3~6	
新生代	第	完新世	沖積層	第一砂質土層	細砂	12~14
				礫質土層	砂礫	21~31
	四紀			第二砂質土層	シルト質細砂・粗砂	7 ~ 20
		更 新 世	洪積層	礫質土層	砂礫・玉石混り砂礫・玉石	50以上
	第 中 尾鷲 三 新 屠群 紀 世		尾鷲 層群	基盤層	泥岩·泥質砂岩·頁岩	50以上

表1.3.2 E地区における地質層序表

1.4 屋外貯蔵タンク本体の選定

解析に用いる屋外貯蔵タンク本体については、その大きさや高さによって地盤に対する影響や地盤の変 状に伴う屋外貯蔵タンク本体の変状にも影響を及ぼすため、慎重に設定を行う必要がある。

質点系モデルによる南海トラフ地震における屋外貯蔵タンク本体の浮き上がり変位解析において、代表 的なタンクモデルとして表1.4.1に示す5基を設定している。

タンク 番号	内容物	貯蔵内径 (m)	容量 (KL)
旧法No.1		15.5	2500
旧法No.2	重油/原油	29.0	7500
旧法No.3	相当	45.1	30000
旧法No.4	比重:0.95	69.8	75000
旧法No.5		83.1	100000

表1.4.1 浮き上がり変位解析で設定したタンクの諸元一覧

解析断面に載荷させる屋外貯蔵タンク本体の選定においては以下の2項目を考慮しながら総合的に判断 した。

○ 重量が重く地盤変形が生じた場合の影響が大きいと考えられること

○ 万が一事故が発生した場合の影響が大きいと考えられること 上記により判断した結果、旧法No. 5 (公称容量:10万KL)を選定した。 旧法No. 5の屋外貯蔵タンク本体の詳細な諸元を表1.4.2に示す。

表 1.4.2 旧注	まNo.5の屋外貯	蔵タンク本体の)諸元一覧	(SI 単位)
------------	-----------	---------	-------	---------

<u> 質点系モデルによる側板下端の浮き上</u>	元	(赤字:入力値)	
[諸元]			
公称容量	VOL (kl)	100000	(kl)
貯槽内径	D	83100	(mm)
側板高さ	Hmax	19985	(mm)
最下段側板厚	t _s	33	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	25	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SPV450Q)	E	205939.7	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σγ	450	(N/mm2)
最高液高さ	Н	18447	(mm)
液密度	r	9.50E-07	(kg/mm3)
直径/液高さ比	D/H	4.50	(-)
液高さ/直径比	H/D	0.22	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2$	$+2.0933(\frac{H}{D})-0.1172$	0.26	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2$	$\frac{H}{D} = -0.1634$	0.25	(-)
消防法/有効液の重心高さ係数 f _{ho}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2$	0.40	(-)	
消防法/有効液の重心高さ係数 f _{h1}		0.10	
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2$	0.38	(-)	
底板に作用する最大静液圧			
P ₀ =gγH	0.17	(N/mm2)	

タンク本体重量(赤字:入力値)

側板重量	Ws0	7.79E+03	(KN)
側板付属品重量	Ws1	1.18E+03	(KN)
浮き屋根重量	Wr0	2.65E+03	(KN)
浮き屋根付属品重量	Wr1	6.58E+02	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.23E+07	(N)

1.5 屋外タンク貯蔵所の基礎の選定

屋外タンク貯蔵所の基礎の施工実績では、盛り土基礎が最も多く、リング基礎を検討に加えることによ り、ほとんどの屋外タンク貯蔵所の基礎を網羅できると考えられる。今回の解析においてはB地区につい てリング基礎を、E地区の解析においては盛り土基礎を設定する。一般的な盛り土基礎及びリング基礎の 概要を図1.5.1に示す。

図1.5.1 屋外タンク貯蔵所の基礎の概要

上記により設定した解析断面図を図1.5.2~1.5.5に示す。

図1.5.3 B地区の解析用断面図(地盤改良範囲の拡大図)

図1.5.5 E地区の解析用断面図(地盤改良範囲の拡大図)

1.6 解析条件の設定

以下のような流れで、地盤及び構造物(基礎及び屋外貯蔵タンク本体)の解析を行う。 解析で入力する地震動は、南海トラフ地震の想定地震動とする。

動的変形解析は、3次元非線形有効応力解析を実施することが望ましいが、現状では3次元非線形有効応 力解析の実績はまだ少ないため、より使用実績の多い断面2次元非線形有効応力解析で実施するものとす る。

断面2次元非線形有効応力解析によって、地盤の変形の評価を行うとともに、変形の発生が想定される場合は、屋外貯蔵タンク本体の沈下量や変形角及び過剰間隙水圧比の経時変化の評価を行う。

上記の評価を行うために、加振後(動的解析後)の排水解析が可能であり、過剰間隙水圧の消散に伴う圧密 解析が可能なプログラムが必要であり、これらの条件を満足するプログラムである、『Computer Program for Liquefaction Analysis(以下「LIQCA」という。)』を使用して解析を行う。断面2次元非線形有効 応力解析の流れを図1.6.1に示す。

図 1.6.1 断面 2 次元解析の流れ
以下に『LIQCA』の概要について説明する。

『LIQCA』は、固体力学に基づく土の骨格と間隙水圧の連成問題の支配方程式を解く数値解析コードである。この連成問題は、固相と液層の二相からなる飽和多孔質体を扱ったBiotの理論より導かれる。Biotの式には、未知数の取り方や近似の方法により、様々な定式化がなされているが、『LIQCA』では、固相の変位u、液相の間隙水圧pを未知数としたu-p定式化を用いている。支配方程式の離散化は、力のつりあい式の空間的な離散化には有限要素法、連続式の間隙水圧の項の空間的な離散化には直交格子に対する有限差分を拡張した有限体積法を用いている。また、時間離散化には陰解法であるNewmarkのβ法を用い、減衰にはRayleigh減衰が用いられている。

定式化には以下のことが仮定されている。

- 1) ひずみは微少ひずみ
- 2) 間隙率、液相(間隙水)の密度、透水係数の空間に対する勾配は十分小さい
- 3) 液相の固相に対する相対加速度は、固相の加速度に比べて十分に小さい
- 4) 土粒子は非圧縮性である
- 5) 温度変化は無視する

なお、『LIQCA』では動解後の排水解析が可能であり、過剰間隙水圧の消散に伴う圧密解析を行う ことができる。

以下に、『LIQCA』中で使用する構成式および各条件について概要を示す。

- (1) 動的解析に用いられる土の構成式
 - 1) 0kaら(1999)の砂の繰返し弾塑性モデル
 - 2) 修正 Ramberg-Osgood (RO) モデル
 - 3) 弾性モデル
 - 4) 繰返し弾粘塑性モデル(2011年度版より配布開始、2次元のみ適用)
- (2) 要素

取り扱っている要素は、平面要素、ジョイント要素、ビーム要素(タイロッドは曲げ剛性を非常に小さ くすることで表現)、付加質量

- (3) 境界条件
 - 変位境界、等変位境界、粘性境界、排水境界 (底面境界は剛基盤(E+F)および弾性基盤(2E)の設定が可能)
- (4) 入力動条件

sin 波、地震波(水平、鉛直の同時入力が可能)、表面力

(5) 計算条件

計算条件の設定について、表1.6.1に示す。

条件項目	条件内容
バージョン	LIQCA2D12 (2012 公開版)
地盤モデル	液状化層:砂の弾塑性繰返しモデル 非液状化層:修正 R−O モデル
解析領域	150m の領域
境界条件	底面:粘性境界(дV _s ,Vp) 側方:疑似自由地盤(1500m)の同一深度等変位境界とする
レーレー減衰	1次元線形地盤の第1次固有振動モードに対して、小さな減衰定数 (1.0%)を与えるように設定 α ₆ =0.0, α ₄ =0.002
Newmark の <i>β</i> 去	β=0.3025, γ=0.6
解析時間間隔	ΔT=0.002(入力地震波の時間間隔 0.02 秒の 1/10)
解析ステップ	初期応力:地盤の自重による初期応力解析 動的解析:地震応答解析 圧密排水解析:加振終了後に圧密解析

表 1.6.1 計算条件の設定

(6) 境界条件

解析モデルの底面及び左右側面に用いる境界条件は、初期自重解析及び地震応答解析に対してそれ ぞれ、表 1.6.2 に示す通り設定する。

位置	初期自重解析	地震時応答解析
底面境界	XY 固定境界	粘性境界
左右側方境界	鉛直ローラー	疑似自由地盤境界

表 1.6.2 境界条件の設定

LIQCA2D マニュアル資料より抜粋

1.7 解析対象地区における物性値の設定

1.7.1 B地区

B地区において設定した物性値を表1.7.1に示す。

物性値については、関係団体から提供された屋外タンク貯蔵所に係る地盤調査資料等のデータにおいて B地区における既往の室内土質試験結果が存在する場合はその結果を用いるとともに、既往調査資料や各 種文献などのデータも参考にしながら設定した。

【地下水位】

地下水位は、季節や時間によって変動するものであるが、解析においてはその設定が重要となってくる。 B地区では、ボーリング調査結果の孔内水位よりGL-2mに設定した。よって、FL法などの簡易法におい ては、表層の埋土層は解析対象外となり、その下位の砂質土層から解析対象となる。

【地盤改良】

B地区の地盤は、地表から粘性土層と砂層が互層状になっており、埋土層と第一砂質土~第三砂質土層 が対象層と考えられる。当該地に関しては、液状化対策の地盤改良としてサンドコンパクションパイル (SCP)工法が施工されている。加えて、第二砂質土層を対象として浸透固化処理工法による地盤改良も施 工されている(図1.7.1参照)。

地盤改良後の地盤情報としては、チェックボーリングのデータが存在しており、サンドコンパクション パイル打設前後のN値を比較することができる。地盤改良前後の実測N値及びN値から推定したS波速度 を比較して表 1.7.5 に示す。地盤改良前後のN値から推定されるS波速度(道路橋示方書V耐震設計編 (2012 年)により推定。以下「推定S波」という。)は、粘性土層で 1.0~1.1 倍程度、砂質土層で 1.1~ 1.4 倍程度となった。

また、第二砂質土層の浸透固化処理工法による地盤改良の効果については、土木学会論文などの報告を 考慮して、S波速度で+20m/s程度の増加を見込み、200m/sとした。

さらに、サンドコンパクションパイル(SCP)工法による一般的な地盤改良率は、およそ8%~15%程度であるが、その部分だけの物性値が変わるというわけではない。よって、本解析のモデル化においては、 屋外貯蔵タンク本体の直下及びその周辺10mの範囲において、改良地盤は一様に平均化した物性値を設定した。サンドコンパクションパイル(SCP)工法による地盤改良については、「地盤改良効果の予測と実際」 (地盤工学会)より表1.7.1の提案式が示されている。

チェックボーリングから設定した剛性(G_0)と、表 1.7.6 に示す条件の砂杭を設定し、表 1.7.1 に示す ①式により平均化して剛性(G_0)と比較することで妥当性を検証した。

検証結果を図 1.7.2 に示す。設定したS波速度から求めた値と、地盤の改良率を設定して求めた値が、 ほぼ一致した値であることから、一様に設定した剛性は妥当と考えらえる。

図 3 液状化対策工事の概念図

図1.7.1 В地区の地盤改良工事の概念図

表 1.7.1 SCP 工法による改良地盤の k_h (横方向地盤反力係数)

(1) $k_b = a_b \cdot k_c + (1 - a_b) \cdot k_c$
(2) $k_h = k_{h,h} \cdot D^{-1/4} \cdot y^{-1/2}$ (3.13)
③ h=0.15 N(置換率70%程度の高置換率の場合、(×9.8 MN/m ³))… (3.14)
ここに b. の真術数の描方向抽動反力係数 (MNI/m ³)
6 b ・ 砂枯 お上 形 計開 数 性 + の 構 方向 地 整 反 力 保 数 (MN/m ³)
a、留地率
D: 抗径 (cm)
y: 変位 (cm), 一般に常時で1cm, 地撃時で1.5cm
k.: 比 k 値 (径 1 cm の杭が. 1 cm 変位したときの値)(×9.8 MN/m ³)
$k_{ua} = 6, 6, a, +5, 1 (1 - a_s) \cdot q_u \cdots (3.15)$
q.: 杭間粘性土の一軸圧縮強度(×9.8 MN/m ²)
N:改良地盤のN値で、例えば以下のように求める。
$N = (\phi_n - 20)^2 / 12$
$\phi_n = \tan^{-1} \left(\mu_s \cdot a_s \cdot \tan \phi_s \right)$
μ,:応力集中係数
$\mu_{s} = n / \{1 + (n-1) \cdot a_{s}\}$
n:応力分損比
である。

「地盤改良効果の予測と実際」(地盤工学会) P163 より抜粋

【基礎部分】

屋外タンク貯蔵所の基礎部分の砕石及び浸透固化処理範囲(第二砂質土)の物性値については、表 1.7.4 に示す。

【屋外貯蔵タンク本体部分】

屋外貯蔵タンク本体部分の物性値については、表 1.4.2 から単位面積当たりの重量を算出し、液面高を 考慮したうえで、各メッシュに重量を割り当て、地盤に対して十分に大きな剛性を与えて設定した。

【繰返し応力振幅比】

図 1.7.3 に地盤改良前後の繰返し応力振幅比を示す。縦軸の $\sigma_d/2\sigma_0$ 'は室内土質試験結果における 繰返し応力振幅比(R)を表わしており、せん断応力(τ)を有効拘束圧(σ_0 ')で除した(正規化) もの(R= τ/σ_0 ')をいう。ここで、せん断応力(τ)と、繰返し軸差応力の片振幅(σ_d)の関係は、 $\tau = \sigma_d/2$ であるため、R= $\sigma_d/2\sigma_0$ 'となる。この図では、N値より道路橋示方書(2002)に従って算出し たものを青塗、赤の白抜きは周辺の繰返し非排水三軸試験(DA=5%)の値を示す。この二つの値を参考 に、解析モデルとしてフィッティングさせた関係が黒線である。繰返し応力振幅比についても、地盤改良 後のN値を用いて地盤改良効果を見込んだ設定を行う。

【解析地盤メッシュ】

図 1.5.2 に示した断面図から、解析を実施するのに必要となるメッシュ図を作成した。解析地盤メッシュ図を図 1.7.1 に示す。

以上のように、解析モデルを設定した。

解析モデルの設定に際し、地盤改良の効果を表わす各パラメータについては、表 1.7.2 に示すとおりである。

1	σ.d./2 σ.o.'	繰返し応力振幅比	N値より改良による効果分を設定 Δ _u (間隙水圧)より効果分を把握
2	G. ₀	剛性	S波速度より改良による効果分を設定
3	φ	内部摩擦角	変更なし
4	С	粘着力	第二砂質土の浸透固化処理に対して、50kN/m ² を 改良による効果分として設定

表 1.7.2 地盤改良の効果を表す各パラメータ

深度 (m)	土層	平均 N値 改良前⇒後	湿潤 密度 ρt(g/cm3)	間隙比 e	細粒分 含有率 Fc	内部 摩擦角 ѻ'(°)	S波速度 Vs(m/sec) 改良前⇒後
0.8	埋土	10⇒10	1.65	1.53	96	40	190⇒190
2.0	(第一)粘性土	7⇒7	1.65	1.53	96	30	190⇒190
4.0	(第一)砂質土	5⇒11	1.80	0.9	22	35	130⇒180
5.0	(第二)粘性土	4⇒5	1.74	1.56	97	30	160⇒170
7.0	(第二)砂質土 【浸透固化処理】	6⇒11	1.80	0.9	34	35	150⇒200 (180+20)
10.0	(第三)粘性土	3⇒4	1.73	1.27	94	30	150⇒160
12.0	(第三)砂質土	6⇒8	1.80	0.9	34	35	150⇒160
] 22.7	(第四)粘性土	3	1.73	1.27	94	30	140
24.2	礫質土	38	1.90	0.6	6	40	340
_	岩盤	50以上	2.00	_設定	した工学	的基盤面	350

赤字:既往資料等により設定した物性値

表 1.7.4 砕石及び浸透固化処理改良後の物性値

	湿潤密度	粘着力	せん断抵抗角	S 波速度
	$ ho_{t}$ (g/cm3)	c(kN/m2)	ϕ (°)	V_{s} (m/s)
砕石	2.0	20	35	300
第二砂質土				
(浸透固化処理	1.8	50	35	200
部分)				

表1.7.5 B地区における地盤改良前後のN値とS波速度の比較

十層	実測	N値	N値から求め (m	かたS波速度 /s)	S波速度の比
	改良前	改良後	改良前	改良後	地盤改良後/地盤改良前
第一粘性土	7	7	191	191	1.0
第一砂層	5	11	132	179	1.4
第二粘性土	4	5	162	167	1.0
第二砂層	6	11	149	178	1.2
第三粘性土	3	4	145	162	1.1
第三砂層	6	8	149	160	1.1
第四粘性土	3	3	140	140	1.0

表1.7.6 砂杭本体の土質定数

φ	30°
С	0
目標N値	15

図1.7.2 B地区の複合地盤(地盤改良後粘性土)の剛性比較

図 1.7.3 要素シミュレーション結果

1.7.2 E地区

E地区において設定した地盤モデルについて表 1.7.8 に示す。

物性値については、関係団体から提供された屋外タンク貯蔵所に係る地盤調査資料等のデータにおいて E地区における既往の室内土質試験結果が存在する場合はその結果を用いるとともに、既往調査資料や各 種文献などのデータも参考にしながら設定した。

【地下水位】

地下水位は、季節や時間によって変動するものであるが、解析においてはその設定が重要となってく る。

E地区では、ボーリング調査結果の孔内水位よりGL-3mに設定した。よって、地下水位以下の基盤となる礫質土までが解析対象となる。

なお、E地区の地盤は、地表から砂層と礫層が互層状になっており、盛土層と第一砂質土・第二砂 質土層が解析対象層と考えられる。

【地盤改良】

E地区の地盤は、液状化対策の地盤改良として動圧密工法が施工されている。B地区と同様に地盤 改良前後の実測N値を比較して表1.7.9に示す。地盤改良前後のN値から推定したS波速度(推定S 波)の倍率を土質区分毎に求めたところ、1.2~1.4倍程度となった。

ここで、B地区と同様の手法により推定S波から解析定数を設定することも可能であるが、E地区 ではPS検層が実施されており、地盤改良前のS波速度が把握(検層S波)されている。この推定S 波と検層S波は、概ね一致しているが、図1.7.5に示したように推定S波は一定のバラつきのある値 であり、一般的には検層S波は精度が良いとされている。本検討では、地盤改良効果を把握できるの はN値のみであったため、推定S波よりS波速度の変化を把握したうえで、より精度の高い検層S波 に乗ずることで地盤改良後の定数を設定した。

なお、E地区については、粘性土層が存在しないため複合地盤の考え方からは除外される。また、液状化 対策として動圧密工法を採用しているため、均質に施工されている想定のもとN値から推定したS波速度 より剛性(G₀)を屋外貯蔵タンク本体の直下及びその周辺10mの範囲に設定した。

【基礎部分】

解析において土構造物として設定する盛り土基礎部分については、十分に締め固められて施工されていると考えられることから、施工管理の条件などを確認の上、基礎部分の設定を行う。

【屋外貯蔵タンク本体部分】

屋外貯蔵タンク本体部分の物性値については、表 1.4.2 から単位面積当たりの重量を算出し、液面高を 考慮したうえで、各メッシュに重量を割り当て、地盤に対して十分に大きな剛性を与えて設定した。 【繰返し応力振幅比】

図1.7.6に地盤改良前後の繰返し応力振幅比を示す。縦軸の $\sigma_d/2\sigma_0$ 'は室内土質試験結果における繰返し応力振幅比(R)を表わしており、せん断応力(τ)を有効拘束圧(σ_0 ')で除した(正規化)もの(R= τ/σ_0 ')をいう。ここで、せん断応力(τ)と、繰返し軸差応力の片振幅(σ_d)の関係は、 $\tau = \sigma_d/2$ であるため、R= $\sigma_d/2\sigma_0$ 'となる。この図では、N値より道路橋示方書(2002)に従って算出したものを青塗、赤の白抜きは周辺の繰返し非排水三軸試験(DA=5%)の値を示す。この二つの値を参考に、解析モデルとしてフィッティングさせた関係が黒線である。繰返し応力振幅比についても、地盤改良後のN値を用いて地盤改良効果を見込んだ設定を行う。

【解析地盤メッシュ】

図 1.5.4 に示した断面図から、解析を実施するのに必要となるメッシュ図を作成した。解析地盤メッシュ図を図 1.7.7 に示す。

以上のように、解析モデルを設定した。

解析モデルの設定に際し、地盤改良の効果を表わす各パラメータについては、表 1.7.7 に示すとおりで ある。

1	$\sigma_{\rm od}/2$	繰返し応力振幅比	N値より改良による効果分を設定 Δu(間隙水圧)より効果分を把握						
2	G. ₀	剛性	S 波速度より改良による効果分を設定						
3	φ	内部摩擦角	変更なし						
4	С	粘着力	変更なし						

表1.7.7 地盤改良の効果を表す各パラメータ

表1.7.8 E地区の物性値一覧表(地盤改良後の値を含む)

		深度 (m)	土層	平均 N値 改良前⇒後	湿潤 密度 ρt(g/cm3)	間隙比 e	細粒分 含有率 Fc	内部 摩擦角 φ′(゜)	S波速度 Vs(m/sec) _{改良前} ⇒後
		3.5	盛土 (礫・砂) B	10⇒29	1.90	0.6	11	40	180⇒260
	\mathbf{n}	4.7	砂質土 As1	12⇒21	1.88	0.9	16	34	220⇒260
		10.0	礫質土 Ag	20⇒33	2.10	0.6	8	40	220⇒260
		14.5	砂質土 As2	12⇒21	1.80	0.9	30	35	190⇒230
0.0.0	_	18.4	砂質土 As2下部	12⇒21	1.94	1.27	20	36	190⇒230
						Ē	没定したユ	学的基理	路面
			礫質土	50	2.00	_	_	_	380

赤字:既往資料等により設定した物性値

表1.7.9 E地区における地盤改良前後のN値とS波速度の比較

土層	実測N値	直の平均	N値から求めた		S 波速度の比	PS 検層による	
			S波速度(m/s)		地盤改良後/地盤改良前	S波速度(m/s)	
	改良前	改良後	改良前	改良後	k	改良前	改良後 ※
盛土	10	29	170	246	1. 4	180	260
礫質土	20	33	218	257	1. 2	220	260
砂質土	12	21	182	219	1. 2	190	230
粘性土	5	8	171	203	1. 2	190	230

※改良前S波速度×k

図 1.7.5 Vs-N値関係(計測値と経験式)の例

図 1.7.6 要素シミュレーション結果

図1.7.7 解析メッシュ図(E地区)

1.8 工学的基盤面の加速度波形

解析対象地区で採用する工学的基盤面における加速度波形を図1.8.1に示す。

図1.8.1 工学的基盤面における加速度波形(上: B地区、下: E地区)

2 基礎・地盤の耐震安全性の解析結果

2.1 静的自重解析

前述の解析条件における初期応力状態の解析結果を図 2.1.1 及び図 2.1.2 に示す。

(1) B地区

(2) E地区

2.2 動的変形解析

前述の解析条件における動的解析による解析結果を図 2.2.1~2.2.8 に示す。

B地区では、最終的に屋外貯蔵タンク本体の直下で27.7cm 沈下し、その周辺の未改良地盤では 12.7cm 沈下することが予測された。南海トラフの想定地震動が大きいため、屋外貯蔵タンク本体の直下 の地盤の変形がやや大きい結果となっている。なお、過剰間隙水圧は、各砂層で上昇が激しい結果とな っているが、粘性土層に挟まれていること、各層の層厚が厚くないことから、屋外貯蔵タンク本体に大 きな影響を与えるほどの変形とはなっていない。

一方、E地区では、最終的に屋外貯蔵タンク本体の直下で8.9cm 沈下し、その周辺の未改良地盤では、13cm 程度沈下することが予測された。その差は5 cm 程度あるが、未改良地盤の変形に引きずられる格好で、改良地盤も変形しているが、タンク周辺10mの改良地帯が緩衝帯として働くことで、地盤が若干外側には変形するが、改良地盤が一定の沈下となり、屋外貯蔵タンク本体や基礎に影響を与えるような変形とはなっていないことが分かる。

また、F₁法、P₁法及び1次元の有効応力解析を実施した結果、B地区及びE地区における地盤改良 前後の間隙水圧の上昇具合や変位の比較により、液状化対策の効果は2地区ともに確認できた。

3 基礎・地盤の耐震安全性の解析のまとめ

3.1 解析手法等

南海トラフ地震が発生した場合における、屋外貯蔵タンク本体の直下の液状化対策による地盤改良効果、 仮に液状化が生じた場合における屋外貯蔵タンク本体の周辺地盤が屋外貯蔵タンク本体に与える影響を確認 することを目的とし、断面2次元非線形有効応力解析を実施した。

本解析により、屋外タンク貯蔵所の地盤の変形の評価を行うとともに、屋外貯蔵タンク本体の沈下量や変形角、過剰間隙水圧比の経時変化の評価を行った。

評価には、加振後(動的解析後)の排水解析や過剰間隙水圧の消散に伴う圧密解析が可能なプログラムが 必要であり、これらの条件を満足するプログラムとして『LIQCA』を採用した。

3.2 解析結果

解析対象としたB地区の過剰間隙水圧消散後の変形を図 3.2.1 に、E地区の過剰間隙水圧消散後の変形を 図 3.2.2 に示す。

B地区では、液状化対策のため地盤改良された屋外貯蔵タンク本体の直下の地盤で27.7cmの沈下が予測されたが、一様沈下であり、屋外貯蔵タンク本体に大きな応力がかかるような不等沈下は確認されなかった。 また、屋外貯蔵タンク本体直下から外れた未改良地盤については、12.7cmの沈下となっている。未改良地盤の沈下量と屋外貯蔵タンク本体直下の改良地盤の沈下量との差は25cm程度であり、屋外貯蔵タンク本体や基礎への影響がみられるような変形は確認されなかった。

E地区では、液状化対策のため地盤改良された屋外貯蔵タンク本体の直下の地盤で8.7cmの沈下が予測されたが、B地区と同様に一様沈下であり、屋外貯蔵タンク本体に大きな応力がかかるような不等沈下は確認されなかった。また、屋外貯蔵タンク本体から外れた未改良地盤については、12.6cmの沈下となっている。 未改良地盤の沈下量と屋外貯蔵タンク本体直下の改良地盤の沈下量との差は5cm程度であり、B地区と同様 に屋外貯蔵タンク本体や基礎への影響がみられるような変形は確認されなかった。

なお、B地区とE地区における過剰間隙水圧消散後の地表面での鉛直変位量分布を参考資料に示す。

図 3.2.1 B地区の過剰間隙水圧消散後(約 45 日後)の変形図(縦横比等倍)

図 3.2.2 E地区の過剰間隙水圧消散後(約2.5時間後)の変形図(縦横比等倍)

3.3 まとめ

南海トラフ地震に対して、屋外貯蔵タンク直下の液状化対策による地盤改良効果と周辺の未改良地盤が屋 外貯蔵タンク本体に与える影響を確認するために解析を実施した。解析の対象とした地区は、想定地震動が 大きく、また、当該地区の中では液状化が発生する可能性の高い地区を選定したが、想定地震動が大きいに もかかわらず、構造物に影響を与えるような地盤の変形は確認されないという解析結果が得られた。また、 液状化対策による地盤改良についてもその効果を考慮していくことの必要性が確認された。

簡易的な手法であるFRLR法・PRLR法では、明治以前など古い時代に建設された埋立地や自然沖積地 盤など年代効果が大きくなる地盤ほど、非液状化箇所で「液状化する」と判定されるケースが相当数み られ液状化危険度を過大評価することが指摘されている一方、若い時代の埋め立て地の液状化をほぼ妥 当に判定する(国土交通省、2011P0F1P)。この簡易法は、基本的には通常の地盤を検討対象としてお り、大型タンクの支持地盤の液状化の可能性を検討するためには、タンクの自重とタンクに作用する水 平慣性力が支持地盤の液状化強度に与える影響を適切に考慮する必要がある。また、この簡易法は地盤 液状化に伴う地盤と構造物の変位を直接に予測する方法ではない。なお、過剰間隙水圧の最大値だけに 着目する有効応力法による解析では、締固めの効果を著しく過小評価する可能性があることが指摘され ている(龍岡ら、2014P1F2P)。

今回解析の対象としたような改良された地盤では、その締固め効果などが発揮され、実際、非排水繰り返 し載荷による強度低下は、考えられているよりはるかに小さいという報告がされており、これらを適切に評 価していくという課題があるが、現在研究が行われている段階である。

【参考資料】

B地区及びE地区について、南海トラフの想定地震を入力した地盤解析における過剰間隙水圧消散後の地 表面の鉛直変位量分布の詳細を参考図1及び参考図2に示す。ここでは、屋外貯蔵タンク本体の中心から水 平方向に300mの範囲における鉛直変位量を水色線で示す。

379

参考図2 E地区における過剰間隙水圧消散後の地表面の鉛直変位量分布(垂直方向を30倍に強調)

第4章 浮き屋根の耐震安全性の解析

1 浮き屋根の耐震安全性の解析の概要

南海トラフ地震等の大規模地震に対する長周期地震動を想定した屋外貯蔵タンクの浮き屋根の 耐震安全性に関する調査を目的とし、以下の手順で検討を実施した。

① 検討対象地区及びタンクの選定

近畿、中部及び関東地方の大規模な屋外貯蔵タンクを有する製油所等が所在する特防区域から、 南海トラフ地震で想定される長周期地震動の速度応答スペクトルを比較して地方別に1区域ずつ 検討対象区域を選定する。

なお、検討に使用した長周期地震動は、内閣府の南海トラフの巨大地震モデル検討会・首都 直下地震モデル検討会が平成27年12月にとりまとめた「南海トラフ沿いの巨大地震による長 周期地震動に関する報告」おいて、「南海トラフ沿いの最大クラスの地震における長周期地震 断層モデル」に対して推計されたもののうち、各特防区域の浮き屋根式屋外貯蔵タンク近傍の 1,000m×1,000mメッシュの区域内の地震波形(以下「想定地震動」という。)である。

また、選定した区域に所在するタンクについて、危険物の規制に関する技術上の基準を定める 告示(以下「告示」という。)の計算式から想定地震動を入力とした場合の液面の最大揺動高さ、 浮き屋根に係る最大応力等を算出し、解析対象とするタンクを各区域から2基ずつ計6基選定し た。

② 浮き屋根の簡易耐震強度評価

選定したタンク6基について、浮き屋根動的応答解析システム及び告示の式を併用して浮き屋根 の強度を簡易的に評価し、強度上最も不利(想定地震動に対し、強度上許容応力を超えるもの、 または許容応力の余裕度が最も小さいものをいう。以下同じ。)であると考えられる浮き屋根をも つタンクを1基選定した。

③ 浮き屋根の有限要素法モデルによる詳細耐震強度評価

選定したタンクの浮き屋根を対象として詳細な有限要素法モデルを作成し、揺動変位を荷重と した応力解析を実施した。解析より求めたポンツーンの断面力(円周方向面外、水平面内曲げモ ーメント及び円周方向圧縮力)から当該タンク浮き屋根の耐震強度を評価した。

2 解析対象地区及びタンクの選定

2.1 想定地震動の速度応答スペクトルと告示で規定する速度応答スペクトルの比較

告示第4条の21の3に規定される容量2万キロリットル以上、または告示第2条の2に規 定するHcが2.0m以上となる一枚板構造の浮き屋根を有する特定屋外貯蔵タンクの技術基準は、 平成15年の十勝沖地震におけるタンクの被害を受け、平成17年に策定されたものであり、既 設のタンクは、この技術基準に基づき改修を行うこととなり、その改修期限は平成29年3月 末である。

想定地震動に対する改修後の浮き屋根の耐震安全性を確認するため、浮き屋根の耐震強度評価に大きく係る速度応答スペクトルについて、告示で規定される技術基準から求まる値と、想定地震動から求まる値(減衰定数0.5%)についての比較を行った。

2.1.1 告示の速度応答スペクトルの算出

告示第4条の20第2項第3号より、液面揺動の設計水平震度は次の式による。

$$Kh_2 = 0.15 \cdot \nu_4 \cdot \nu_5$$

...(])

- Kh₂: 液面揺動の設計水平震度
- *ν*₁: 地域別補正係数
- 液面揺動の一次固有周期を考慮した応答倍率であつて、次の式により求めた値

$$v_4 = \frac{4.5}{\mathrm{Ts}_1} \qquad \cdots 2$$

- Ts1: 液面揺動の一次固有周期であつて、次の式により求めた値
- v 5: 長周期地震動に係る地域特性に応じた補正係数(次のイからハまで に規定する区域に設置される特定屋外貯蔵タンクにあつては当該 特定屋外貯蔵タンクの存する敷地又はその周辺で得られた強震計 地震動記録等に基づき、地域特性を考慮して予想された速度応答ス ペクトルから、当該特定屋外貯蔵タンクの液面揺動の一次固有周期 に応じた速度を 100cm/s で除した値(当該値が次のイからハまで にそれぞれ掲げる図から当該特定屋外貯蔵タンクの液面揺動の一 次固有周期に応じて求めた値を下回る場合にあつては、当該図から 求めた値とする。ただし、適切な強震計地震動記録等が得られてい ない場合にあつては、当該図から求めた値とすることができる。) とし、その他の特定屋外貯蔵タンクにあつては1.0とする。)

また、液面揺動の設計水平震度と速度応答スペクトルの関係は次式で表される。

$$Kh_2 \cong \frac{1}{g} \cdot \frac{2\pi}{Ts} \cdot Sv \qquad \cdots 3$$

Sv:速度応答スペクトル (cm/s)g:重力加速度 (cm/s2)

Ts: スロッシング固有周期(s)

$$\frac{1}{g} \cdot \frac{2\pi}{Ts} \cdot Sv = 0.15 \cdot v_{4} \cdot v_{4} \cdot v_{5}$$

 \therefore Sv = 105.4 • $\nu_{.1}$ • $\nu_{.5}$

 \cdots (4)

式④より、地域別補正係数 v₁及び長周期地震動に係る地域特性に応じた補正係数 v₅に応じて速度応答スペクトル Sv の最大値は、下表のとおりとなる。

地域別補正係数	長周期地震動に係る	速度応答スペクトル Sv	
$v_{\cdot 1}$	補正得	の最大値(cm/s)	
()	イ、ロ、ハ	1.0~2.0	210.8
1.0	その他	1.0	105.4
(二)	イ、ロ、ハ	1.0~2.0	179.2
0.85	その他	1.0	89.6
(三)	イ、ロ、ハ	1.0~2.0	154.6
0.7	その他	1.0	73.8

表 2.1.1 告示で想定される速度応答スペクトル Sv の最大値

2.1.2 想定地震動の速度応答スペクトル

特防区域における想定地震動の速度応答スペクトルの最大値を表 2.1.2 に示す。

なお、想定地震動の推計地域が、東北地方、九州地方及び日本海側は対象となっていないこ とから、関東地方から西の太平洋側及び瀬戸内海に所在し、タンクが多数設置されている特防 区域のみ示している。

N		地域区分	地域特性	NS	方向	EW	方向
NO.	地力	${\cal V}$.1	区域※	(s)	(cm/s)	(s)	(cm/s)
1	関東地方	()1.0	その他	2.9	49.8	3.8	46.2
2	関東地方	()1.0	П	9.0	112.1	5.7	119.1
3	関東地方	()1.0	П	3.9	140.4	3.8	137.0
4	関東地方	()1.0	П	2.2	226.4	2.1	123.0
5	中部地方	()1.0	ハ	2.3	285.2	3.1	305.4
6	中部地方	()1.0	ハ	2.0	326.5	2.5	271.1
7	関西地方	()1.0	ハ	2.2	312.7	2.2	296.5
8	関西地方	()1.0	その他	2.4	56.3	2.1	55.4
9	中国地方	(二)0.85	その他	17.2	13.0	10.8	17.9
10	中国地方	(三)0.7	その他	11.4	49.0	11.3	77.4
11	中国地方	(三)0.7	その他	18.3	53.0	8.5	76.9
12	中国地方	(三)0.7	その他	17.8	35.4	11.8	63.6
13	四国地方	(二)0.85	その他	13.0	47.8	12.7	60.6

表 2.1.2 想定地震動の速度応答スペクトルの最大値と卓越周期

※ 告示第4条の20第2項第3号に規定する長周期地震動に係る地域特性区域

2.1.3 速度応答スペクトルの比較

表 2.1.2 に示した特防区域のうち、想定地震動の速度応答スペクトルが最大で 100cm/s を 超える区域について、同速度応答スペクトルと告示の速度応答スペクトルと比較した図に示 す。

表 2.1.3~2.1.8 には、該当する特防区域に設置されているタンクのうち、告示第4条の 21の3に規定される容量2万キロリットル以上、または告示第2条の2に規定するHcが2.0m 以上となる一枚板構造で、現行の技術基準を満足するタンク(以下「改修済タンク」という。)の基数及び満液時の液面揺動の固有周期を示す。

また、図中には表 2.1.3~2.1.8 に示す液面揺動の固有周期を、1次モード域を緑線で、 2次モード域を紫線(容量5万KL以上のタンクを実線、5万KL未満のタンクを破線)で示 す。 (1) No.2 地区(関東地方)

地域区分(一):地域別補正係数 v₁=1.0 長周期地震動に係る地域特性区域:ロ

		液面揺動の	固有周期(s)	想定地震動の Sv が	
タンク容量(KL)	基数	基数 1次モード		2次モード	告示の Sv を上回
		Ts ₁	Ts ₂	る改修済タンクの基数	
1 千~5 千 KL 未満	-	_	-	-	
5 千~1 万 KL 未満	11	6.471 ~ 6.472	3.528 ~ 3.528	0	
1 万~2 万 KL 未満	8	6.451 ~ 8.346	3.628 ~ 4.130	0	
2 万~3 万 KL 未満	26	6.495 ~ 7.854	3.738 ~ 4.195	0	
3 万~5 万 KL 未満	2	8.030~8.031	4.323~4.323	0	
5万~10万KL未満	70	8.854~11.654	4.800~5.603	0	
10 万 KL 以上	3	12.573~12.575	5.918~5.919	0	

【比較結果】周期 5.7s 近傍において、想定地震動のピーク値 119.1cm/s が告示のの 105.4cm/s をやや上回る箇所があるが、全体的には概ね告示の値以下である。想定地 震動の速度応答スペクトルが告示の速度応答スペクトルを上回る固有周期をもつ改 修済タンクは見受けられない。 (2) No.3 地区(関東地方)
 地域区分(一):地域別補正係数 v₁=1.0
 長周期地震動に係る地域特性区域:ロ

		液面揺動の	固有周期(s)	想定地震動の Sv が	
タンク容量(KL)	基数	1次モード	2次モード	告示の Sv を上回る改修	
		Ts ₁	Ts ₂	済タンクの基数	
1 千~5 千 KL 未満	-	-	_	-	
5 千~1 万 KL 未満	1	6.752	3.535	0	
1 万~2 万 KL 未満	9	6.325 ~ 8.062	3.527~4.119	2基(2次)	
2 万~3 万 KL 未満	5	6.480 ~ 9.098	3.728 ~ 4.526	1基(2次)	
3万~5万KL未満	25	7.418 ~ 10.569	4.164~4.983	16基(2次)	
5 万~10 万 KL 未満	4	10.218~10.224	5.164~5.164	0	
10万 KL 以上	-	_	_	-	

表 2.1.4 改修済タンクの基数及び液面揺動の固有周期

【比較結果】周期4.5~5.7s 近傍において、想定地震動の速度応答スペクトルのピーク 値127cm/sが告示の105.4cm/sをやや上回る箇所があるが、全体的には概ね告示の値 以下である。想定地震動の速度応答スペクトルが告示の速度応答スペクトルを上回る 固有周期をもつ改修済タンクは、2次モードにおいて見受けられるが、全てのタンク が2次モードの影響が少ない5万 KL 未満のタンクである。 (3) No.4 地区(関東地方)
 地域区分(一):地域別補正係数 v₁=1.0
 長周期地震動に係る地域特性区域:ロ

		液面揺動の	固有周期(s)	想定地震動の Sv が	
タンク 容量(KL)	基数	1次モード	2次モード	告示の Sv を上回る改修	
		Ts ₁	Ts ₂	済タンクの基数	
1 千~5 千 KL 未満	-	_	_	-	
5 千~1 万 KL 未満	-	_	_	-	
1 万~2 万 KL 未満	9	6.323 ~ 8.041	3.528~4.117	3基(2次)	
2 万~3 万 KL 未満	8	6.477 ~ 8.323	3.729~4.209	0	
3万~5万KL未満	6	11.454 ~ 11.462	5.243 ~ 5.244	0	
5万~10万KL未満	9	10.467~11.385	5.244~5.585	0	
10万 KL 以上	-	_	_	-	

表 2.1.5 改修済タンクの基数及び液面揺動の固有周期

【比較結果】想定地震動は、全体的に告示の値以下である。想定地震動の速度応答スペクトルが告示の技術基準の速度応答スペクトルを上回る固有周期をもつ改修済タンクは、2次モードにおいて見受けられるが、その速度応答スペクトルの差はごく僅かであり、さらに全てのタンクが2次モードの影響が少ない5万KL未満のタンクである。

(4) No.5地区(中部地方)

地域区分(一):地域別補正係数v₁=1.0 長周期地震動に係る地域特性区域:ハ

		液面揺動の	固有周期(s)	想定地震動の Sv が	
タンク 容量(KL)	基数	1次モード	2次モード	告示の Sv を上回る改修	
		Ts ₁	Ts ₂	済タンクの基数	
1 千~5 千 KL 未満	2	4.738 ~ 4.883	2.771 ~ 2.836	0	
5 千~1 万 KL 未満	21	5.141 ~ 5.777	2.963 ~ 3.313	15 基(2 次)	
1 万~2 万 KL 未満	11	6.151 ~ 6.850	3.578~3.826	3基(2次)	
2 万~3 万 KL 未満	5	6.873 ~ 7.005	3.954 ~ 3.983	0	
3万~5万KL未満	-	_	_	-	
5万~10万KL未満	17	8.277~11.024	4.600~5.525	0	
10万 KL 以上	11	11.002~12.304	5.574 ~ 5.923	0	

表 2.1.6 改修済タンクの基数及び液面揺動の固有周期

【比較結果】周期3.0~4.0sにおいて、想定地震動のピーク値が告示の210.8cm/sを上回る箇所があるが、全体的には概ね告示の値以下である。想定地震動の速度応答スペクトルが告示の速度応答スペクトルを上回る固有周期をもつ改修済タンクは、2次モードにおいて見受けられるが、全てのタンクが2次モードの影響が少ない5万KL未満のタンクである。

(5) No.6地区(中部地方)
 地域区分(一):地域別補正係数 v₁=1.0
 長周期地震動に係る地域特性区域:ハ

		液面揺動の	固有周期(s)	想定地震動の Sv が	
タンク容量(KL)	基数	1次モード	2次モード	告示の Sv を上回る改修	
		Ts ₁	Ts ₂	済タンクの基数	
1 千~5 千 KL 未満	22	4.172~5.302	2.419~2.966	6基(1次&2次)	
5 千~1 万 KL 未満	5	5.126~6.577	2.963 ~ 3.523	0	
1 万~2 万 KL 未満	7	6.872 ~ 7.013	3.730 ~ 3.733	7基(1次)	
2 万~3 万 KL 未満	3	7.633 ~ 7.792	4.188~4.194	2基(1次)	
3 万~5 万 KL 未満	7	9.066~10.132	4.698 ~ 4.944	0	
5万~10万KL未満	13	9.346~11.909	4.923~5.705	1基(2次)	
10万 KL 以上	11	11.023~11.720	5.567~5.692	4基(2次)	

表 2.1.7 改修済タンクの基数及び液面揺動の固有周期

【比較結果】周期4.0s、5.5s、7.0s 近傍において、想定地震動のピーク値が告示の 210.8cm/sを上回る箇所があるが、全体的には概ね告示の値以下である。想定地震動 の速度応答スペクトルが告示の速度応答スペクトルを上回る固有周期をもつ改修済 タンクは、1次モード、2次モードともに見受けられる。 (6) No.7地区(関西地方)
 地域区分(一):地域別補正係数 v₁=1.0
 長周期地震動に係る地域特性区域:ハ

		液面揺動の	固有周期(s)	想定地震動による Sv が	
タンク容量(KL)	基数	1次モード	2次モード	告示による Sv を上回る	
		Ts ₁	Ts ₂	改修済タンクの基数	
1 千~5 千 KL 未満	13	3.855 ~ 4.749	2.263 ~ 2.772	1基(2次)	
5 千~1 万 KL 未満	24	4.613~6.311	2.707 ~ 3.475	1基(1次)	
1 万~2 万 KL 未満	11	5.678 ~ 6.908	3.304~3.825	0	
2 万~3 万 KL 未満	3	7.024~7.060	3.921~3.989	0	
3 万~5 万 KL 未満	11	7.867 ~ 9.771	4.330~4.832	8基(2次)	
5万~10万KL未満	19	9.575~11.319	4.938~5.457	0	
10万 KL 以上	2	13.060~13.060	6.168~6.168	0	

【比較結果】周期4.5s 近傍において、想定地震波のピーク値が告示210.8cm/sを上回る箇所があるが、全体的には告示の範囲内に入る。想定地震動の速度応答スペクトルが告示の速度応答スペクトルを上回る固有周期をもつ改修済タンクは、1次モード、2次モードともに見受けられる。

2.2 解析対象地区及び解析対象タンクの選定

想定地震動に対する改修済タンクの耐震安全性を確認するため、解析の対象とするタンクを 1基選定し、3次元FEMによる解析を行う。

まず、その前段階として、JOGMEC/横浜国立大学で開発された線形FEM浮き屋根動的応答 解析システムによるスクリーニングを行うため、2.1節で示した結果から解析対象となる地区 を、特防区域から3地区選定し、さらにその解析対象地区ごとに解析対象となるタンクを2基 ずつ、合計6基を選定した。

2.2.1 解析対象地区の選定

想定地震動の推計地域については、東北地方、九州地方及び日本海側は対象となっておら ず、三大都市圏の関東地方、中部地方、関西地方周辺とされていることから、三大都市圏近 傍に位置する特防区域からそれぞれ1カ所ずつ選定した。

(1) 関東地方

No.2 地区は、想定地震動の速度応答スペクトルが告示の速度応答スペクトルを上回る 固有周期をもつタンク(以下「解析候補タンク」という。)が存在しないことから、検 討対象地区から除外した。

また、No.4地区は、解析候補タンクが3基であり、想定地震動の速度応答スペクトル と告示の速度応答スペクトルの差が小さいことから、検討対象地区から除外し、解析候 補タンクが19基存在するNo.3地区を検討対象地区に選定した。

(2) 中部地方

No.5 地区は、解析候補タンクは 18 基あり、そのすべてのタンクの2次モードの固有周期について、想定地震動の速度応答スペクトルが告示の速度応答スペクトルを上回っている。しかしながら、タンク容量が 5,190KL~18,484KL であり、2 次モードの影響が小さい5 万 KL 未満のタンクであることから、検討対象地区からは除外し、解析候補タンクに 10 万 KL クラスが含まれる No.6 地区を検討対象地区に選定した。

(3) 関西地方

解析候補タンクが、No.7 地区に 10 基存在し、他の地区には存在しないことから、No.7 地区を解析対象地区に選定した。

2.2.2 解析対象タンクの選定

(1) No.3 地区(関東地方)

No.3地区に存在する解析候補タンクは、容量17,416KL~46,789KLの19基であることから、容量が最小である17,400KL 台及び容量が最大である46,700KL 台のタンクの中から、それぞれ強度上最も不利であると考えられるタンクを1基ずつ選定した。

表 2.2.1 解析対象タンク

			許可液面			速度応答スペクトル(cm/s)			
No.	許可容量	直径	高さ	貯蔵物	比重	1次モード		2次モード	
	(KL)	(m)	(m)			告示	想定波	告示	想定波
1	17,420	40.680	13.403	ナフサ	0.74	210.7	●74.8	110.4	•127.1
2	46,789	56.000	18.990	原油	1.00	210.7	▲75.8	105.4	▲127.0
(2) No.6地区(中部地方)

解析候補タンクのうち、1次モードの速度応答スペクトルが、想定地震動と告示の値の 差が大きい容量 12,450KL~13,200KL のタンクの中から、強度上最も不利であると考えら れる容量 13,200KL のタンクを選定した。また、10万KL クラスのタンクの中から、強度上 最も不利であると考えられるタンクを1基選定した。

表 2.2.2 解析対象タンク

			許可液面			速度応答スペクトル(cm/s)			
No.	許可容量	直径	高さ	貯蔵物	比重	1次モード		2次3	E— ド
	(KL)	(m)	(m)			告示	想定波	告示	想定波
3	13,200	36.800	12.655	灯油	0.79	152.0	•200.8	210.7	•170.6
4	110,050	84.270	20.025	原油	0.87	105.4	▲92.4	210.7	▲231.9

(3) No.7 地区 (関西地方)

想定地震動の速度応答スペクトルが全タンク中最大の値 290.2cm/s (2 次モード)を示 した 1,260KL のタンクと容量が 4 万 KL 台のタンクの中から、強度上最も不利であると考 えられるタンクを 1 基選定した。

表 2.2.3 解析対象タンク

			許可液面 速度応答ス					クトル(cm/s)		
No.	許可容量	直径	高さ	貯蔵物	比重	1 次 -	Eード	2次3	E— K	
	(KL)	(m)	(m)			告示	想定波	告示	想定波	
5	1,260	13.560	8.750	ヘプタン	0.68	210.7	•125.2	210.7	•290.2	
6	46,030	55.000	19.078	重油	0.97	105.4	▲48.6	210.7	▲226.2	

3 浮き屋根の簡易耐震強度評価

3.1 6基の浮き屋根の簡易耐震強度評価の概要

選定された3つの特防区域に設置されている6基のタンクについて、浮き屋根のポンツーンの耐震強度傾向を調査し、その結果から詳細にFEM解析で検討する浮き屋根式タンク1基を選定する。検討のフローは図3.1.1に示す。

2つの評価方法を併用し、6基のタンクの浮き屋根の強度(傾向調査)を簡易的に評価して 強度上最も不利と考えられる浮き屋根の1基を選び、次の詳細 FEM 解析の検討対象として選定 する。

図 3.1.1 浮き屋根ポンツーンの簡易耐震強度評価の流れ

3.2 検討対象特防区域及び検討対象タンクの選定

2で検討対象として選定した特防区域(A地区、B地区、C地区)に置かれている6基の タンクの諸元を表 3.2.1 に示す。

特防区域			A地区	B地	<u>ا</u> لا	С±	<u>ل</u> ك
解析タンク		No.1	No.2	No.3	No.4	No.5	No.6
貯蔵物		ナフサ	原油	灯油	原油	ヘプタン	重油
許可容量	kl	17420	46789	13200	110050	1260	46030
タンク直径	mm	40680	56000	36800	84270	13560	55000
液面高さ	mm	13403	18990	12655	20025	8750	19078
液体密度	kg/cm^3	0.00074	0.001	0.00079	0.00087	0.00068	0.00097
デッキ半径	mm	17641	24700	15570	36785	4550	24200
インナーリム高さ	mm	575	500	500	550	560	410
アウターリム高さ	mm	889	850	940	765	915	810
デッキ取付高さ	mm	300	250	150	175	0	205
ポンツーン幅	mm	2485	3100	2600	5100	2030	3100
上板、下板傾き		上314、下0	上350、下0	上220、下220	上150、下65	上60、下295	上300、下100
デッキ板厚	mm	4.5	4.5	4.5	4.5	4.5	4.5
インナーリム板厚	mm	9	12	24	28	4.5	15
アウターリム板厚	mm	6	6	9	18	4.5	4.5
ポンツーン上板厚	mm	4.5	4.5	6	6	4.5	4.5
ポンツーン下板厚	mm	4.5	4.5	6	6	4.5	4.5
デッキ取付板	mm	75×12t	150 × 12t	150 × 9t	117.6×9t	_	75 × 9t
デッキ密度	kg/cm^3	0.00785	0.00785	0.00785	0.00785	0.00785	0.00785
ポンツーン密度	kg/cm^3	0.00785	0.00785	0.00785	0.00785	0.00785	0.00785

表 3.2.1 選定された 6 基のタンクの諸元と各ポンツーンの寸法

3つの特防区域に置かれている合計6基のタンクの浮き屋根について、使用上許容されて いる液面位置での揺動固有周期の変動幅を検討した。揺動固有周期変動幅の間において想定 地震動の速度応答スペクトルが最大となる値を表3.2.2に示す。比較のため、告示の速度応 答スペクトル値も同表に示す。<u>B地区及びC地区の想定地震動の1次及び2次モードの速度</u> 応答スペクトル値は告示の値を超えている。

参考のため、1次モードと2次モードの最大値と最小値の変動幅の中に、速度応答スペクトルが最大となるときの液面高さを表3.2.3に示す。

特防	許可容量	許可容量の	·可容量の 区分 許可容量	容量の 許可容量	古汉	计口法工	病	固有周期 (s)				速度応答スペクトルSvが最大となる時の値(※3)				消防法	去告示
符防 反域	解析タンク	区分		旦住 (m)	計り波則 立な(m)	· ^{/仪回} 貯蔵物	1次 [:]	E−ľ	2次	E−ŀ	1次	E [×]	2次	E−ŀ	1次モード	2次モード	
127%		(kl)	(n)	(III)	 (/)		最小(※1)	最大(※2)	最小(※1)	最大(※2)	固有周期(s)	Sv (cm/s)	固有周期(s)	Sv (cm/s)	Sv	Sv	
A地区	No.1	1万~2万ki未満	17420	40.68	13.403	ナフサ	7.3	15.8	3.9	5.7	11.6	108.8	3.9	127.1	210.7	110.4	
A地区	No.2	3万~5万ki未満	46789	56.00	18.990	原油	8.5	21.7	4.6	7.6	11.6	108.8	4.6	127.0	210.7	105.4	
B地区	No.3	1万~2万kl未満	13200	36.80	12.655	灯油	6.9	14.3	3.7	5.2	6.9	200.8	4.2	223.9	152.0	210.7	
B地区	No.4	10万kl以上	110050	84.27	20.025	原油	11.4	32.5	5.7	11.3	11.4	93.8	5.7	231.9	105.4	210.7	
C地区	No.5	1 千~ 5千kk满	1260	13.56	8.750	ヘプタン	3.9	5.5	2.3	2.4	4.6	226.8	2.3	290.2	210.7	210.7	
C地区	No.6	3万~5万ki未満	46030	55.00	19.078	重油	8.4	21.3	4.6	7.5	8.4	48.6	4.6	226.2	105.4	210.7	

表 3.2.2 想定地震動の速度応答スペクトル及び告示の速度応答スペクトルの比較

※1 固有周期の最小値は、最大許可液面高さの時の固有周期

※2 固有周期の最大値は、液面高さ2mの時の固有周期

※3 1次モードおよび2次モードそれぞれ、※1~※2の間で速度応答スペクトルが最大となる時の値(EWとNS中の)

#± 0+-	舟 누 노 노	*] *]	速度応答スペクトルが最大となる時の液面高さ						
行的	門中小ブン	計り液面	1次	モード	2次モード				
区域	2.9	同€(11)	固有周期(s)	液面高さ(m)	固有周期(s)	液面高さ(m)			
A地区	No.1	13.4	11.6	4.3	3.9	13.4			
A地区	No.2	19.0	11.6	7.5	4.6	19.0			
B地区	No.3	12.7	6.9	12.7	4.2	3.6			
B地区	No.4	20.0	11.4	20.0	5.7	20.0			
C地区	No.5	8.8	4.6	3.2	2.3	2.8			
C地区	No.6	19.1	8.4	19.1	4.6	19.1			

表3.2.3 速度応答スペクトルが最大となるときの液面高さ

3.3 ポンツーンの耐震強度の簡易評価方法

以下の2つの評価方法(方法1と方法2)を併用し、6基のタンクの浮き屋根の強度(傾向調 査)を簡易的に評価して強度上最も不利と考えられる浮き屋根の1基を選び、次の詳細FEM解 析の検討対象として選定する。

方法1:浮き屋根動的応答解析システムを利用した評価

JOGMEC と横浜国立大学にて開発された線形 FEM 浮き屋根動的応答解析システム JY-SeiRA-FR-Y(解析方法の詳細については「平成 26 年度 大規模地震に対する石油備蓄タ ンクのセーフテイマネージメントに関する調査研究」委託業務成果報告書の4章を参照)を 用いて、浮き屋根をモデル化し、3組の特防区域の想定地震加速度波形(EW と NS)を用いて、 時刻歴応答解析を実施する。各浮き屋根の最大揺動高さ、ポンツーンに発生する曲げモーメ ント及び円周方向圧縮力を算出し、これらの解析結果を用いて簡易的な強度評価を行う。こ の評価結果から、6 基の浮き屋根の中で最も耐力の小さい浮き屋根を選び出す。(詳細は 3.4 節を参照)

方法2:告示に示された式での評価

告示による応力算定式を用いて、各特防区域の想定地震波の速度応答スペクトルを入力値 としてポンツーンに発生する最大合成応力を算定する。この結果から6基の浮き屋根の中で、 発生応力の大きい浮き屋根を選び出す。(詳細は3.5節を参照)

以上の 2 つの簡易評価方法は、ここでは強度の傾向調査のスクリーニングのツールとして使 用する。

3.4 浮き屋根動的応答解析システムを利用した評価

3.4.1 時刻歴応答解析

JOGMEC/横浜国立大学にて開発された線形 FEM 浮き屋根動的応答解析システム (JY-SeiRA-FR-Y)を用いて、浮き屋根をモデル化し、選定された3つの特防区域の想定地震 加速度波形を与えた場合の時刻歴応答解析を実施した。

解析条件として、

- (1) 地震加速度:
 - 3つの特防区域の想定地震波の6本の加速度波形(EWとNS)を使用した。
- (2) ポンツーンの寸法と板厚:

表 3.2.1 に示すポンツーンの寸法と各部材の設計板厚を使用した。

解析結果として、以下の出力が得られた。

- (1) 浮き屋根の変形モード
- (2) 浮き屋根の揺動変位及び動液圧分布
- (3) ポンツーンに発生する円周方向面外曲げモーメント M_θ、水平面内曲げモーメント M_x、 及び円周方向圧縮力 N_θ (図 3.4.1 に示す概念図を参照)

解析結果のまとめを表 3.4.1 に示す。想定地震波による時刻歴応答解析結果の詳細な出力図 表の一例(B地区の No.4 解析タンク)を添付資料1に示す。

図 3.4.1 円周方向面外曲げモーメント M_θ、水平面内曲げモーメント M_x、及び円周 方向圧縮力 N_θの概念図

	特防区域		A	地区	B地	<u>ا</u> لا	Ct	Δ
	解析タンク		No.1	No.2	No.3	No.4	No.5	No.6
地震波	固有周期 1次	s	7.3	8.5	6.8	11.5	3.9	8.4
	固有周期 2次	s	3.9	4.6	3.7	5.7	1.9	4.6
	最大浮き屋根揺動変位	mm	580.4	1384.1	2924.0	2188.1	856.7	1236.8
	最大動液圧	KPa	0.5	1.0	2.4	1.6	1.0	1.1
EW	最大円周方向面外曲げモーメント M θ	KN.m	3.9	10.4	8.0	127.5	6.1	8.9
	最大水平面内曲げモーメント Mx	KN.m	4.9	64.9	44.9	815.3	21.3	70.4
	最大円周方向圧縮力 Nθ	KN	5.1	32.7	21.7	183.8	8.0	33.1
	最大浮き屋根揺動変位	mm	1234.0	932.2	1987.1	1124.4	1214.9	804.9
	最大動液圧	KPa	0.9	0.7	1.8	1.6	1.4	1.2
NS	最大円周方向面外曲げモーメント M θ	KN.m	7.5	7.1	7.8	137.7	7.7	7.8
	最大水平面内曲げモーメント Mx	KN.m	4.2	52.2	32.8	857.5	25.3	70.4
	最大円周方向圧縮力 Nθ	KN	8.4	23.4	17.0	196.4	8.9	34.9

表 3.4.1 浮き屋根の時刻歴応答解析結果

3.4.2 許容耐力による浮き屋根強度評価

各浮き屋根のポンツーン断面性能評価結果(添付資料2を参照)を用いて、以下の許容耐力 算定式及び強度評価式から、ポンツーン断面強度の簡易的な評価を行った。

(1) ポンツーンの円周方向面外曲げ(円周方向曲げ)許容耐力

円周方向面外曲げモーメントに対するポンツーン箱形有効断面の最小有効断面係数 $Z_{\theta-eff}$ を用いて、当該許容耐力は次式で計算する。ここで、 σ_y は降伏応力(一律 245 N/mm²と設定する)である。

$$M_{\theta-Y} = \sigma_{y} \times Z_{\theta-eff} \tag{3.4.1}$$

(2) ポンツーンの円周方向圧縮許容耐力

円周方向圧縮力に対するポンツーン箱形有効断面の有効断面積 A_{eff}を用いて、当該許容耐力 は次式で計算する。

$$N_{\theta-Y} = \sigma_{y} \times A_{eff} \qquad (3. 4. 2)$$

(3) ポンツーンの水平面内曲げ(半径方向曲げ)許容耐力

水平面内曲げモーメントに対するポンツーン箱形有効断面の最小有効断面係数 Z_{x-eff}を用いて、当該許容耐力は次式で計算する。

$$M_{x-y} = \sigma_y \times Z_{x-eff} \tag{3.4.3}$$

(4) ポンツーン断面強度評価

浮き屋根ポンツーンに発生するポンツーン断面の円周方向面外曲げモーメント M_θ、円周方 向圧縮力 N_θ、及び水平面内曲げモーメント M_xを浮き屋根動的応答解析システムを用いて求め、 対応するポンツーン断面強度評価に係る許容耐力 (M_{θ-Y}, N_{θ-Y}及び M_{x-Y}) との対比によりポン ツーンの耐震強度評価を次式により行う。

$$\frac{M_{\theta}}{M_{\theta-Y}} + \frac{N_{\theta}}{N_{\theta-Y}} + \frac{M_x}{M_{x-Y}} \le 1.0$$
(3. 4. 4)

表 3.4.2 に全 6 基のタンクの浮き屋根の耐震強度評価結果を示す。6 基中の最も耐力の小さい(より1に近い)浮き屋根はB地区の No.4 解析タンク(11 万 KL)であり、次は、C地区の No.6 解析タンク(4.6 万 KL)である。

特防区	域			A均	<u>ک</u> و	B坿	<u>ک</u> و	C地	<u>ک</u> ز
解析タン	<u>/</u> /2			No.1	No.2	No.3	No.4	No.5	No.6
	(1) ポンツーンの有効断面係数								
	円周方向面外曲げモーメント係る有効断	Z <i>θ</i> −eff	mm^3	3.82E+06	5.46E+06	3.56E+06	8.09E+06	1.70E+06	4.31E+06
	水平面内曲げモーメントに係る有効断面の	Zx−eff	mm^3	6.93E+06	2.02E+07	1.24E+07	8.42E+07	3.25E+06	9.14E+06
	円周方向圧縮カに係る有効断面面積	Aeff	mm^2	1.72E+04	2.34E+04	1.91E+04	4.96E+04	5.74E+03	1.98E+04
強度	(2) ポンツーンの許容耐力			-					
評価	円周方向面外曲げモーメント係る許容耐	$M_{\theta \cdot Y}$	N.mm	9.36E+08	1.34E+09	8.72E+08	1.98E+09	4.16E+08	1.06E+09
	水平面内曲げモーメントに係る許容耐力	M_{x-Y}	N.mm	1.70E+09	4.95E+09	3.04E+09	2.06E+10	7.96E+08	2.24E+09
	円周方向圧縮カに係る許容耐力	$N_{\theta\text{-}Y}$	Ν	4.21E+06	5.73E+06	4.67E+06	1.22E+07	1.41E+06	4.85E+06
	(3) ポンツーンの強度評価						1-1		
	EW			8.26E-03	2.66E-02	2.86E-02	1.19E-01	4.71E-02	4.67E-02
	NS			1.25E-02	1.99E-02	2.34E-02	1.27E-01	5.66E-02	4.60E-02

表 3.4.2 ポンツーン強度評価結果

3.5 告示による浮き屋根ポンツーンの強度評価

浮き屋根ポンツーンの強度評価式は、平成17年1月14日付け消防危第14号、及び平成18 年6月30日付け消防危第157号に示されている。これより、告示第4条の21の4に規定さ れた液面揺動(スロッシング)一次モード及び二次モード(図3.5.1参照)による円周方向面 外曲げモーメントM_θ及び水平面内曲げモーメントM_x並びに円周方向圧縮力N_θ(図3.5.2参照) を算定し、浮き屋根ポンツーンに生じる応力を評価する。

図 3.5.1 スロッシングの一次モード及び二次モード

図 3.5.2 断面力の概念図

図 3.5.3 浮き屋根ポンツーンの応力算定と評価手順

選定された6基のタンクの浮き屋根の中に、想定地震動の速度スペクトルを入力とした場合、 どの浮き屋根の発生応力が最も大きいかを調査するため、図3.5.3に示す告示によるポンツー ンの応力算定と評価手順に従って応力計算を実施した。算定した液面揺動固有周期、液面揺動 高さ、1次モードの影響による曲げ応力、2次モードの影響による曲げ応力と圧縮応力、合成 応力を表 3.5.1 に示す。

応力計算条件として、表 3.2.2 に示す 3 つの特防区域に置かれている 6 基のタンクの浮き屋 根の液面揺動の 1 次モードと及び 2 次モードの変動幅の間で想定地震動の速度スペクトルが最 大となる値 (EW 波と NS 波の中)を使用した。

最大応力を算定するための各ポンツーンの有効断面係数は添付資料2に示す外リム側と内 リム側の中の最小値を使用した。

代表的な計算結果の一例(B地区のNo.4解析タンク)の計算シートを添付資料3に示す。

特防区域		A地	区	Bb	区	C地区					
解析タンク		No.1	No.2	No.3	No.4	No.5	No.6				
想定地震動の速度応答ス	想定地震動の速度応答スペクトル(入力値)										
1次モード Sv	cm/s	108.8	108.8	200.8	93.8	226.8	48.6				
2次モード Sv	cm/s	127.1	127.0	223.9	231.9	290.2	226.2				
解析結果	解析結果										
液面揺動固有周期 1次	s	7.3	8.5	6.9	11.4	3.9	8.4				
液面揺動固有周期 2次	s	3.9	4.6	3.7	5.7	2.3	4.6				
液面揺動高さ1次	cm	162.9	192.3	288.5	185.2	210.1	85.5				
液面揺動高さ2次	cm	30.0	36.1	51.6	80.4	40.6	63.8				
1次モード 曲げ応力	N/mm^2	50.9	57.6	186.1	20.9	55.2	13.1				
2次モード 曲げ応力	N/mm^2	5.3	8.1	2.6	30.7	0.0	45.8				
2次モード 圧縮応力	N/mm^2	17.3	48.4	9.2	197.8	0.0	184.1				
合成応力	N/mm^2	55.7	80.7	186.4	229.4	55.2	230.3				
					~_/		ノレイ				

表 3.5.1 告示による応力計算結果と評価結果

6 基中の最も発生応力の大きい浮き屋根はC地区の No. 6 タンク(4.6 万 KL)であり、次は、B 地区の No. 4 解析タンク(11 万 KL)である。

3.6 解析結果の比較

2 つの解析方法(JOGMEC の線形 FEM 浮き屋根動的応答解析システムと告示)から求めた最大 浮き屋根揺動変位、各ポンツーンに発生する最大円周方向面外曲げモーメント、最大水平面内 曲げモーメント及び円周方向圧縮力の比較を表 3.6.1 に示す。

評価方法	地震波	特防区域		At	也区	Bb	也区	Ct	<u>ل</u> ك
	方向	解析タンク		No.1	No.2	No.3	No.4	No.5	No.6
		最大浮き屋根揺動変位	m	0.6	1.4	2.9	2.2	0.9	1.2
線形FEM	EW	円周方向面外曲げモーメント	KN.m	3.9	10.4	8.0	127.5	6.1	8.9
浮き屋根動的		水平面内曲げモーメント Mx	KN.m	4.9	64.9	44.9	815.3	21.3	70.4
応答解析		円周方向圧縮力 N _θ	KN	5.1	32.7	21.7	183.8	8.0	33.1
システム		最大浮き屋根揺動変位	m	1.2	0.9	2.0	1.1	1.2	0.8
	NS	円周方向面外曲げモーメント	KN.m	7.5	7.1	7.8	137.7	7.7	7.8
		水平面内曲げモーメント Mx	KN.m	4.2	52.2	32.8	857.5	25.3	70.4
		円周方向圧縮力 N ₀	KN	8.4	23.4	17.0	196.4	8.9	34.9
		最大浮き屋根揺動変位	m	1.6	1.9	2.9	1.9	2.1	0.9
消防法告示		円周方向面外曲げモーメント	KN.m	194.6	314.4	662.5	168.9	93.7	56.5
	EW/NS	水平面内曲げモーメント Mx	KN.m	36.7	163.2	32.1	2572.7	0.0	418.9
		円周方向圧縮力 N _θ	KN	296.8	1135.1	174.9	9755.7	0.0	3650.9

表 3.6.1 2 つの解析方法から求めた最大浮き屋根揺動変位及びポンツーン断面力の比較

No.5 解析タンクの結果を除いて、線形 FEM 浮き屋根動的応答解析システムを用いて求めた最 大浮き屋根揺動変位は、告示による結果とほぼ同じ傾向であり、両者ともに、最大浮き屋根揺 動変位(=2.9m)がB地区の No.3 タンクに発生した。しかし、前者の断面力の結果は、告示に よる結果よりかなり小さい。

3.7 詳細検討対象とするタンク浮き屋根の選定

浮き屋根動的応答解析システム、及び告示の式より6基のタンクの浮き屋根の強度(傾向調 査)を簡易的に評価した。浮き屋根の耐震強度に比べて各ポンツーンに発生する応力、円周方 向面外曲げモーメント、水平面内曲げモーメント及び円周方向圧縮力が最も大きくなるタンク として、<u>**B地区のNo.4**タンクを選定</u>することとし、詳細 FEM モデルでの解析対象とする。

4 浮き屋根の有限要素法モデルによる詳細耐震強度評価

4.1 検討概要

選定されたB地区のNo.4タンク(11万KL)の浮き屋根を詳細にFEMでモデル化し、JOGMEC/ 横浜国立大学にて開発された線形 FEM 浮き屋根動的応答解析システム(JY-SeiRA-FR-Y)を用 いて、時刻歴地震応答解析から求めた浮き屋根の揺動変位(以下選定揺動変位と略称する)を荷 重とした応力解析を実施した。解析結果より求めたポンツーンの断面力(円周方向面外及び水 平面内曲げモーメントと円周方向圧縮力)を使用して当該タンク浮き屋根の耐震強度を評価し た。

検討のフローは図 4.1.1 に示すとおりである。

図 4.1.1 浮き屋根ポンツーンの耐震強度評価のフロー図

4.2 解析モデルと解析条件

応力解析は幾何学的非線形性(大たわみ)を考慮した有限変形弾性理論に基づく非線形静解 析を実施した。解析には FEM 非線形構造解析プログラム Abaqus 6.12 を使用した。

4.2.1 解析モデル形状

解析モデルを図4.2.1.1及び図4.2.1.2に示す。浮き屋根構造はシェル要素(補強材を梁要素)を用いて1/2部分(0度から180度まで)をモデル化して対象条件を設定した。また、デッキ中央を水平方向に拘束している。浮き屋根の下面には液体を模したバネ要素を設けており、バネを介して選定した揺動変位を強制変位(荷重)として入力する。

解析モデルの仕様を表4.2.1.1に示す。各部の板厚は実測値の最小板厚値を採用した。

(b) バネ要素の設置と強制変位の概念図

図 4.2.1.1 浮き屋根解析モデル(B地区の No.4 タンク)

デッキ板厚 4.5mm

節点数:48739、要素数:55399 (バネ要素含む)

図 4.2.1.2 浮き屋根解析モデル(ポンツーン部内部拡大図)

		•
項目	内容・値	備考
解析対象タンク	B地区 No.4 タンク	
タンク内半径 R	42135 mm	
液面高さH	20025 mm	
浮屋根本体要素	シェル要素、梁要素(アングル等)	
分割	(Abaqus 要素タイプ:S4R、B31)	
デッキ半径 R_d	36785 mm	内リム板中央の寸法でモデル化
デッキ板厚	4.5 mm	
外リム半径 R _o	41885 mm	外リム板中央の寸法でモデル化
ポンツーン高さ	850 mm(モデル上 : 830 mm)	上板・下板中央の寸法でモデル化
内リム板厚	27.9 mm (最小計測値)	
外リム板厚	17.5 mm (最小計測値)	
上板板厚	5.6 mm (最小計測値)	
下板板厚	5.6 mm (最小計測値)	
ポンツーン室数	46 室	
仕切り板厚	6 mm	
コンプレッション・	柜 150mm 板厚 0mm	
リング幅と板厚		
细材甾位質量	$7.85 \times 10^{-6} kg/mm^{3}$	本解析では重力は考慮しないことと
邺 何 平位 貝里	7.05×10 ° kg/mm*	し、計算には未使用
縦弾性係数	205940 N/mm ²	
最小降伏強度 oy	235 N/mm ²	
		ばね定数=ρ×10 ⁻⁶ ·g·A [N/mm]
応力解析におけ	ばね要素	ρ:内容液比重
る内容液	(Abaqus 要素タイプ: SPRING2)	g:重力加速度 =9.80665m/s ²
		A:受持面積 [mm ²]
内溶液比重	0.87	

表 4.2.1.1 解析モデル仕様

4.2.2 荷重条件

浮き屋根の FEM 解析モデルに与える揺動変位として、線形 FEM 浮き屋根動的応答解析システムでの時刻歴地震応答解析結果のうち、揺動高さやポンツーンの発生モーメントが大きくなる以下の2条件を選定した。

変位①:揺動変位が最も大きくなる時刻の揺動変位

(NS 波 132.92 秒後 スロッシングの1 次固有モードが卓越) 変位②:ポンツーン断面力が最大になる時刻の揺動変位

(EW波 92.02 秒後 スロッシングの2次固有モードが卓越)

これらの2つの選定揺動変位の詳細を表4.2.2.1、及び図4.2.2.1と図4.2.2.2に示す。 なお、モデルへの入力では、これらの揺動変位を角度方向(0~180度)に余弦分布させて浮 き屋根に作用させた。

限中运动亦在	地雷十百	揺動変	泣(mm)	発生時刻	供 本
进止活到变位	地辰刀问	最大	最小	(sec)	順方
亦估①	NC	1106 7	-270.0	122.02	ポンツーンの変位が最大になる時刻の
愛位①	NS NS	1120. /	-270.0	132.92	変位形状
亦は⑦		1270.0	_010.0	02.02	ポンツーンの断面力 N.g、M _* 、M.gが最
友世区	L(Z) EW		-213.3	92.0Z	大になる時刻の変位形状

表 4.2.2.1 選定揺動変位の詳細

図 4.2.2.1 選定揺動変位形状(変位①:NS波 132.92 秒後)

図 4.2.2.2 選定揺動変位形状 (変位②: EW 波 92.02 秒後)

4.3 解析結果

ここでは2つの選定揺動変位で実施した応力解析の結果を示す。また、それぞれの揺動変位 時におけるポンツーン(内部補強材除外)断面に発生する円周方向面外及び水平面内曲げモー メントと円周方向圧縮力についてポンツーンを構成するシェル要素の円周方向膜力 N_{θk}(Abaqusの断面力の出力値)を用いて、式(4.3.1)~(4.3.3)で求めている。これらの値は告 示の応力算定式から求めた値とも比較した。

曲げモーメント、圧縮力の概念図及びポンツーン断面からこれらの断面力算定の概念図は図 4.3.1と図 4.3.2に示すとおりである。

$$M_{\theta} = \sum_{k} N_{\theta k} L_{k} (z_{k} - z_{G})$$
(4.3.1)
$$M_{x} = \sum_{k} N_{\theta k} L_{k} (r_{k} - r_{G})$$
(4.3.2)
$$N_{\theta} = \sum_{k} N_{\theta k} L_{k}$$
(4.3.3)

ここに、

N_{θk}: ポンツーンを構成する要素kの円周方向膜力 (N/mm)
 L_k: ポンツーンを構成する要素kの長さ (mm) (図 4.3.3 参照)
 (r_k, z_k): ポンツーンを構成する要素kの中心の座標 (mm) (図 4.3.3 参照)
 (r_G, z_G): ポンツーン重心の座標 (mm) (図 4.3.3 参照)
 M_θ: ポンツーンの円周方向 (面外)曲げモーメント (N.mm)
 M_x: ポンツーンの半径方向 (水平面内)曲げモーメント (N.mm)
 N_θ: ポンツーンの円周方向圧縮力 (N)

図 4.3.1 円周方向面外曲げモーメント M_θ、水平面内曲げモーメント M_x、及び 円周方向圧縮力 N_θの概念図

図 4. 3.2 ポンツーン断面力・曲げモーメント算定の概念図

図 4.3.3 ボンツーンを構成する要素及び重心位置の概念図

4.3.1 選定揺動変位①を荷重とした場合の解析結果

選定揺動変位①を強制変位とした場合の浮き屋根の変形、相当応力分布(全体、ポンツーン 下板及び仕切り板と補強材)を図4.3.1.1から図4.3.1.4に示す。

式(4.3.1) ~式(4.3.3) から求めたポンツーン断面(内部補強材除外)に発生した円周方向面 外及び水平面内曲げモーメントと円周方向圧縮力の最大値/最小値を表4.3.1.1に示す。また、 それぞれの値の角度における変化を図4.3.1.5 から図4.3.1.7 に示す。 デッキ外周(コンプレッション・リングを含む)に発生した片側の半径方向変位(ボンツーン全体の圧縮による楕円化を示す参考値)及びデッキ外周(最外周の1要素)とコンプレッション・リング(モデル上1要素のみ、図4.2.1.2参照)に発生した半径方向の相当膜応力の分布を図4.3.1.8と図4.3.1.9に示す。

図 4.3.1.1 変形図(揺動変位①) 変形倍率:10 倍

図4.3.1.2 浮き屋根全体の相当応力分布図(揺動変位①)

図 4.3.1.4 ポンツーンの仕切り板と補強材の相当応力分布図(揺動変位①)

表 4.3.1.1 ポンツーンの算定断面力の最大値と最小値(揺動変位①)

新田中の田田			最大値		最小值			
め面力の程別		角度(度)	断面力		角度(度) 断面力			
円周方向面外曲げモ	М.,	105.0	-106.2	kN m	176 7	-124.4	kN m	
ーメント M. θ		105.9	-100.2	KIN.M	170.7	-124.4	KIN.M	
水平面内曲げモーメ	м	01.1	750 F	LN	A 1	00.0	LN	
ント	IVI. _X	91.1	756.5	KIN.M	4.1	-00.2	KIN.M	
円周方向圧縮力	Ν.θ	2.4	1478.9	kN	89.8	948.1	kN	

ここで示す断面力の符号(+あるいは-)は、以下の設定に従って示す。

- (1) 円周方向面外曲げモーメント M_θ: 下板が引っ張られる場合、符号が+となる。
 上板が引っ張られる場合、符号が-となる。
- (2) 水平面内曲げモーメント M_x:外リムが引っ張られる場合、符号が+となる。
- (3) 円周方向圧縮力 N_θ: 断面が圧縮される場合、符号が+となる。

図 4.3.1.5 ポンツーン断面に発生した円周方向面外曲げモーメント M₀の分布(揺動変位①)

図 4.3.1.6 ポンツーン断面に発生した水平面内曲げモーメント M_x の分布(揺動変位①)

図 4.3.1.7 ポンツーン断面に発生した円周方向圧縮力 N₀.の分布(揺動変位①)

図 4.3.1.9 デッキ外周とコンプレッション・リングに発生した半径方向相当膜応力の分布 (揺動変位①)

4.3.2 選定揺動変位②を荷重とした場合の解析結果

選定揺動変位②を強制変位とした場合の浮き屋根の変形、相当応力分布(全体、ポンツーン 下板及び仕切り板と補強材)を図4.3.2.1から図4.3.2.4に示す。

式(4.3.1) ~式(4.3.3) から求めたポンツーン(内部補強材除外)断面に発生した円周方向面 外及び水平面内曲げモーメントと円周方向圧縮力の最大値/最小値を表4.3.2.1に示す。また、 それぞれの値の角度における変化を図4.3.2.5 から図4.3.2.7 に示す。

デッキ外周(コンプレッション・リングを含む)に発生した片側の半径方向変位(ボンツーン全体の圧縮による楕円化を示す参考値)及びデッキ外周(最外周の1要素)とコンプレッション・リング(モデル上1要素のみ、図4.2.1.2参照)に発生した半径方向の相当膜応力の分布を図4.3.2.8と図4.3.2.9に示す。

図 4.3.2.1 変形図(揺動変位②) 変形倍率:10倍

図4.3.2.2 浮き屋根全体の相当応力分布図(揺動変位②)

図 4.3.2.3 ポンツーン下板の相当応力分布図(揺動変位②)

図 4.3.2.4 ポンツーンの仕切り板と補強材の相当応力分布図(揺動変位②)

断面力の種別		最大値			最小値		
		角度(度)	断面力		角度(度)	断面力	
円周方向面外曲げ	м.	176.2	45.7	kN m	4.1	-540.1	kN m
モーメント	IVI. ()	1/0.3	40.7	KIN.M	4.1	-340.1	KIN.M
水平面内曲げ	$M_{\rm x}$	88.5	2416.0	kN.m	176.3	-388.2	kN.m
モーメント							
円周方向圧縮力	N. <i>θ</i>	177.6	4597.8	kN	87.2	3015.7	kN

表4.3.2.1 ポンツーンの算定断面力の最大値と最小値

図 4.3.2.5 ポンツーン断面に発生した円周方向面外曲げモーメント M₀ の分布(揺動変位②)

図 4.3.2.6 ポンツーン断面に発生した水平面内曲げモーメント M_x の分布(揺動変位②)

図 4.3.2.7 ポンツーン断面に発生した円周方向圧縮力 N₀.の分布(揺動変位②)

図 4.3.2.8 デッキ外周に発生した半径方向の変位(揺動変位②)

図 4.3.2.9 デッキ外周とコンプレッション・リングに発生した半径方向の相当膜応力の分布 (揺動変位②)

4.3.3 解析結果まとめ・考察

解析結果及び発生する断面力から以下のことが確認された。

(1) 揺動変位を荷重として作用した場合、2ケースともに、浮き屋根の内リムとデッキの接合

部の周りに大きな応力が生じる。(図 4.3.1.2、図 4.3.2.2)

- (2) 応力分布図及び変形図より、応力が大きいポンツーン接合部まわりのデッキには波打ち (皺)の模様が現れている。(図 4.3.1.1、図 4.3.1.2、図 4.3.2.1、図 4.3.2.2)
- (3) ポンツーンの仕切り板の位置(断面剛性の変化)によって、円周方向面外及び水平面内曲げ モーメントの分布図に波(変動幅)が見られる。(図 4.3.1.5、図 4.3.1.6、図 4.3.2.5、図 4.3.2.6)
- (4) FEM 解析から求めたポンツーンに発生する最大円周方向面外曲げモーメント、最大水平面 内曲げモーメント及び円周方向圧縮力の比較を表 4.3.3.1 に示す。

表 4.3.3.1 ポンツーンに発生する最大断面力の結果の比較(揺動変位①と②)

最大断面力	揺動変位①	揺動変位②	
円周方向面外曲げモーメント $M_ heta$	kN.m	124.4	540.1
水平面内曲げモーメント M _x	kN.m	758.5	2416.0
円周方向圧縮力 $N_{ heta}$	kN	1478.9	4597.8

揺動変位①(1次固有モード卓越)作用によるポンツーンに発生する断面力より、揺動変位
②(2次固有モード卓越)作用による断面力の方が約3~4倍程度大きい。このことから、
2次固有モードが卓越する揺動変位はポンツーン断面力に与える影響が大きいと考えられる。

(5) デッキ外周に発生した片側の最小半径方向変位(ボンツーン全体の圧縮による楕円化を示 す参考値)及びに最大半径方向の相当膜応力を表4.3.3.2に示す。2ケースともに、デッ キ外周(コンプレッション・リングを含む)に発生する最大相当膜応力は許容応力(0.9σ _y=211.5 N/mm²)より小さい。(板厚の違いによって、コンプレッション・リングに発生する 膜応力はデッキ外周の応力値より小さい)

変位と膜応力	摇動変位①	摇動変位②	
最小半径方向変位	mm	-19.9	-23.8
最大半径方向相当膜応力	N/mm²	38.0	112.7

表4.3.3.2 デッキ外周に発生した半径方向変位と相当膜応力

(告示の算定式から求めた断面力との比較は参考として添付資料4に記載する。)

4.4 浮き屋根の耐震強度評価

詳細 FEM 解析を利用して求めたポンツーンの最大断面力から、告示の方法を応用して応力を 算定し、許容応力との比較による耐震強度評価を行った。

4.4.1 告示の方法を応用したポンツーンの応力算定と評価

4.4.1.1 ポンツーン応力評価式

浮屋根ポンツーンに発生するポンツーン断面の最大円周方向面外曲げモーメント M_θ、最大 円周方向圧縮力 N_θ、及び最大水平面内曲げモーメント M_xから応力を算定し、許容応力と対比 してポンツーンの耐震強度評価を次式により行う。

$$\sigma_{\max} \le 0.9\sigma_{y} \tag{4.4.1.1}$$

ここで、 σ_y はポンツーン材料(SS400)の降伏応力(最小値 235 N/mm²使用)である。 また、 σ_{max} は以下式より算出する

$$\sigma_{\max} = \sqrt{\sigma_{b1}^{2} + (\sigma_{b2} + \sigma_{c2})^{2}}$$
(4. 4. 1. 2)
$$\sigma_{b1} = \frac{M_{\theta}}{Z_{\theta - eff}}$$
(4. 4. 1. 3)
$$\sigma_{b2} = \frac{M_{x}}{Z_{x - eff}}$$
(4. 4. 1. 4)

$$\sigma_{c2} = \frac{N_{\theta}}{A_{eff}}$$
(4.4.1.5)

4.4.1.2 ポンツーン耐震強度評価結果(告示の方法を応用した応力評価)

詳細 FEM 解析結果を利用して求めたポンツーンの最大断面力から、告示の方法を応用して応力を算定し、許容応力との比較による耐震強度評価を行った。表 4.4.1.1 にB地区の No.4 タンクの浮き屋根のポンツーン応力評価結果のまとめを示す。

ケースNo.	算定断面力				
括動 変位① 最 法 品 品	最大円周方向面外曲げモーメント kN.m			1.24E+02	
	最大水平	西内曲げモーメント	kN.m	7.59E+02	
	最大円周	周方向圧縮力	kN	1.48E+03	
揺動	最大円周	う方向面外曲げモーメント	kN.m	5.40E+02	
	最大水平	- 面内曲げモーメント	kN.m	2.42E+03	
× H C	最大円周	同方向圧縮力	kN	4.60E+03	
有効断面係数		$Z_{\theta-eff}$	mm ³	9.49E+06	
		Z_{x-eff}	mm ³	9.47E+07	
		A _{eff}	mm ²	5.61E+04	
算定応力		σ_{bl}	N/mm ²	13.1	
	摇動	σ_{b2}	N/mm ²	8.0	
変	変位①	σ_{c2}	N/mm ²	26.4	
		σ_{max}	N/mm ²	36.8	
3	揺動 変位②	σ_{bl}	N/mm ²	56.9	
		σ_{b2}	N/mm ²	25.5	
		σ_{c2}	N/mm ²	81.9	
		σ_{max}	N/mm ²	121.6	

表 4.4.1.1 ポンツーン応力評価結果

ポンツーンの合成応力値 σ_{max} は、揺動変位①、揺動変位②ともに許容応力である 0.9 σ_{y} (=211.5 N/mm²)以下となり、当該浮き屋根のポンツーン応力は許容値を満足しているという評価結果となった。

ここでの計算に使用している断面力 M_{θ} 、 M_x 、 N_{θ} は、安全側で評価するため、全ポンツーン の中から最大値を選び出したものであり、発生している断面位置は異なる。

<参考 ポンツーンの許容耐力との比較による評価>

ポンツーンに発生する応力の評価だけでなく、JOGMEC「平成 20 年度陸上タンク開放検査周 期の合理化に関する調査検討委託業務成果報告書」¹⁾で提案されている方法として、ポンツーン 断面が塑性崩壊するか否かを判定するために許容耐力での評価を参考として記載する。

ポンツーン断面強度評価式

浮屋根ポンツーンに発生するポンツーン断面の円周方向面外曲げモーメント M_{θ} 、円周方向 圧縮力 N_{θ} 、及び水平面内曲げモーメント M_{x} と対応するポンツーン断面強度評価に係る許容耐 力 $(M_{\theta-x}, N_{\theta-x}$ 及び $M_{x-y})$ を対比してポンツーンの耐震強度評価を次式により行う。

$$\frac{M_{\theta}}{M_{\theta-Y}} + \frac{N_{\theta}}{N_{\theta-Y}} + \frac{M_{x}}{M_{x-Y}} \le 1.0$$
(4. 4. 1. 6)

ポンツーン断面強度評価に係る許容耐力の算定

浮き屋根のポンツーン断面性能を用いて、以下の算定式からポンツーン断面の許容耐力を計 算する。許容応力は、告示による応力評価に基づき、Sa=0.9σ_yと設定した。ここで、σ_yはポ ンツーン材料(SS400)の降伏応力(最小値235 N/mm²使用)である。

(1) ポンツーンの円周方向面外曲げ(円周方向曲げ)許容耐力

円周方向面外曲げモーメントに対するポンツーン箱形有効断面の最小有効断面係数 Z_{θ-eff}を 用いて、当該許容耐力を次式で計算する。

$$M_{\rho-Y} = S_{\rho} Z_{\rho-eff}$$
 (N. mm) (4.4.1.7)

(2) ポンツーンの円周方向圧縮許容耐力

円周方向圧縮力に対するポンツーン箱形有効断面の有効断面積 A_{eff}を用いて、当該許容耐力 は次式で計算する。

$$N_{\theta-Y} = S_a A_{eff}$$
 (N) (4.4.1.8)

(3) ポンツーンの水平面内曲げ(半径方向曲げ)許容耐力

水平面内曲げモーメントに対するポンツーン箱形有効断面の最小有効断面係数 Z_{x-eff}を用いて、当該許容耐力を次式で計算する。

$$M_{x-Y} = S_a Z_{x-eff}$$
 (N. mm) (4.4.1.9)
ポンツーン耐震強度評価結果(許容耐力評価)

表 4.4.1.2 に B 地区の No.4 タンクの許容耐力での浮き屋根のポンツーン断面強度評価結果 を示す。

ケースNo.		算定断面	面力	
坪勈	最大円周	同方向面外曲げモーメント	kN.m	1.24E+02
运到 亦付(1)	最大水平	- 面内曲げモーメント	kN.m	7.59E+02
灵⊡①	最大円周	<u> 方向圧縮力</u>	kN	1.48E+03
挼勈	最大円周	方向面外曲げモーメント	kN.m	5.40E+02
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	最大水平	面内曲げモーメント	kN.m	2.42E+03
× H C	最大円周	方向圧縮力	kN	4.60E+03
有効断面例	系数	$Z_{\theta-e\!f\!f}$	mm ³	9.49E+06
		$Z_{x-eff}$	mm ³	9.47E+07
		A _{eff}	mm ²	5.61E+04
許容耐力	$M_{\theta-Y}$	$J = S_a Z_{\theta - eff}$	N.mm	2.01E+09
	$M_{x-y}$	$L = S_a Z_{x-eff}$	N.mm	2.00E+10
	$N_{ heta-Y}$	$V = S_a A_{eff}$	Ν	1.19E+07
強度評価	変位①	$\frac{M_{\theta}}{M_{\theta}} + \frac{M_{\theta}}{M_{\theta}} + \frac{M_{x}}{M_{x}} < 1.0$		0.22
	変位②	$M_{\theta-Y} N_{\theta-Y} M_{x-Y} $		0.78

表4.4.1.2 ポンツーン断面強度評価結果(許容耐力評価)

ポンツーン断面強度評価指標値は、揺動変位①、揺動変位②ともに 1.0 以下となり、当該浮 き屋根のポンツーン断面強度は許容値を満足しているという評価結果となった。

ここでの計算に使用している断面力  $M_{\theta}$ 、 $M_x$ 、 $N_{\theta}$ は、安全側で評価するため、全ポンツーンの 中から最大値を選び出したものであり、発生している断面位置は異なる。

なお、耐震強度の評価項目には他にも、JOGMEC「平成 20 年度陸上タンク開放検査周期の合 理化に関する調査検討委託業務成果報告書」で提案されている、ポンツーン構造部材の強度評 価に対する許容耐力(局部及び全体座屈に係る耐力)の方法もあり、参考として添付資料5 に 示す。

Sa:許容応力 (=0.9σ_v=211.5 N/mm²)

#### 5 浮き屋根の耐震安全性の解析の概要のまとめ

告示第4条の21の3に規定される容量2万キロリットル以上、または告示第2条の2に規 定するHcが2.0m以上となる一枚板構造で、現行の技術基準を満足するタンクを対象として、 内閣府から示された南海トラフ地震の想定地震動(長周期成分)に対する耐震安全性を確認す るため、本詳細解析の対象とするタンクの浮き屋根を選定して3次元FEM解析を行った。

タンク選定の前段階として、三大都市圏の首都圏、中京圏、関西圏近傍の特防区域から1カ 所ずつ区域を選定した後、各区域(A地区、B地区、C地区)からタンク容量も考慮して、強 度上不利であると考えられるタンクを2基ずつ選定した。また、その中から線形 FEM 浮き屋根 動的応答解析システム及び告示による算定式を併用して、想定地震動に対する浮き屋根の耐震 強度が最も不利となるタンクと考えられるB地区のNo.4タンクを FEM 解析の対象に選定した。

B地区の No.4 タンクの浮き屋根の詳細 FEM 解析モデルを作成し、想定地震動を入力とした 線形 FEM 浮き屋根動的応答解析システムによる時刻歴応答解析の結果のうち、浮き屋根の変位 が最大になる応答変位(揺動変位①:1 次モード卓越)、及び浮き屋根ポンツーンの断面力が最 大になる変位(揺動変位②:2 次モード卓越)を選定して、これらの揺動変位を強制変位入力と した。これらを入力した場合にポンツーン断面に発生する円周方向面外、水平面内曲げモーメ ント及び円周方向圧縮力を応力解析結果から求めた。これらの結果を用いて告示の応力評価算 定から耐震強度を評価したところ、算定応力値は、2 ケースともに許容応力以下となり、当該 浮き屋根のポンツーン断面強度は許容値を満足していることが確認された。また、許容耐力の 算定方法によるポンツーン断面の耐震強度でも評価したところ、塑性崩壊に対するポンツーン 断面強度評価指標値は、2 ケースともに 1.0 以下となり、当該浮き屋根のポンツーン断面強度 は許容値を満足していることが確認された。

#### 参考文献

1) JOGMEC「平成 20 年度陸上タンク開放検査周期の合理化に関する調査検討委託業務成果報告書」2章: 浮き屋根スロッシング応答解析の実用化

# 特防区域の想定地震加速度を受ける場合の浮き屋根の時刻歴応答解析結果 (JOGMEC の線形 FEM 浮き屋根動的応答解析システム)

代表的な1ケースの応答時刻歴の解析結果の出力例として、B地区のNo.4 解析タンク(11 万 KL)に当該区域の想定地震加速度波形(NS 方向)が作用した場合の解析結果の出力時刻歴 波形を以下に示す。



付図 1.2 浮き屋根の揺動の固有モード(1次、2次と3次)



付図 1.3 浮き屋根の半径方向の揺動高さの分布(時刻:140 秒)



付図 1.4 浮き屋根の外リム側の揺動高さの時刻歴 (浮き屋根の半径:41885 mm)



付図 1.5 浮き屋根の半径方向の動液圧の分布(時刻:140秒、外リムの最大揺動高さ時)



付図 1.6 浮き屋根の外リム側の動液圧の時刻歴(浮き屋根の半径:41885 mm)

		最大値		発生時刻(sec)	
入力地震加速度		67.3	$cm/s^2$	140	
円周方向面外曲げモー	м	107 7	kN m	0.2	
メント	IWL O	137.7	KIN. III	IJΖ	
水平面内曲げモーメン	м	957 F	kN m	104	
٢	WLr	007.0	KIN. III	104	
円周方向圧縮力	N. O	196. 4	kN	104	

付表 2.1 ポンツーンに発生した断面力の最大値と発生時刻



付図 1.7 ポンツーンに発生した円周方向面外曲げモーメントの時刻歴(時刻:92 秒)



付図 1.8 ポンツーンに発生した水平面内曲げモーメントの時刻歴(時刻:104秒)



付図 1.9 ポンツーンに発生した円周方向圧縮力の時刻歴(時刻:104秒)

# ポンツーンの断面性能

## (1) A 地区の No.1 解析 タンク

1. 全断面

	項目	記号	記号数值		備考
全断面 (初期断面)	全断面積	А	3.85.E+04	mm ²	
	全断面二次モーメント	Ι _θ	4.46.E+09	$mm^4$	(円周方向曲げ)
	全段目二次モーメント	I _x	2.99.E+10	mm ⁴	(水平方向曲げ)

2. 有効断面

		項目	記号	外リム側	内リム側	単位	備考
	ましがい	有効断面係数(1)	$(Z_{\theta 1})_{eff}$	5.92.E+06	5.92.E+06	mm ³	- 上板有効
一次モード		中心軸からの距離	I	4.83.E+02	4.83.E+02	mm	
の影響	曲げ(2)	有効断面係数(2)	$(Z_{\theta 2})_{eff}$	3.82.E+06	7.52.E+06	mm ³	下板有効
		中心軸からの距離	-	6.81.E+02	3.46.E+02	mm	
	圧縮	有効断面積	$(A)_{eff}$	1.72.	E+04	mm ²	
二次モ <del>ー</del> ド の影響	曲げ	有効断面係数	$(Z_x)_{eff}$	6.93.E+06	1.43.E+07	mm ³	
		中心軸からの距離	-	1.74.E+03	8.42.E+02	mm	(小十万问曲け)

(注記)一次モードの影響評価では、有効断面係数は上記のうち小さい方の値を用いる。

## (2) A 地区の No. 2 解析タンク

1. 全断面

	項目	記号	数値		備考
全断面 (初期断面)	全断面積	А	4.70.E+04	mm ²	
	全断面二次モーメント	Ι _θ	5.30.E+09	mm ⁴	(円周方向曲げ)
	全段目二次モーメント	I _x	5.90.E+10	mm ⁴	(水平方向曲げ)

## 2. 有効断面

		項目	記号	外リム側	内リム側	単位	備考
	曲毛(1)	有効断面係数(1)	$(Z_{\theta 1})_{eff}$	5.91.E+06	5.91.E+06	mm ³	上版方动
一次モード		中心軸からの距離	I	4.92.E+02	4.92.E+02	mm	工权有划
の影響	曲げ(2)	有効断面係数(2)	$(Z_{\theta 2})_{eff}$	5.46.E+06	1.64.E+07	mm ³	- 下板有効
		中心軸からの距離	-	6.53.E+02	2.17.E+02	mm	
	圧縮	有効断面積	$(A)_{eff}$	2.34.	E+04	mm ²	
二次モード の影響	曲げ	有効断面係数	$(Z_x)_{eff}$	2.02.E+07	2.23.E+07	mm ³	
		中心軸からの距離	-	1,708.4050	1,551.5950	mm	(水平方向曲())
	()+==)	ー じゅり 郷 ティート・ナ	エレット・フィー	1 + 1 = 7 - 7 + 1 + 1			

(注記) 一次モードの影響評価では、有効断面係数は上記のうち小さい方の値を用いる。

## (3) B地区のNo.3 解析タンク

1. 全断面

	項目	記号	数値	単位	備考
全断面 (初期断面)	全断面積	А	4.97.E+04	mm ²	
	全断面二次モーメント	Ι _θ	4.81.E+09	$mm^4$	(円周方向曲げ)
	全段目二次モーメント	I _x	5.12.E+10	mm ⁴	(水平方向曲げ)

#### 2. 有効断面

		項目	記号	外リム側	内リム側	単位	備考	
	曲げ(1)	有効断面係数(1)	$(Z_{\theta 1})_{eff}$	3.75.E+06	5.82.E+06	mm ³		
一次モード		中心軸からの距離	-			mm	┃ ⊥似有効	
の影響	曲げ(2)	有効断面係数(2)	$(Z_{\theta 2})_{eff}$	3.56.E+06	6.11.E+06	mm ³	下板有効	
		中心軸からの距離	-			mm		
	圧縮	有効断面積	$(A)_{eff}$	1.91	E+04	mm ²		
二次モード の影響	曲げ	有効断面係数	$(Z_x)_{eff}$	1.24.E+07	3.00.E+07	mm ³		
		中心軸からの距離	-			mm	(水平方向曲げ)	

(注記)ー次モードの影響評価では、有効断面係数は上記のうち小さい方の値を用いる。

# (4) B地区のNo.4 解析タンク

1. 全断面

	項目    記号    数値		単位	備考	
全断面 (初期断面)	全断面積	全断面積    A		mm ²	
	全断面二次モーメント	Ι _θ	7.17.E+09	mm ⁴	(円周方向曲げ)
	全段目二次モーメント	Ix	3.02.E+11	mm ⁴	(水平方向曲げ)

2. 有効断面

		項目	記号	外リム側	内リム側	単位	備考
	曲げ(1)	有効断面係数(1)	$(Z_{\theta 1})_{eff}$	9.40.E+06	1.13.E+07	mm ³	- 上板有効
一次モード		中心軸からの距離	-	4.76.E+02	3.97.E+02	mm	
の影響	曲げ(2)	有効断面係数(2)	$(Z_{\theta 2})_{eff}$	8.09.E+06	1.29.E+07	mm ³	下板有効
		中心軸からの距離	-	5.57.E+02	3.48.E+02	mm	
	圧縮	有効断面積	$(A)_{eff}$	4.96.	E+04	mm ²	
二次モ <del>ー</del> ド の影響	曲げ	有効断面係数	$(Z_x)_{eff}$	8.42.E+07	8.61.E+07	mm ³	
		中心軸からの距離	-	2,637.9650	2,579.6350	mm	(小十万问曲门)

(注記) ー次モードの影響評価では、有効断面係数は上記のうち小さい方の値を用いる。

# (5) C地区の No.5 解析タンク

1. 全断面

	項目	記号	数値	単位	備考
全断面 (初期断面)	全断面積	А	2.44.E+04	mm ²	
	全断面二次モーメント	Ι _θ	2.91.E+09	mm ⁴	(円周方向曲げ)
	全段目二次モーメント	I _x	1.25.E+10	mm ⁴	(水平方向曲げ)

#### 2. 有効断面

		項目	記号	外リム側	内リム側	単位	備考
	曲げ(1)	有効断面係数(1)	$(Z_{\theta 1})_{eff}$	1.70.E+06	2.86.E+06	mm ³	
一次モード		中心軸からの距離	-	7.24.E+02	4.29.E+02	mm	工版有劝
の影響	曲げ(2)	有効断面係数(2)	$(Z_{\theta 2})_{eff}$	2.10.E+06	2.52.E+06	mm ³	- 下板有効
		中心軸からの距離	-	6.34.E+02	5.29.E+02	mm	
	圧縮	有効断面積	$(A)_{eff}$	5.74.	E+03	mm ²	
二次モ <del>ー</del> ド の影響	曲げ	有効断面係数	$(Z_x)_{eff}$	3.25.E+06	3.43.E+06	mm ³	
		中心軸からの距離	-	1,083.0793	1,026.9207	mm	(小十万问曲け)

(注記)一次モードの影響評価では、有効断面係数は上記のうち小さい方の値を用いる。

# (6) C地区の No. 6 解析タンク

1. 全断面

	項目	記号	数值	単位	備考
	全断面積	А	4.28.E+04	mm ²	
全断面 (初期断面)	全断面二次モーメント	Ι _θ	4.43.E+09	mm ⁴	(円周方向曲げ)
	全段目二次モーメント	Ix	4.21.E+10	mm ⁴	(水平方向曲げ)

2. 有効断面

		項目	記号	外リム側	内リム側	単位	備考	
ー次モード の影響	曲毛(1)	有効断面係数(1)	$(Z_{\theta 1})_{eff}$	6.97.E+06	9.02.E+06	mm ³	나도도차	
	囲いい	中心軸からの距離	-	4.41.E+02	3.41.E+02	mm	上极有効	
	曲げ(2)	有効断面係数(2)	$(Z_{\theta 2})_{eff}$	4.31.E+06	9.64.E+06	mm ³	고변수상	
		中心軸からの距離	-	6.52.E+02	2.91.E+02	mm	下似有初	
ニ次モード の影響	圧縮	有効断面積	$(A)_{eff}$	1.98.E+04		mm ²		
	<b></b>	有効断面係数	$(Z_x)_{eff}$	9.14.E+06	1.56.E+07	mm ³		
	曲17	中心軸からの距離	-	2,008.1542	1,179.8458	mm	(小十万问曲17)	

(注記)一次モードの影響評価では、有効断面係数は上記のうち小さい方の値を用いる。

## 添付資料3

# 告示による応力計算シート(一例) (B地区の No. 4 タンクの応力計算シート)

## 消防法告示の応力算定と評価方法による No.4 解析タンクのシングルデッキ浮き屋根の応力計算シート

タンク諸元

No	項目	記号	値	単位
1	タンク容量		110050	KL
2	タンク内径	D	8427	cm
3	側高さ	$\mathrm{H}_{\mathrm{t}}$	2335	cm
4	液高さ	H	2002.5	cm
5	液比重	ρ	0.87	$g/cm^3$
6	重力加速度	g	980.665	$cm/s^2$
7	縦弾性係数	Е	20600000	$N/cm^2$
8	せん断弾性係数	G	7943386.5	$N/cm^2$
9	外リム取付半径	R _o	4188.5	cm
10	内リム取付半径	$R_i$	3678.5	cm
11	ポンツーン中心半径	R _m	3933.5	cm
12	ポンツーン幅	В	510	cm
13		H/D	0.238	
14		H _t -H	332.5	cm

赤字:入力值

## 1) 水平面内曲げモーメント

- / /				
1	全断面二次モーメント	Ix	3.02E+07	$cm^4$
2	補正係数(ポンツーン断面剛性)	$\alpha_1$	0.440	
3	補正係数(ポンツーン断面剛性)	$\alpha 2$	3.225	
4	応力補正係数	$\beta 2$	0.625	
5	スロッシング面外変形量	$\Delta$	72.3	cm
6	ポンツーン半径方向変位量	u _{r0}	4.28	cm
7	半径方向膜力	$f_{m1}$	66.85	N/cm
8	曲げモーメント	Mx	2.5863164E+08	N.cm
9	有効断面係数	Ze	8.42E+04	$cm^3$
10	曲げ応力	$\sigma_{ m b2}$	3073	$N/cm^2$

## 2) 円周方向圧縮応力

1	全断面積	А	8.76E+02	$cm^2$
2	ポンツーン断面剛性	$A/R_m^2$	5.659E-05	
3	半径方向膜力	$f_{m2}$	2497	N/cm
4	円周方向圧縮力	N $_{\theta}$	9807242	Ν
5	有効断面積	A _e	4.96E+02	$cm^2$
6	圧縮応力	$\sigma_{c2}$	19766	$N/cm^2$
				-
А	合計 (σ _{b2} +σ _{c2} )		22840	$N/cm^2$

# 3) 円周方向曲げ応力

1	全断面二次モーメント	Ι _θ	7.17E+05	$cm^4$
2	スロッシング波高(一次)	$\eta_{\max}^{(1)}$	185.2	cm
3	浮力ばね定数	k	4.351210605	$N/cm^2$
4	応力補正係数	$\beta_{1}$	0.898	
5	曲げモーメント	M $_{\theta}$	16891342	N.cm
6	有効断面係数(上板·下板考慮)	Ζ _θ	8.09E+03	$cm^3$
7	曲げ応力	$\sigma_{b1}$	2087	$N/cm^2$

## 4) 合成応力

B $\sqrt{((\sigma_{b2}^{+}+\sigma_{c2}^{-})^{2}+\sigma_{b1}^{-2})}$ 22935 N/cm ²	_/			
	В	$\sqrt{((\sigma_{b2}^{+}+\sigma_{c2}^{-})^{2}+\sigma_{b1}^{-})}$	22935	$N/cm^2$

計算式一覧表(消防法告示参照)

$\alpha_1 = \exp(-14500\frac{A}{R_m^2})$	0.44
$\alpha_2 = 0.00082 \ R_m$	3.23
$\Delta = 2.041 \alpha_1 \eta_{\rm max}^{(2)}$	72.28
$u_{r0} = 0.00082  \Delta^2$	4.28
$u_{r1} = \frac{u_{r0}}{2}$	2.14
$f_{m1} = \frac{12 EI_x}{R_m^4} u_{r1}$	66.85
$\beta_2 = \alpha_1^2 \alpha_2$	0.63

$M_{x} = 6.25\beta_{2} \frac{EI_{x}}{R_{m}} (\frac{\eta_{\text{max}}^{(2)}}{R_{m}})^{2}$	258631637.14
$\sigma_{b2} = \frac{M_x}{(Z_x)_{eff}}$	3073.25
$f_{m2} = \frac{EA}{R_m^2} (\frac{u_{r0}}{2})$	2496.67
$N_{\theta} = 2.08\beta_2 EA(\frac{\eta_{\text{max}}^{(2)}}{R_m})^2$	9807241.63
$\sigma_{c2} = \frac{N_{\theta}}{(A)_{eff}}$	19766. 45
$k = g  \frac{\rho B}{1000}$	4.35
$eta_1 = rac{k}{rac{8EI_{\  heta}}{R_m^4} + k}$	0.90
$M_{\theta} = 2.26\beta_1 \frac{EI_{\theta}}{R_m} (\frac{\eta_{\text{max}}^{(1)}}{R_m})^2$	16891342.05
$\sigma_{b1} = \frac{M_{\theta}}{(Z_{\theta})_{eff}}$	2086.82

## FEM 解析から求めたポンツーンに発生する断面力と告示の算定値との比較

告示による応力算定式を用いて求めたポンツーンに発生する最大円周方向面外曲げモーメント、最大水平面内曲げモーメント及び円周方向圧縮力と今回の FEM 応力解析結果との比較を 付表 4.1 に示す。

断面力		摇動変位①	揺動変位②	告示算定式の 値 [※]
円周方向面外曲げモーメント $M_ heta$	kN.m	124.4	540.1	168.9
水平面内曲げモーメント M _x	kN.m	758.5	2416.0	2572.7
円周方向圧縮力 N _θ	kN	1478.9	4597.8	9755.7

付表 4.1 ポンツーンに発生する断面力の結果の比較(揺動変位①と②)

※ 告示の応力算定式での値は NS と EW 方向波形の最大値を掲載

告示による浮き屋根ポンツーンの断面力算定において、 $M_{\theta}$ は1次モードの影響を見ており、  $M_{x}$ と $N_{\theta}$ は2次モードの影響を見ている。そこで、揺動変位①(1次固有モード卓越)の $M_{\theta}$ 、揺動変位②(2次固有モード卓越)での $M_{x}$ 、 $N_{\theta}$ と比較すると、両者はほぼ同じか告示の断面力の 方が大きな値であり、本検討の浮き屋根・条件において告示の算定式が安全側となっている。

本検討手法では、浮き屋根の変形状態を線形 FEM 浮き屋根動的応答解析システムで計算(微 小変形での計算)し、その変位を入力値とした詳細形状の FEM モデルの解析(幾何学的非線形考 慮)で得られる応力分布結果を用いてポンツーンの断面力を計算している。

今回使用した浮き屋根の揺動変位は計算プログラムが微小変形を前提としたものであるた め、告示で採用している液面での有限振幅を前提とした振動変位と同列には評価できない。

また、2次モードに関して、告示では2次モードまでの限られたきれいな曲線の揺動波形と しているのに対し、本手法ではデッキ変形を計算する際には高次のモードまで含み、想定地震 動に対応した複雑な波形を入力として計算している。これらの入力波形の違いが断面力の差に も表れていると考えられる(本文 図 4.2.2.1 及び図 4.2.2.2 の揺動変位参照)。

## 添付資料5

## ポンツーン構造部材の強度評価に対する許容耐力での評価

耐震強度の評価には、他にも JOGMEC「平成 20 年度陸上タンク開放検査周期の合理化に関す る調査検討委託業務成果報告書¹⁾」に提案される許容耐力によるポンツーン断面の耐震強度評 価がある。本資料では参考としてここで提案されている方法を紹介する。

ポンツーン断面力から耐震強度評価を行う際に、以下2つの目的に応じた許容耐力で評価する。

(1) ポンツーンの断面強度評価に対する許容耐力(塑性崩壊に係る耐力)

(2)ポンツーン構造部材の強度評価に対する許容耐力(局部及び全体座屈に係る耐力)

このうち、(1)については 4.4 節記載のものと同じであるため、ここでは(2)についてのみ記載 する。

### ポンツーンの部材強度評価式

ポンツーン断面の円周方向面外曲げモーメント $M_{\theta}$ 、円周方向圧縮力 $N_{\theta}$ 、及び水平面内曲げ モーメント $M_x$ と部材強度に係るポンツーンの許容耐力( $M_{\theta-er}$ 、 $N_{\theta-er}$ 及び $M_{x-er}$ )を対比して、 ポンツーンの耐震強度評価を次式により行う。この場合、曲げモーメントによる変形の上に円 周方向圧縮力が作用して生じる付加曲げモーメント効果を考慮している。²⁾

$$\frac{M_{\theta}}{M_{\theta-cr}(1-\frac{N_{\theta}}{N_{\theta-cr}})} + \frac{N_{\theta}}{N_{\theta-cr}} + \frac{M_{x}}{M_{x-cr}(1-\frac{N_{\theta}}{N_{\theta-cr}})} \le 1.0$$
(a. 1)

#### <u>ポンツーンの部材強度評価に係る許容耐力</u>

ポンツーンは、薄板及び補強・補剛材で構成される箱形断面の環状リング構造であり、次の ような座屈様式を考慮しなければならない。

- 1) 構成薄板材(上板・下板等)の局部座屈
- 2) 薄板に接合される補強・補剛材の座屈
- 3) 薄板で構成されるコーナー部有効断面円弧材の座屈
- 4) 環状リング構造の全体座屈

ここでは、構成薄板材の局部座屈を許容し、当該薄板材の有効幅を考慮することにより、上記 2) ~4)の座屈強度を検討した上、各座屈様式に対応する許容座屈応力(安全係数の設定を含 む)から、許容耐力の算定を行う。部材(板か、補強材か)によって、算定式がすでに実用化 されている。 算定式の一例として、コーナー部座屈に係るポンツーンの許容耐力の算定式を以下に示す。 コーナー部座屈に係るポンツーンの許容耐力は、当該許容座屈応力 Sa-o及び求める個別許容 耐力に対応する有効断面性能用いて以下のように求められる。

(1) コーナー部座屈に係る面外曲げ許容耐力 M_{θ-cr}

最小の円周方向面外曲げ有効断面係数(Z_{θ-eff})を用いて次式で計算する。ただし、断面強度 評価に係る面外曲げ許容耐力 M_{θ-Y}以下とする。

$$M_{\theta-cr} = S_{a-c} \times Z_{\theta-eff} \le M_{\theta-Y}$$
(a. 2)

(2) コーナー部座屈に係る円周方向圧縮許容耐力 N._{θ-cr}

最小の円周方向圧縮有効断面積(A_{eff})を用いて次式で計算する。ただし、断面強度評価に係 る円周方向圧縮許容耐力 N_{θ-Y}以下とする。

$$N_{\theta-cr} = S_{a-c} \times A_{eff} \le N_{\theta-Y} \tag{a. 3}$$

(3) コーナー部座屈に係る面内曲げモーメントに対する許容耐力 M_{x-y}

最小の水平面内曲げ有効断面係数(Z_{x-eff})を用いて次式で計算する。ただし、断面強度評価に 係る水平面内曲げ許容耐力 M_{x-r}以下とする。

$$M_{x-cr} = S_{a-c} \times Z_{x-eff} \le M_{x-Y}$$
(a. 4)

参考文献

- 1) JOGMEC「平成 20 年度陸上タンク開放検査周期の合理化に関する調査検討委託業務成果 報告書」2章: 浮き屋根スロッシング応答解析の実用化
- 2) 土木学会:鋼構造物設計指針、PART A 一般構造物(1987)

# 第3部 首都直下地震に対する耐震安全性の確認

## 第1章 地震波形の作成

## 1 地震波形の作成

首都直下地震に対する屋外タンク貯蔵所のタンク本体及び基礎・地盤の耐震安全性の検 証を行うため、平成25年に内閣府から公開された工学的基盤における首都直下地震の想定 地震動(短周期地震動)から、地震応答解析により地表の地震波形の作成を行う。

## 1.1 首都直下地震の概要

内閣府上が推定した首都直下地震の震源域を図 1.1.11 に示す。このうち国が防災対策上の対象地震としており、地震波形が公開提供されている「都心南部直下(Mw7.3)」の地震を、本検討においても対象地震とする。



図 1.1.1 首都直下地震の震源域

1 内閣府首都直下地震モデル検討会:首都直下のM7クラスの地震及び相模トラフ沿いの M8クラスの地震等の震源断層モデルと震度分布・津波高等に関する報告書 (平成 25 年 12 月 19 日発表)

## 1.2 地表における地震波形の作成の流れ

図 1.2.1 に示す手順により、首都直下地震の想定地震波形を作成する。

内閣府が作成した工学的基盤における首都直下地震の地震波形は、震源モデルや既知の 歴史地震との比較分析により妥当性が確認されている。また、今回の作成手法は、一定の 妥当性があることを確認している平成26年度の南海トラフ地震の地震波形の作成手法

(第2部第1章)と同様の手法を用いる。一方、内閣府から公開された想定地震波形については、統計的グリーン関数法により工学的基盤約1kmメッシュごとに推計した結果であり、統計上のばらつきが生じている可能性があること、また、解析対象とする特防区域で複数のメッシュが存在することから、対象地域の地震波形を選定する際には統計的に処理して妥当性を確認する。なお、統計的グリーン関数法により推計された地震波形は、南海トラフ地震の長周期地震動などで採用されている三次元差分法による推計と異なり、主に短周期成分に着目した結果であることに留意する必要がある。





## 1.3 対象地区

内閣府から公開されている首都直下地震による震度分布(図1.3.1)を参照して、東京湾 沿岸の特防区域のうち、大規模な屋外タンク貯蔵所が多数所在し、かつ、想定震度が震度 6強となる主な特防区域として、京浜臨海、根岸臨海、京葉臨海中部の3地区を選定し た。



図 1.3.1 首都直下地震による震度分布 出典:内閣府首都直下地震モデル検討会:

首都直下のM7クラスの地震及び相模トラフ沿いのM8クラスの地震等の震源断層モデルと震度分布・津波高等に関する報告書 図表集(平成25年12月19日発表)

## 1.4 計算に用いる首都直下地震の工学的基盤における地震波形

内閣府から公開されている解析対象地区の工学的基盤での波形(1km メッシュ毎)から 各地区に存在するタンクのバルジング固有周期帯で加速度応答スペクトルが最大となる波 形を選定した。表 1.4.1 に最大加速度値を示す。また、工学的基盤での波形及びスペクト ルを図 1.4.1~図 1.4.12 に示す。

計在地区	最大加速度(cm/s ² )			
刈豕地区	NS	$\mathbf{EW}$		
京浜臨海地区	220.5	562.4		
根岸臨海地区	168.4	469.3		
京葉臨海中部地区	442.6	46.8		

表1.4.1 首都直下地震の工学的基盤での最大加速度



図 2.4.1 京浜臨海地区(川崎)の内閣府(2013)波形公開位置(約1kmメッシュ) と 採用波形の位置



図 1.4.2 京浜臨海地区(川崎)の全メッシュと平均の加速度応答スペクトル (EW 成分 h=5%)



図 1.4.3 京浜臨海地区(川崎)の平均と周期 0.2~0.8 秒での最大の加速度応答スペクト ル(EW 成分 h=5%)



図 1.4.4 京浜臨海地区(川崎)で採用した時刻歴波形と応答スペクトル(h=10%)



図 1.4.5 根岸臨海地区の内閣府(2013)波形公開位置(約 1km メッシュ) と 採用波形の位置



図 1.4.6 根岸臨海地区の全メッシュと平均の加速度応答スペクトル (EW 成分 h=5%)



(EW 成分 h=5%)





図 1.4.9 京葉臨海中部地区の内閣府(2013)波形公開位置(約 1km メッシュ) と 採用波形の位置



図 1.4.10 京葉臨海中部地区の全メッシュと平均の加速度応答スペクトル (NS 成分 h=5%)



図 1.4.11 京葉臨海中部地区の平均と周期 0.1~1.0 秒での最大の加速度応答スペクトル (NS 成分 h=5%)



図 1.4.12 京葉臨海中部地区で採用した時刻歴波形と応答スペクトル(h=10%)

## 1.5 解析対象地区の地盤構成の検討

地震応答解析を考えた場合、地盤構成、物理特性及び動的変形特性等を適切に考慮して 設定することが重要である。また、屋外タンク貯蔵所の基礎・地盤については、液状化対 策が行われていることが前提となる。したがって、関係団体より提供されたデータ(地盤 調査及び液状化対策工法に関する資料)を詳細に吟味するとともに、既往調査資料や各種 文献などのデータも参考にしながら定数を設定した。

## 1.5.1 京浜臨海地区

設定した地盤モデルについて表 1.5.1 に示す。埋め立て地盤であり、地表から深さ 10m 付近までN値 10 前後の砂質土層と深さ 10m~30m 付近まで粘性土層の有楽町層と呼ばれ る沖積層、その下部には粘性土と砂質土の互層となる洪積層が深さ 70m 付近まで続き、S 波速で 450m/s となる礫質層が工学的基盤となる地盤構成となっている。図 1.5.1 に示す 港湾地域強震観測(川崎地-M)が設置されている地点の地盤情報等を元にモデル化を行っ た。動的変形曲線は、池田ら(2012)²(図 1.5.2)を参考に設定した。

また、図 1.5.3 及び図 1.5.4 で示すように東京湾で発生した地震による観測記録を用いて 再現計算を行ったうえで、モデルの妥当性を確認した。

## 1.5.2 根岸臨海地区

設定した地盤モデルについて表 1.5.2 に示す。埋め立て地盤であり、地表から深さ 6m 程度で N 値 50 以上、S 波速で 470m/s、工学的基盤となる上総層群が確認され、その上部 に沖積の砂質土層や粘性土層が薄く堆積する地盤構成となっている。原地盤の地盤情報を 元にモデル化を行った。図 1.5.5 に示す横浜市が公開している柱状図 ³を基本に、図 1.5.6 港湾地域強震観測(山下-F)が設置されている地点の地盤情報等を元にモデル化を行っ た。動的変形曲線は、京浜臨海地区同様に池田ら(2012)より設定した。

根岸臨海地区周辺には一般公開されている地震観測記録はなく、その妥当性は検証でき ていないが、地盤モデルが比較的単純であるため影響は少ないと判断した。

#### 1.5.3 京葉臨海中部地区

設定した地盤モデルについて表 1.5.3 に示す。埋め立て地盤であり、地表から深さ 20m 付近までN値 5~15 前後の砂質土層、N値 0~3 前後の粘性土層からなる沖積層が堆積し ている。沖積層の下には埋没した段丘堆積物である N値 50 を確認する洪積層があり、一 般的な杭基礎などはこの層を基盤としている。しかし、下部には N値 20 以上ではあるも

² 池田他(2012):地盤の非線形地震応答解析による 2011 年東北地方太平洋沖地震における東京湾臨海部の地震時挙動の検討,土木学会第 67 回年次学術講演会 I-232

³ 横浜市地盤地図情報 「地盤View(じばんびゅー)」

http://wwwm.city.yokohama.lg.jp/agreement.asp?dtp=3&

のの洪積の粘性土層があらわれ、50m 付近で N 値 50 以上と工学的基盤となるような砂質 土層からなる地盤構成となっている。図 1.5.7 に示す千葉県が公開している柱状図 4を基 本に、図 1.5.8 に示す港湾地域強震観測(千葉-G)が設置されている地点の地盤情報等を 元にモデル化を行った動的変形曲線は、京浜臨海地区同様に池田ら(2012)を参考に設定 した。

さらに、港湾地域強震観測(千葉・G)においては、図 1.5.9 及び図 1.5.10 で示すよう に、H23 東北地方太平洋沖地震等による観測記録を用いて再現計算を行ったうえで、観測 記録の増幅特性などを再現できる S 波速度を設定するなど地盤定数のチューニングを行 い、工学的基盤の S 波速度を 700m/s に設定するなどモデル化に反映した。

		深さ	(m)	代韦 N	密度	P 波速度	S 波速度
記号	土質	上端	下端	值	<i>p</i> (t∕m3)	m3) Vp	V.s
		1				(m/sec)	(m/sec)
FI	埋土·盛土	0.00	0.50	5	1.90	460	150
SF	沖積砂質土	0.50	5.00	5	1.95	1500	150
SF	沖積砂質土	5.00	12.00	12	1.95	1500	190
М	沖積シルト	12.00	16.00	3	1.65	1500	130
М	沖積シルト	16.00	32.00	3	1.65	1500	150
С	沖積粘性土	32.00	42.50	5	1.65	1500	210
SF	洪積砂質土	42.50	46.50	30	1.85	1500	380
С	洪積粘性土	46.50	52.50	14	1.70	1500	250
SF/M	洪積砂質土	52.50	60.50	30	1.70	1500	250
М	洪積シルト	60.50	68.00	14	1.70	1500	250
GF	礫質土	68.00	74.00	50	2.00	1500	450

表 1.5.1 京浜臨海地区の地盤モデル

4 千葉情報マップ https://www.pref.chiba.lg.jp/jousei/chibamap/





図 1.5.2 京浜臨海地区で参考にした動的変形曲線




記号	土質	深さ(m)		代表 N	密度	P 波速度	S 波速度				
		上端 下端 值		$0(t/m^{2})$	Vp	V _s					
				ļ	ρ(ι/ 113)	(m/sec)	(m/sec)				
FI	埋土·盛土	0.00	2.40	10	1.60	380	160				
S	沖積砂質土	2.40	4.80	11	1.70	1290	230				
М	沖積シルト	4.80	6.00	3	1.60	1530	220				
R	岩盤	6.00	8.35	50	1.90	1790	470				

表1.5.2 根岸臨海地区の地盤モデル

土 質 柱 状 図



(横浜市地盤地図情報 「地盤View(じばんびゅー)」)



히므 + 쩐		深さ	(m)	代表 N	密度	P 波速度	S 波速度
記号	土質	上端	下端	值	<i>p</i> (t∕m3)	Vp (m∕sec)	V _s (m∕sec)
В	埋土·盛土	0.00	1.20	13.0	1.60	460	100
As1	沖積砂質土	1.20	2.50	6.0	1.60	1410	100
Ac1	沖積粘性土	2.50	4.30	0.0	1.50	1410	100
As2	沖積砂質土	4.30	11.70	16.1	1.80	1410	150
Ac2	沖積粘性土	11.70	19.40	3.1	1.70	1410	120
Ds1	洪積砂質土	19.40	22.80	43.7	2.00	1580	290
Dc1	洪積粘性土	22.80	26.05	25.3	2.00	1580	290
Dc2	洪積粘性土	26.05	32.80	46.9	2.00	1580	290
Dc3	洪積粘性土	32.80	48.10	28.8	1.90	1580	250
Ds2	洪積砂質土	48.10	50.00	41.5	2.00	1500	290
Ds3	洪積砂質土	50.00	53.44	50.0	2.20	1640	700

表1.5.3 京葉臨海中部地区の地盤モデル



図 1.5.7 京葉臨海中部地区の参考とした柱状図例(千葉マップ)



図 1.5.8 京葉臨海中部地区の参考とした柱状図例(港湾強震計 千葉-G)



図 1.5.9 H23 東北地方太平洋沖地震の再現計算結果(京葉臨海中部地区 NS 成分)



図 1.5.10 H23 東北地方太平洋沖地震の再現計算結果(京葉臨海中部地区 EW 成分)

#### 1.6 地震応答解析による地表の地震波形の作成

これまでの検討結果を踏まえ、首都直下地震の工学的基盤の波形を入力地震波として、対象地区における地表面での地震波形の作成を行った。

地震応答解析は、首都直下地震という大きな地震動を検討対象とするため、同じ全応力 法でも等価線形解析より大きなひずみで精度が高い全応力逐次非線形解析を採用し、プロ グラムコードは、南海トラフ地震の検討と同様に『YUSAYUSA-2』5を採用した。

解析結果を表 1.6.1、図 1.6.1~図 1.6.3、深さごとの最大応答値を図 1.6.4~図 1.6.6 に 示す。

京浜臨海地区では、深さ10m~30m付近の有楽町層においてひずみ0.5%を超えて1% まで達しており、非線形特性が顕著に表れた結果、最大相対変位は25cmと大きくなる一 方、最大加速度は340cm/s²程度に減衰している。

根岸臨海地区では堆積層が薄く、ひずみも最大 0.2%程度であり非線形特性は表れていない。その結果、最大相対変位は最大 1cm と小さいが、最大加速度は 570cm/s²に増幅している。

京葉臨海中部地区では、深さ10m~20m付近の有楽町層においてひずみ0.5%を超えて 非線形特性が表れているが、最大相対変位は10cm程度にとどまり、最大加速度は 300cm/s²程度に若干減衰した結果となっている。

计在地区	最大加速度	$\xi$ (cm/s ² )	
刈家地区	NS	EW	
京浜臨海地区	130.9	342.3	
根岸臨海地区	242.9	568.5	
京葉臨海中部地区	301.3	86.1	

表 1.6.1 首都直下地震の地表での最大加速度







図 1.6.1 京浜臨海地区の地表面での時刻歴波形と応答スペクトル(h=10%)



図 1.6.2 根岸臨海地区の地表面での時刻歴波形と応答スペクトル(h=10%)







図 1.6.3 京葉臨海中部地区の地表面での時刻歴波形と応答スペクトル(h=10%)



図 1.6.4 京浜臨海地区の深さ方向最大応答分布



図 1.6.5 根岸臨海地区の深さ方向最大応答分布



図 1.6.6 京葉臨海中部地区の深さ方向最大応答分布

#### 2 地震波形作成のまとめ

首都直下地震として選定した都心南部直下(Mw7.3)は、フィリピン海プレート内のM 7クラスの地震として、地震の発生場所の想定は難しいが都区部及び首都地域の中核都市 等の直下に想定する地震として設定されたものである。その強震断層モデルはシンプルに 南北に設定されていることから、解析において方位依存性の影響が顕著に表れた結果とな っており、公開波形のNS成分、EW成分のバランスが極端になっていることを考える と、各地域の大きい成分を解析において利用するのが妥当である。図2.1に3地区の最大 成分の比較を示す。

最大加速度で比較すると、根岸臨海地区 > 京浜臨海地区 > 京葉臨海中部地区である。加速度応答スペクトルで比較すると 0.8 秒より短周期成分で根岸臨海地区が大きく、 長周期成分では京浜臨海地区が大きい結果となっている。

京浜臨海地区は震源からも近く、工学的基盤面での入力地震動は最大であったにもかか わらず、地表での最大加速度値などは一番小さくなっている。この結果は前項2.5で示 した地盤モデル、特に工学的基盤の深さや軟弱な粘土層である有楽町層の層厚の影響によ り、地盤の非線形特性が表れている結果である。図2.2に東京湾の海底地形に約2万年前 に古い地層を削った古東京川を示したもの、図2.3に関東地方の海進・海退による地形の 変遷を示す。

屋外タンク貯蔵所の固有周期 0.2 秒~0.8 秒付近の加速度応答値では、根岸臨海地区が 一番大きく、京浜臨海地区、京葉臨海中部地区は同程度であることがわかる。

まとめると、3地区において短周期成分が卓越しタンクの浮き上がりなどに一番厳しい 状況が予想されるのは根岸臨海地区である。また、非線形特性が顕著に表れ地震動の長周 期化や大きな地盤変形が予想されるのは京浜地区である。京葉臨海中部地区は、どの周期 帯をとっても、特徴的な2地区の中間的な地震応答結果を示す。



図 2.1 3地区の最大成分の時刻歴波形と応答スペクトル(h=10%)



図中緑の部分は陸地を表し、茶色の部分は海底地形を表す。 なお、陸地部の地形の凹凸は表現していない。

# 図 2.2 東京湾の海底地形。

((財)日本水路協会海洋情報センターの海底地形データを参考に作成)

⁶ 社団法人東京都地質調査業協会:技術ノート(No.37)特集東京湾(平成16年11月)



図2a:12.5万年前



図2c:7千年前



図2b:2万年前



図2d:現在

図 2.3 関東地方の海進・海退による地形の変遷(赤線は現在の海岸線を示す。)? (「日本の自然4 日本の平野と海岸」:貝塚爽平他(岩波書店)、に加筆)

7 社団法人東京都地質調査業協会:技術ノート(No.37)特集東京湾(平成16年11月)

# 第2章 屋外貯蔵タンクの耐震安全性の解析

### 1 屋外貯蔵タンクの耐震安全性の解析の概要

東北地方太平洋沖地震の再現波形で検証された解析手法及び平成 27 年度に検討されたマル チリニア型非線形ばね特性を使用する質点系モデル(第2部第2章)を用い、首都直下地震 (短周期地震動の水平成分)に対する屋外貯蔵タンクの耐震安全性を解析にて確認する。

## 1.1 解析の流れ

本調査は図1.1に示す手順により、以下の3種類の解析を実施した。

(1) 質点系モデルによる代表タンクの側板下端部の浮き上がり解析

(2) 2 次元軸対称モデルによる浮き上がりの繰返し挙動を考慮した隅角部の疲労損傷度評価解析

(3)3次元シェルモデルによる底板浮き上がり時の側板の座屈強度評価解析



図1.1 首都直下地震に対する屋外貯蔵タンク耐震安全性確認解析の流れ

### 1.2 解析対象タンクの検討

首都直下地震の想定地震動の作成対象の3つの特防地区(A地区、B地区、C地区)に設置された屋外タンク貯蔵所のタンクを容量別に整理し、1000 KL、5000 KL~6000 KL、10000 KL、30000 KL、50000 KL、70000 KL~77000 KL、100000 KLの容量のものを検討対象とした。これらの容量をもつ各地区の代表タンクの板厚、材質等は入手データに基づき、表 1.2.1 のとおりとした。

地区	タンク番号	許可容量	内容物	比重	内径	高さ	許可液面	側板板	厚(mm)	アニュラ板厚	材	質
		(KL)			(m)	(m)	(m)	最下段	液高1/3	(mm)	側板	アニュラ板
	1	1000	ヘキサン	0.67	11.60	12.19	10.88	6.0	4.9	10.0	SS41	SM400C
A	2	5000	軽油	0.83	23.24	12.24	11.79	12.0	9.2	9.0	SS41	SS41
(6基)	3	10000	ナフサ	0.74	32.93	15.20	11.70	19.0	14.1	12.0	SM41A	SM400C
	4	30000	原油	0.89	53.60	16.46	12.88	35.0	26.9	12.0	SM41W	SS41
	5	50000	原油	0.89	61.00	20.10	16.16	21.0	17.3	15.0	WELCON2H	SM490C
	6	75000	軽油	0.88	70.00	21.96	19.62	30.0	23.9	18.0	HW50	SPV490Q
	1	1000	潤滑油	1.00	11.63	10.72	9.42	6.0	4.1	6.0	SS41	SS41
В	2	6000	重油	1.00	29.07	10.76	9.07	14.0	8.4	9.0	SS41	SS400
(7基)	3	10000	重油材	1.00	32.94	13.80	11.63	18.0	12.8	8.0	SS41	SS41
	4	30000	重油	1.00	52.33	16.75	13.16	17.0	13.8	12.0	HT60	SPV490Q
	5	50000	原油	0.87	69.77	15.29	12.61	22.1	18.1	11.4	HT60	HT60
	6	77000	原油	0.86	77.27	19.49	16.36	30.0	22.8	12.0	HT60	SM58Q
	7	100000	原油	1.00	81.48	22.57	19.06	36.0	28.0	12.0	HT60	HT60
	1	1000	DIB	0.72	11.62	12.16	10.85	6.0	4.4	9.0	SS41	SS41
С	2	5000	ジェット	0.76	23.25	13.76	12.38	13.0	9.9	12.0	SS41	SM41C
(7基)	3	10000	重油	0.86	32.93	13.76	11.89	18.0	13.5	12.0	SS41	SM400C
	4	30000	ガソリン	0.80	45.76	20.14	16.48	18.0	12.2	12.0	SPV50	SPV50
	5	50000	ナフサ	0.75	67.80	18.28	14.41	26.0	20.9	12.0	2H	2H
	6	70000	原油	0.89	67.80	21.96	19.83	30.0	22.3	12.0	HT60	HT60
	7	100000	原油	1.00	81.60	21.88	18.63	30.0	23.0	12.0	HW50	HW50

表 1.2.1 3 つの地区の代表タンクモデル (合計 20 基)の諸元

### 1.2 内容液の貯蔵率及び比重

(1) 内容液の貯蔵率

安全側の評価となるよう、質点系解析においては、内容液の貯蔵率を100%として解析を 実施した。

# (2) 内容液の比重

今回の検討においては、各検討タンクの実内容液の比重を使用して解析を行った。

### 1.3 質点系モデルによる側板下端部の浮き上がり解析

首都直下地震の検討地域として選択した A 地区、B 地区及び C 地区での代表タンク 20 基について非線形ばね特性を有する質点系モデルを作成し、それぞれの地区のタンクに設置された地区での想定地震動を作用させる地震応答解析を実施した。

解析には有限要素法非線形構造解析プログラム Abaqus 2016 を用いた。

# 1.3.1 解析モデル・条件

(1) 解析モデルの設定

浮き上がり解析は図 1.3.1 に示す質点系非線形水平ばねモデルを用い、ばねの復元力特性 は図 1.3.2 に示すような屋外貯蔵タンクの浮き上がり挙動を模擬するマルチリニア型非線 形水平ばね特性(Q-Δ 線図)を使用した。このモデルは平成 27 年度に検討した質点系モデル として定式化したものである。



図 1.3.1 質点系非線形水平ばねモデル



図 1.3.2 水平抵抗力 Qと水平変位 △ の線図(一例)

代表タンク 20 基の質点系モデルの諸元を表 1.3.1 から表 1.3.3 に示す(詳細は添付資料 1 の諸元計算シート参照)。解析条件は、平成 27 年度南海トラフ想定地震動に対する屋外貯 蔵タンクの浮き上がり解析と同様(減衰比一律 0.15、側板重量等(側板、側板の付属品及び 固定屋根の重量を含む)を考慮)とした。

諸元	単位	A-1	A-2	A-3	A-4	A-5	A-6
許可容量	KL	1,000	5,000	10,000	30,000	50,000	75,000
バルジング振動の固有周期 T。	s	0.145	0.179	0.172	0.216	0.349	0.378
補正係数」*1	-	1.1	1.1	1.1	1.1	1.1	1.1
バルジング振動の初期剛性 K _b	N/cm	1.03E+07	2.85E+07	4.29E+07	6.31E+07	4.26E+07	6.13E+07
有効液重量 W ₁	N	5.33E+06	2.27E+07	3.16E+07	7.30E+07	1.29E+08	2.18E+08
減衰係数 C _e	N/cm/s	7.09E+04	2.44E+05	3.53E+05	6.50E+05	7.10E+05	1.11E+06
側板自重による鉛直抵抗力 qt	N/cm	7.02E+01	1.25E+02	2.26E+02	2.80E+02	2.34E+02	3.49E+02
最大静液圧 P ₀	N/mm2	7.00E-02	1.00E-01	8.00E-02	1.10E-01	1.40E-01	1.70E-01
タンク直径と重心高さとの比 D/H1	-	2.22	4.76	7.16	10.96	9.86	9.29

表 1.3.1 A 地区の代表タンクの主な諸元

*1:jは、基礎及び地盤とタンク本体の連成の影響に基づく補正係数である

諸元	単位	B-1	B-2	B-3	B-4	B-5	B-6	B-7
許可容量	KL	1,000	6,000	10,000	30,000	50,000	77,000	100,000
バルジング振動の固有周期 T。	s	0.149	0.179	0.191	0.29	0.293	0.334	0.377
補正係数 j *1	-	1	1	1	1	1	1	1
バルジング振動の初期剛性 K _b	N/cm	1.21E+07	2.85E+07	4.58E+07	4.02E+07	3.74E+07	5.64E+07	7.56E+07
有効液重量 W1	Ν	6.68E+06	2.25E+07	4.14E+08	8.37E+07	7.95E+07	1.56E+08	2.66E+08
減衰係数 C。	N/cm/s	8.62E+04	2.43E+05	4.17E+05	5.55E+05	5.22E+05	8.95E+05	1.36E+06
側板自重による鉛直抵抗力 qt	N/cm	6.57E+01	1.35E+02	1.99E+02	2.64E+02	1.97E+02	3.22E+02	4.10E+02
最大静液圧 P ₀	N/mm2	9.00E-02	9.00E-02	1.10E-01	1.30E-01	1.10E-01	1.40E-01	1.90E-01
タンク直径と重心高さとの比 D/H1	-	2.68	8.26	7.21	10.43	14.78	12.53	11.27

表 1.3.2 B地区の代表タンクの主な諸元

表 1.3.3 C 地区の代表タンクの主な諸元

諸元	単位	C-1	C-2	C-3	C-4	C-5	C-6	C-7
許可容量	KL	1,000	5,000	10,000	30,000	50,000	77,000	100,000
バルジング振動の固有周期 T。	s	0.143	0.156	0.175	0.32	0.269	0.352	0.41
補正係数 j *1	-	1	1	1	1	1	1	1
バルジング振動の初期剛性 K _b	N/cm	1.13E+07	3.68E+07	4.87E+07	3.56E+07	5.24E+07	7.11E+07	6.04E+07
有効液重量 W ₁	Ν	5.74E+06	2.23E+07	3.71E+08	9.05E+07	9.39E+07	2.19E+08	2.52E+08
減衰係数 C。	N/cm/s	7.70E+04	2.74E+05	4.07E+05	5.44E+05	6.72E+05	1.20E+06	1.18E+06
側板自重による鉛直抵抗力 qt	N/cm	7.10E+01	1.02E+02	1.76E+02	1.95E+02	2.60E+02	3.38E+02	3.54E+02
最大静液圧 P ₀	N/mm2	8.00E-02	9.00E-02	1.00E-01	1.30E-01	1.10E-01	1.70E-01	1.80E-01
タンク直径と重心高さとの比 D/H1	-	2.24	4.49	7.03	7.05	12.47	8.86	11.56

地震の揺れによるタンク隅角部が片浮き上がりを生じたことと想定し、各時刻 t に発生した浮き上がり変位  $\delta_u(t)$ は近似的に次式で表される。

$$\delta_{u}(t) = \frac{D}{H_{1}} [\Delta(t) - \frac{Q(t)}{K_{b}}]$$
(1.3.1)

ここで、

Δ(t): 質点の水平相対変位(応答変位)(cm)

Q(t): 非線形ばねに発生した水平抵抗力 (N)

D: タンクの直径(cm)

D/H1: タンクの直径と質点重心高さとの比

K_b(=K_e): バルジング振動における等価ばね定数 (N/cm)

図 1.3.3 に示すように、最大応答変位  $\Delta_{max}$ と最大応答変位になる時刻における水平抵抗力  $Q_{max}$ を用いて、最大浮き上がり変位  $\delta_{u \cdot max}$ は以下の式で求められる。

$$\delta_{u-\max} = \frac{D}{H_1} (\Delta_{\max} - \frac{Q_{\max}}{K_b})$$
(1.3.2)



図1.3.3 浮き上がり変位算出の概念図

最大浮き上がり変位発生時の最大応答水平震度K_{h1}、動液圧P_{h1}及び動液圧比αは、浮き 上がり解析から求めたその時刻における水平抵抗力Q、有効液重量W₁及び静液圧P₀を用い て、以下の式で算定する。

 $K_{h1} \approx Q/W_1 \tag{1.3.3}$ 

$$p_{h1} \approx K_{h1} C_{10} p_0 \tag{1.3.4}$$

$$\alpha = p_{h1} / p_0 \tag{1.3.5}$$

C₁₀は、特定屋外貯蔵タンクの最高液面高さHと直径Dとの比により求めた係数である。 (屋外貯蔵所のタンクの基準による算定、それぞれのタンクの算定値は添付資料1参照)。

(2) 入力地震波

入力に使用したA地区、B地区、C地区の首都直下地震の想定地震動(2方向、合計6本) の最大加速度とその発生時刻を表1.3.4に、各想定地震動の加速度応答スペクトルを図1.3.4 から図1.3.6に示す。また、対象タンクの固有周期近傍の加速度応答スペクトルのピーク周 期及びその値も同図に記す。

表1.3.4 想定地震動の最大加速度と発生時刻

분으	地震動の	最大加速度(正)	時刻	最大加速度(負)	時刻
地区	方向	(cm/s/s)	(s)	(cm/s/s)	(s)

А	EW	342.3	24.9	-276.7	25.5
	NS	122.9	25.6	-130.9	24.8
В	EW	568.5	22.0	-527.2	22.9
	NS	237.0	22.0	-242.9	22.8
С	EW	86.1	26.9	-85.5	28.2
	NS	301.3	28.3	-265.0	27.9



図 1.3.4 A 地区の想定地震動の加速度応答スペクトル(減衰比:0.15)



図 1.3.5 B地区の想定地震動の加速度応答スペクトル(減衰比:0.15)



図 1.3.6 C地区の想定地震動の加速度応答スペクトル(減衰比:0.15)

# 1.3.2 解析結果

各地区の代表タンクの浮き上がり変位と浮き上がり回数の解析結果一覧を表 1.3.5 から 表 1.3.7 に示す。各地区の最大浮き上がり変位発生タンクの解析結果の比較を表 1.3.8 に示 す。また、解析結果を用いて、式(1.3.3)~式(1.3.5)より算定した最大浮き上がり変位発生時 の最大応答水平震度及び動液圧比を表 1.3.9 に示す。

代表タンク20基の浮き上がり変位の時刻歴詳細結果は添付資料2に示す。

タンク	内容物	貯蔵内径	許可容量	A地区	EW	A地区 NS		
番号		(m)	(KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数	
				(cm)	正負合計	(cm)	正負合計	
1	ヘキサン	11.6	1000	2.3	72	0.5	46	
2	軽油	23.2	5000	2.5	66	0.4	17	
3	ナフサ	32.9	10000	1	11	0	0	
4	原油	53.6	30000	1	5	0	0	
5	原油	61.0	50000	2.8	42	0.5	10	
6	軽油	70.0	75000	6.6	42	0.9	8	

表1.3.5 A地区想定地震動による浮き上がり解析結果

表 1.3.6 B 地区想定地震動による浮き上がり解析結果

タンク	内容物	貯蔵内径	許可容量	B地区	EW	B地区 NS		
番号		(m)	(KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数	
				(cm)	正負合計	(cm)	正負合計	
1	潤滑油	11.6	1000	5.6	109	1.2	63	
2	重油	29.1	6000	6.7	79	0.9	18	
3	重油材	32.9	10000	8.8	81	0.9	24	
4	重油	52.3	30000	8.6	48	1.4	6	
5	原油	69.8	50000	14.2	32	0	0	
6	原油	77.3	77000	7.3	37	0.9	3	
7	原油	81.5	100000	6.3	39	0.4	6	

タンク	内容物	貯蔵内径	許可容量	C地区	EW	C地区	C地区 NS	
番号		(m)	(KL)	最大浮き上がり変位	浮き上がり回数	最大浮き上がり変位	浮き上がり回数	
				(cm)	正負合計	(cm)	正負合計	
1	DIB	11.6	1000	0.2	15	2.3	101	
2	ジェット	23.3	5000	0.2	4	2.3	113	
3	重油	32.9	10000	0	0	1.6	66	
4	ガソリン	45.8	30000	0.6	10	7.8	72	
5	ナフサ	67.8	50000	0	0	6	11	
6	原油	67.8	70000	0.4	4	8.1	58	
7	原油	81.6	100000	0	0	4.1	43	

表1.3.7 C地区想定地震動による浮き上がり解析結果

表 1.3.8 各地区の最大浮き上がり変位発生タンクの解析結果の比較

	タンク	地震動	地震動の	解	解析結果の最大値			タンク周期
地区	番号	の方向	最大加速度	応答加速度	応答変位	浮き上がり変位	応答倍率	Tb
	(容量)		(cm/s/s)	(cm/s/s)	(cm)	(cm)		(s)
Α	6	EW	342.3	578.4	2.8	6.6	1.7	0.3792
	(75000KL)							
В	5	EW	568.5	739.2	2.4	14.2	1.3	0.3156
	(50000KL)							
С	6	NS	301.3	570.3	2.5	8.1	1.9	0.3509
	(70000KL)							

表 3.2.9 最大浮き上がり変位発生時の最大応答水平震度及び動液圧比

	タンク	地震動	水平抵抗力	最大応答	静液圧	動液圧	動液圧比
地区	番号	の方向	Q	水平震度	Po	Ph1	$\alpha = P_{h1}/P_{0}$
	(容量)		(N)	Kh1	(N/mm2)	(N/mm2)	
Α	6	EW	1.25E+08	0.573	0.169	0.078	0.462
	(75000KL)						
В	5	EW	5.16E+07	0.649	0.107	0.056	0.523
	(50000KL)						
С	6	NS	1.15E+08	0.525	0.174	0.072	0.414
	(70000KL)						

代表的な解析結果の一例として、B 地区の最大浮き上がり変位発生タンク(B-5 タンク、 容量:50000 KL)の解析結果の出力線図を図 1.3.7 から図 1.3.9 に示す。サイクルごとの浮 き上がり変位結果を表 1.3.10 に示す。この代表タンクの最大浮き上がり変位は 14.2 cm と なった。



図 1.3.7 応答変位の時刻歴(B地区想定地震動 EW、B-5 タンク)



図 1.3.8 浮き上がり変位の時刻歴(B地区想定地震動 EW、B-5 タンク)



図 1.3.9 復元力の履歴線図(B地区想定地震動 EW、B-5 タンク)

(B 地区想定地震動 EW、B−5 タンク)					
サイクル	浮き上がり変位(cm)				
No.	0度側	180度側			
1	9.4	1.2			
2	2.7	7.3			
3	12.2	4.5			
4	7.1	13.4			
5	0.7	3.8			
6	14.2	9.9			
7	5.7	10.4			
8	9.0	14.2			
9	5.1	7.1			
10	7.8	13.4			
11	7.1	6.7			
12	10.5	3.8			
13	2.3	0.5			
14	4.3	0.5			
15	3.2	0.5			
16	_	0.6			
17	-	2.9			

表 1.3.10 浮き上がり変位結果

#### 1.3.3 解析結果まとめ及び詳細検討タンクの選定

検討した3地区において、想定地震動を受ける代表タンク20基の浮き上がり解析結果から以下のことが確認された。

- (1) 今回検討した想定地震動のうち、B 地区 EW 方向の地震動は加速度応答スペクトルの応答加速度(特に 0.15~0.4 秒あたりのタンク周期近傍)が最も大きく、この地震動によるB-5 タンク(50,000KL)の最大浮き上がり変位14.2 cm が最も大きな浮き上がり変位であった。次に大きいのは C 地区の NS 方向の地震動による C-6 タンク(70,000 KL)の8.1 cm、A 地区の EW 方向の地震動による A-6 タンク(75,000 KL)の 6.6 cm という順である。
- (2) A 地区 EW 方向の想定地震動では、A-6 タンク(75,000 KL)の浮き上がり変位が最も大きく、6.6 cm と算定された。 A 地区 NS 方向の地震動の加速度応答スペクトルは EW 方向の地震動の半分以下であるため、この NS 方向の地震動による代表タンク 6 基の浮き上がり変位は EW 方向の地震動による値より小さく、浮き上がりなしあるいは 1.0 cm 以下という結果となった。
- (3) B地区 EW 方向の想定地震動では、代表タンクの7基はすべて5cm以上浮き上がるという結果となった。その中でもB-5タンク(50,000 KL)の浮き上がり変位は最も大きく、14.2 cmと算定された。また、同タンクの挙動は片側(180 度側)に10 cm以上の浮き上がり回数が4回となることが確認された(表 3.2.5 参照)。
  B地区 NS 方向の地震動の加速度応答スペクトルは EW 方向の地震動の半分以下であるため、この NS 方向の地震動による代表タンク7基の浮き上がり変位は EW 方向の地震動による値より小さく、全ての応答値が1.5 cm 以下という結果となった。
- (4) C 地区 NS 方向の想定地震動では、C-6 タンク(70,000 KL)の浮き上がり変位が最も大 きく、約 8.1 cm と算定された。 C 地区 EW 方向の想定地震動の加速度応答スペクトルは NS 方向の地震動の半分以下 であるため、この EW 方向の地震動による代表タンク 7 基の浮き上がり変位は NS 方 向の地震動による値より小さく、全ての応答値が 1.0 cm 以下という結果となった。

3地区 20 基の代表タンクの中で、最も浮き上がり応答変位が大きいのは B地区の B-5 タンクという結果から、本タンクを FEM 詳細解析による隅角部の疲労損傷評価及び側板下端部の座屈強度評価の対象として選定する。

選定タンク: <u>B</u>地区の B-5 タンク(50,000 KL) 最大浮き上がり応答変位 14.2 cm

### 1.4 2次元軸対称ソリッド要素モデルによる隅角部の疲労損傷度評価

選定したタンク(B-5 タンク)の質点系モデルによる浮き上がり変位と回数の解析結果より、隅角部に発生するひずみ量及び疲労損傷に対する強度を確認するため、非線形構造解析 プログラム Abaqus 2016 による有限要素法を用いた静的弾塑性大たわみ解析を行った。

#### 1.4.1 解析モデル

B-5タンク(公称容量50000 KL)の隅角部を対象として解析モデルを作成した。タンクの主な寸法と諸元を表1.4.1に示す。表に示した側板とアニュラ板の板厚は実測板厚である。

B地区 B-5 タンク						
許可容量	Ę	50000 KL				
タンク内径	69765 mm					
タンク高さ	15290 mm					
液面高さ		12608 mm				
液比重		0.866				
側板の板厚と材料						
1段	22.1 mm	HT60				
2段	19.9 mm	HT60				
3段	18.1 mm	HT60				
4段	15.6 mm	HT60				
5段	13.8 mm	HT60				
6段	10.5 mm	HT60				
7段	9.5 mm	HT60				
8段	9.7 mm	HT60				
9段	9.3 mm	SS41				
10段	9.8 mm	SS41				
アニュラ板厚と材料	11.4 mm	HT60				
底板の板厚	8 mm	SS41				
隅角部隅肉溶接部脚長	W1&W2	12 mm				

表1.4.1 解析対象タンクの主な寸法と諸元

最大浮き上がり点の隅角部の挙動は、2次元軸対称ソリッド要素を用いた静的弾塑性大たわみFEM解析法を用いて解析し、変形とひずみ等を算定する。

隅角部モデル化の範囲を図1.4.1(a)、隅角部の一部の要素分割を図1.4.1(b)に示す。図 1.4.1(a)の左端A端部の半径方向変位を拘束し、同図上端B端部は強制変位を与える位置と した。隅角部溶接部近傍はメッシュ分割を約2 mmとした。なお、図に示した寸法はモデ ル上のA端部とB端部までの長さである。地盤との接触部には、圧縮ばね294 N/cm³の力を 有するノンテンションばねを設置した。



図1.4.1 B-5タンクのFEM解析モデル

(1) 解析条件

以下の条件で解析を行った。

ア 荷重

B端部(円周上)に側板重量等(合計4320kN)を負荷する。

イ 強制変位 質点系モデルの片側の浮き上がり変位をB端部に強制的に付与する。 強制的に付与する浮き上がり変位と回数を表4.1.2に示す。

ウ 浮き上がり回数及び浮き上がり変位

質点系モデルの片側の浮き上がり変位が1 cm 以上となるサイクルを選択して、その サイクルでの最大浮き上がり変位を求め、表 1.4.2 にまとめた。

サイクル	浮き上がり変位		
No.	δu		
	(mm)		
1	11.7		
2	73.3		
3	44.6		
4	134.5		
5	38.1		
6	98.6		
7	103.8		
8	142.4		
9	70.8		
10	134.2		
11	67.0		
12	38.1		
13	29.0		

表1.4.2 各サイクルにおける浮き上がり変位

エ 液圧

アニュラ板と側板に作用する液圧の組合せは表1.4.3に示すとおりである。アニュラ 板に作用する液圧は一様分布で一定とし、側板に作用する液圧は高さに応じて変化さ せた。

最大応答水平震度Kh1、動液圧Ph1及び動液圧比αは、浮き上がり解析から求めた水 平抵抗力Qを用いて式(1.3.3)~式(1.3.5)により算定した。算定結果を表1.4.4に示す。

	アニュラ板上面に作用する液圧 P _u	側板内面に作用する
強制変位作用方向	静液圧:P₀=0.107 N/mm²	液圧
	動液圧:P _{h1}	
浮き上がり方向	$\mathbf{D} = (\mathbf{D}_{\alpha} - \mathbf{D}_{\alpha}) - \mathbf{D}_{\alpha} (1 - \alpha)$	<b>热</b> 液正公左
(+)	$r_{u} - (r_{0} - r_{h1}) - r_{0} (1 - \alpha)$	用型//文/工 刀 1 〕
沈み込み方向(-)	P _u =P ₀	静液圧分布

表1.4.3 アニュラ板と側板に作用する液圧の組合せ

表1.4.4 最大応答水平震度Kht、動液圧Pht及び動液圧比αの計算結果

タンク No.	最大浮き上がり変位	最大応答水平震度 Kы	動液圧 P _{h1}	動液圧比 α
	(cm)		(N∕mm²)	(=P _{1h1} /P ₁₀ )
B-5	14.2	0.649	0.056	0.523

注:消防法式で計算した水平震度Kh1=0.448、動液EPh1=0.039N/mm2(添付資料3参照)

(2) 材料の物性値

1段から8段までの側板の材料はHT60、9段と10段の側板の材料はSS41、アニュラ板の 材料はHT60、底板の材料はSS41であり、それぞれの材料の物性値を表1.4.5に示す。ま た、塑性後の応力-ひずみ線図は2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2に提示される方法で作成したものを使用した(図1.4.2及び添付資料4参照)。硬化 則には移動硬化則を使用した。

材料特性		HT60	SS41
降伏強度(N/mm ² )	Sy	450	245
引張強度(N/mm ² )	Su	570	400
ポアソン比	ν	0.3	0.3
縦弾性係数(N/mm ² )	E	205939.7	205939.7

表1.4.5 材料の物性値




#### 1.4.2 弾塑性ひずみ解析結果

(1) 浮き上がり変位と抵抗力の関係

各サイクルの参照点とB端の浮き上がり変位及びB端部に強制変位をかけた時の算定され た軸方向の抵抗力(単位長さあたりの抵抗力)の数値を表1.4.6に示す。また、その関係を 線図で表示すると図1.4.3のとおりである。(変位出力参照点の位置:図4.1.1(b)参照)

サイクル	浮き上がり	抵抗力	浮き上がり	変位 (mm)
No.	位置	(N/mm)	参照点	B端
	開始	0.0E+00	-1.5	-2.1
1	最高	5.8E+01	12.2	12.0
	最低	6.3E+01	0.6	0.0
2	最高	7.6E+01	73.3	73.0
	最低	6.2E+01	0.6	0.0
3	最高	6.9E+01	45.2	45.0
	最低	6.2E+01	0.6	0.0
4	最高	8.4E+01	134.3	134.0
	最低	4.8E+01	0.6	0.0
5	最高	6.5E+01	38.2	38.0
	最低	4.8E+01	0.6	0.0
6	最高	7.8E+01	99.3	99.0
	最低	4.8E+01	0.6	0.0
7	最高	7.9E+01	104.3	104.0
	最低	4.8E+01	0.6	0.0
8	最高	8.5E+01	142.3	142.0
	最低	4.5E+01	0.6	0.0
9	最高	7.3E+01	71.2	71.0
	最低	4.5E+01	0.6	0.0
10	最高	8.4E+01	134.3	134.0
	最低	4.5E+01	0.6	0.0
11	最高	7.2E+01	67.2	67.0
	最低	4.5E+01	0.6	0.0
12	最高	6.4E+01	38.2	38.0
	最低	4.5E+01	0.6	0.0
13	最高	6.1E+01	29.2	29.0
	最低	4.5E+01	0.6	0.0

表1.4.6 浮き上がり変位と抵抗力の関係



図1.4.3 浮き上がり変位(δ_u)とB端部の算定された抵抗力(q_u)の関係

(2) 隅角部隅肉溶接部のひずみ両振幅

浮き上がり変位を与えた静的応力解析結果の、隅角部隅肉溶接部近傍の注目点(A点、B 点とC点、3つの点の位置を図1.4.4に示す)に発生した全ひずみ(弾性ひずみ+塑性ひず みの和)とひずみ両振幅(浮き上がり最高位置の全ひずみとその前後の最低位置の全ひず みとの差の最大値)の計算結果を表1.4.7に示す。

A点は隅肉溶接部止端部、B点はA点から2mm内側のアニュラ板上の点(実タンクを想定した場合にひずみ計測が可能な最も側板に近い位置)であり、両点の半径方向全ひずみを $\epsilon_{r}$ とする。C点は側板内面の止端部であり、その鉛直方向全ひずみを $\epsilon_{z}$ とする。また、ひずみ両振幅は $\Delta \epsilon_{r}$ 等とする。13サイクルにおける各A~C点の浮き上がり変位と全ひずみとの関係線図を図1.4.5から図1.4.7に示す。



図1.4.4 ひずみ評価位置

サイクル	浮き上がり		ひずみ (%)		ひす	「み両振幅(	%)
No.	位置	A点	B点	C点	A点	B点	C点
		٤r	٤r	εz	Δεr	Δεr	Δεz
	開始	0.17	0.14	0.07			
1	最高	0.18	0.15	0.06	0.04	0.03	0.01
	最低	0.21	0.17	0.07			
2	最高	0.44	0.43	0.13	0.23	0.26	0.06
	最低	0.28	0.28	0.07			
3	最高	0.37	0.37	0.10	0.08	0.09	0.03
	最低	0.28	0.28	0.07	-		
4	最高	0.73	1.12	0.16	0.45	0.84	0.84 0.12
	最低	0.43	0.83	0.04			
5	最高	0.51	0.93	0.08	0.09	0.10	0.03
	最低	0.43	0.83	0.04			
6	最高	0.66	1.07	0.14	0.24	0.24	0.09
	最低	0.43	0.83	0.04			
7	最高	0.67	1.08	0.14	0.25 0.25	0.25	0.25 0.10
	最低	0.42	0.83	0.04			
8	最高	0.77	1.28	0.16	0.34	0.45	0.12
	最低	0.44	0.96	0.04			
9	最高	0.63	1.15	0.11	0.18	0.19	0.07
	最低	0.44	0.96	0.04			
10	最高	0.75	1.27	0.16	0.31	0.31	0.12
	最低	0.44	0.96	0.04			
11	最高	0.61	1.14	0.11	0.17	0.18	0.07
	最低	0.44	0.96	0.04			
12	最高	0.53	1.07	0.08	0.09	0.10	0.04
	最低	0.44	0.96	0.04	<b></b>		
13	最高	0.50	1.04	0.06	0.06	0.08	0.03
	最低	0.44	0.96	0.04			

表1.4.7 各サイクルにおける隅角部隅肉溶接部の全ひずみとひずみ両振幅



図1.4.5 浮き上がり変位とA点に発生した半径方向全ひずみの関係



図1.4.6 浮き上がり変位とB点に発生した半径方向全ひずみの関係



図1.4.7 浮き上がり変位とC点に発生した鉛直方向全ひずみの関係

(3) 隅角部の変形及び全ひずみ分布

最大浮き上がり変位が14.2 cmになるときの隅角部の変形図及び半径方向全ひずみ成分 分布を図1.4.8と図1.4.9に示す。浮き上がり挙動によって隅角部が曲げられ、隅角部の溶接 部の止端部から2 mmの点(B点)に最も大きなひずみが発生した。





図 1.4.9 隅角部の半径方向全ひずみ成分 *ε* , 分布図 (最大浮き上がり 14.2 cm)

#### 1.4.3 低サイクル疲労評価

地震時の浮き上がりに対する隅角部挙動は、低サイクル疲労を生じる。飯田 ※は、溶接 構造用鋼、高張力鋼、一般構造用鋼などの 10 種の鋼のひずみ制御疲労試験を実施し、き 裂発生寿命 Nc をひずみ振幅 Δε(=2 ε_a、ε_aは最適疲労曲線に使用されるひずみ振幅(片振 幅))に対して整理し、次式で最適疲労曲線を表した。図 1.4.10 に飯田の最適疲労曲線及 び設計疲労曲線等を示す。

$$\frac{\Delta\varepsilon}{2} = 0.415 N_C^{-0.606} + 0.00412 N_C^{-0.115}$$
(1.4.1)



図 1.4.10 飯田の最適疲労曲線

マイナー則では、次式の疲労損傷度 D=1.0 のときを疲労寿命としており、式(4.3.2)により隅角部の疲労損傷度の評価 **を実施する。

$$D = \frac{n(\Delta \varepsilon_1)}{N_c(\Delta \varepsilon_1)} + \frac{n(\Delta \varepsilon_2)}{N_c(\Delta \varepsilon_2)} + \frac{n(\Delta \varepsilon_3)}{N_c(\Delta \varepsilon_3)} + \dots < 1.0$$
(1.4.2)

ただし、 D: 疲労損傷度 Δεi: ひずみ両振幅 n(Δεi): ひずみ両振幅 Δεiの繰返し回数 N_e(Δεi): ひずみ両振幅 Δεiの疲労寿命

※出典:日本ガス協会、ガス導管耐震設計指針(1982年) p119

B-5 タンクの浮き上がり回数は最大の浮き上がり変位が算出された側の13回で設定し、 この条件での疲労損傷度 D を算定した。

表 1.4.7 に示した B 点に発生した板表面上のひずみ両振幅に対する、飯田の最適疲労曲 線式(1.4.1)で求めた疲労寿命 Nc を用いた疲労損傷度評価結果を表 1.4.8 に示す。同表よ り、最大浮き上がり変位 14.2 cm となる B 地区 EW 方向の想定地震動に対し、当該タンク は隅角部の溶接部止端部近傍の B 点の疲労損傷度Dは 0.00033 であり、1.0 以下という結 果になった。

サイクル	浮き上がり変位	B点				
No.	δu	ひずみ両振幅	繰り返し回数	許容繰返し回数	疲労損傷度	
	(mm)	Δεr(%)	n	Nc	D	
1	11.7	0.03	1	5.92E+12	0.00000	
2	73.3	0.26	1	1.74E+05	0.00001	
3	44. 6	0.09	1	3.28E+08	0.00000	
4	134. 5	0.84	1	4.23E+03	0.00024	
5	38.1	0.10	1	4.87E+04	0.00002	
6	98.6	0.24	1	2.65E+05	0.00000	
7	103. 8	0.25	1	2.25E+05	0.00000	
8	142. 4	0.45	1	2.24E+04	0.00004	
9	70. 8	0.19	1	8.93E+05	0.00000	
10	134. 2	0.31	1	8.94E+04	0.00001	
11	67.0	0.18	1	1.23E+06	0.00000	
12	38. 1	0.11	1	6.83E+07	0.00000	
13	29.0	0.08	1	1.04E+09	0.00000	
				合計	0.00033	

表 1.4.8 B-5 タンクの隅角部 B 点における疲労損傷度評価結果

#### 1.5 3次元シェル要素モデルによる側板の座屈強度評価

非線形構造解析プログラム Abaqus 2016 を用いて、3 次元シェル要素モデルによる弾性 大変形解析を実施した。非線形ばねを持つ質点系モデルの浮き上がり変位解析結果から得 られた最大浮き上がり変位が生じるときに沈み込み側の側板下端に発生する最大軸方向圧 縮応力を求め、側板の限界座屈応力との比較により側板の地震時の座屈強度評価を行った。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみの検討である。

#### 5.1 解析モデル

水平一方向の動液圧による加力によるタンクの浮き上がり側及び沈み込み側の挙動に着 目するため、タンクの解析モデルは3次元シェル要素モデルを作成した。図 1.5.1 に示すよ うに、タンクの解析モデルは加力方向を切断面とする対称条件を有するタンクの半割リモ デルとした。底板は全て要素分割して作成しているが、タンク半径の 70%の位置から中心 部分の底板は一部剛体要素でモデル化し、中心の参照点と連動させている。

B・5 タンク(50000 KL)の解析モデルを図 1.5.1 及び図 1.5.2 に示す。タンクの主な寸法と 諸元は 1.4 節の表 1.4.1 に示す。タンク側板の上端にトップアングル及びウィンドガーダー をモデル化した。また、底板およびアニュラ板と基礎との接触・離間を考慮するため、上下 方向の圧縮のみに 294 N/cm³の力が生じるノンテンションばねを設置した。



図1.5.1 B-5タンクの3次元シェルモデル



図1.5.2 タンクモデルのトップアングル及びウィンドガーダー

側板重量等(合計4320 kN)は側板に均等に分布させて調整(側板の質量密度を増加)した。 材料の物性値は1.4節の表1.4.4に示すとおりである。 1.5.2 荷重条件

(1) 荷重

側板重量等は側板に均等に分布させて調整した。アニュラ板と底板の自重をモデル 上考慮した。

(2) 動液圧の算定

動液圧及び動液圧分布の算定に当っては、消防法で規定されている算出式を用いた。 算出した動液圧は、1/2対称境界面を最大/最小として、側板と底板の周方向に余弦分 布させてモデルに入力した。

消防法における水平方向地震動による側板部に作用する液圧は次式で表される。

$$P_h = P_{h0} + P_{h1} \tag{1.5.1}$$

 $P_h$ は、底部からの高さZにおける側板部に作用する動液圧(N/mm²)である。  $P_{h0}$ 及び $P_{h1}$ は次式のとおり。

$$P_{h0} = \frac{9.80665\,\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{0i} \left(\frac{Z}{H}\right)^{i} \right\} K_{h1} / \nu_{3}$$
(1.5.2)

$$P_{h1} = \frac{9.80665\rho H}{1000} \left\{ \sum_{i=0}^{5} C_{1i} \left(\frac{Z}{H}\right)^{i} \right\} (1 - \frac{1}{v_{3}}) K_{h1}$$
(1.5.3)

ここで、Kh1は設計水平震度、pは、貯蔵液の比重、Hは最高液面高さ(m)、v3は特定 屋外貯蔵タンクの固有周期を考慮した応答倍率(-)、C0iとC1iは、特定屋外貯蔵タンク の最高液面高さと直径との比により、求めた係数である。

上記式により算定されたタンクの動液圧を添付資料3に示す。

(3) 解析ステップ

解析ステップを、次のように2段階に分けて実施した。

ステップ1:通常時荷重(静液圧)

ステップ2:地震時荷重(静液圧+動液圧)

静液圧が負荷されている状態から、動液圧を段階的に増加させ負荷した。

質点系モデルにて算定された最大浮き上がり変位となるときに側板に 発生する応力を確認した。

#### 1.5.3 解析結果

以下にB-5タンクの最大浮き上がり変位14.2 cmになった時点の解析結果を示す。

側板最下端の浮き上がり14.2 cm時の変形を図1.5.3、相当応力分布を図1.5.4、浮き上が り範囲を図1.5.5に示す。



図1.5.3 変形図(14.2 cm浮き上がり時)





図1.5.5 浮き上がり範囲(14.2 cm浮き上がり時)

側板下端部の半径方向に対応する軸方向(上下)変位を図1.5.6に示す。最大浮き上がり変 位が14.2 cmのとき、沈み込み側の最大沈み込み変位は僅か0.6 cmであることが確認され た。

沈み込み側の軸方向膜応力と側板の高さの関係を図1.5.7に示す。このとき沈み込み側の 側板下端に発生する最大軸方向圧縮応力は4.5 N/mm²であった(図1.5.7参照)。また、沈 み込み側の円周方向膜応力と側板の高さの関係を図1.5.8に示す。このとき沈み込み側の側 板最下段(下端からの高さ:1805 mm)に発生する最大円周方向膜応力は282 N/mm²で あった(図1.5.8参照)。







図1.5.7 側板に発生した軸方向の膜応力と側板高さの関係(沈み込み側)



図1.5.8 側板に発生した円周方向の膜応力と側板高さの関係(沈み込み側)

#### 5.4 座屈強度評価

座屈強度評価においては、以下のような手順で軸圧縮限界座屈応力を評価するが、必要 に応じて内圧を考慮した評価を行う。

一様軸圧縮を受ける内圧のない円筒殻の弾性軸圧縮限界座屈応力は次式で表される。

$$\sigma_{cr} = 0.4E \frac{t_s}{D} \tag{1.5.4}$$

ここで、

ocr: 一様軸圧縮を受ける円筒殻の弾性軸圧縮限界座屈応力 (N/mm²)

E: 側板の縦弾性係数 (N/mm²)

ts: 側板最下端の板厚 (mm)

D: タンクの直径 (mm)

運転時満液状態にある平底円筒形石油貯槽においては、地震時動液圧負荷側(図 1.5.5 の 沈み込み側)の最下段側板の円周方向膜応力が、降伏応力の 0.3 倍を上回っている場合、象 の脚型座屈の評価が要求されている。 ここでは容器構造設計指針において、円周方向膜応力と降伏強度との比が 0.3 以上の場合の限界座屈応力値に着目し、内圧下における側板の象の脚型座屈限界応力を以下に示す。

$$\frac{\sigma_{\phi}}{\sigma_{y}} \ge 0.3 \quad \text{かつ,} \quad \frac{D}{t_{s}} \ge 1.614(\frac{E}{\sigma_{y}}) \quad \text{の場合}$$

$$\sigma_{cr} = 0.96E \frac{t_{s}}{D} (1 - \frac{\sigma_{\phi}}{\sigma_{y}}) \quad (1.5.5)$$

B-5 タンクの側板最下段に発生した最大円周方向膜応力(282 N/mm²)は、降伏強度(450 N/mm²)との比(0.63)が 0.3 以上であるため、象の脚型座屈の評価が必要となる。

表 1.5.1 に示す側板材料の物性値と寸法を用いて、式(1.5.4)と式(1.5.5)より、軸圧縮限界 座屈応力及び象の脚型圧縮の限界座屈応力を算定して同表に示した。

表1.5.1 B-5タンクの側板の座屈強度評価結果

側板材	料物性值	タンク内径	側板最下端	限界座屈属	ኔ力 σcr	軸圧縮	
縦弾性係数	降伏強度	D	板厚	軸圧縮	象の脚型	膜応力	評価
E (N/mm2)	$\sigma y (N/mm2)$	(mm)	ts (mm)	(N/mm2)	(N/mm2)	(N/mm2)	
205939.7	450	69765	22.1	26.1	23.2	4.5	合格

解析結果から得られた浮き上がり時側板に発生した軸圧縮膜応力の最大値の4.5 N/mm² は、軸圧縮及び象の脚型の両方の限界座屈応力以下であるため、当該区域の想定地震動に 対して、B-5タンクの最大浮き上がり変位が14.2 cm発生した場合の圧縮応力は、従来評価 手法の限界座屈応力を超えない評価結果となった。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみでの検討である。

#### 2 屋外貯蔵タンクの耐震安全性の解析のまとめ

今年度は首都直下地震の発生を想定し、代表とする3地区のタンク20基の浮き上がり挙動と耐震安全性を解析により検討した。想定する入力地震動により、最も浮き上がりの影響を受けるタンクにおいて隅角部の疲労損傷及び側板の座屈強度の評価を実施し、許容値以下であることを確認した。

2.1 質点系モデルによる浮き上がり解析結果

マルチリニア型非線形ばね特性を持つ質点系モデルを用いて時刻歴地震応答解析を行い、特防区域代表 3 地区の代表タンク合計 20 基の浮き上がり量を検討した。検討した代表タンクのうち、B 地区の B-5 タンク(50000 KL)が最も大きな浮き上がり変位(14.2 cm) を生じる結果となり、当該タンクを FEM 詳細解析による隅角部疲労損傷度評価、側板座 屈評価の対象に選定した。

2.2 2次元軸対称ソリッド要素モデルによる隅角部の疲労損傷度評価

選定した B-5 タンクの質点系モデルでの浮き上がり履歴を使用して、2 次元軸対称ソ リッド要素モデルによる静的弾塑性大たわみ解析を実施した。タンク隅角部に発生したひ ずみ両振幅と飯田の最適疲労曲線式から算定した疲労寿命、及びその繰り返し回数から求 めた疲労損傷度 D は 0.00033 となり、許容値以内であった。

2.3 3次元シェル要素モデルによる側板の座屈強度評価

選定した B-5 タンクの 3 次元シェル要素モデルによる静的弾性解析を実施した。選定 した B-5 タンクが 14.2 cm の浮き上がりを発生する時の側板沈み込み側の最大軸圧縮応 力(4.5N/md)は、軸圧縮限界座屈応力(26.1N/md)及び象の脚型限界座屈応力(23.2N /md)以内であることを確認した。

なお、消防法の座屈評価では上下動も加算するが、今回は水平動のみでの検討である。

## 添付資料1

## 代表タンクの質点系モデルの入力諸元の計算シート

(1) A 地区(代表タンク:合計6基、A-1~A-6)

付表 1.1-1 A-1 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

<u> 「質点系モデルによる側板下端の浮き</u>	(赤字:入力値)		
[諸元]			
公称容量	VOL (kl)	1000	(kl)
貯槽内径	D	11600	(mm)
側板高さ	Hmax	12190	(mm)
最下段側板厚	t _s	6	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	4.87	(mm)
アニュラ板厚	t _b	10	(mm)
鋼材のヤング率(SM400C)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	u	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	10882	(mm)
液密度	r	6.67E-07	(kg/mm3)
直径/液高さ比	D/H	1.07	(-)
液高さ/直径比	H/D	0.94	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})$	$^{2} + 2.0933(\frac{H}{D}) - 0.1172$	0.75	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.67	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.42	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.48	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.07	(N/mm2)

側板重量	Ws0	2.56E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.62E+02	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.56E+05	(N)

付表 1.1-2 A タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

# 紫字:モデルの入力値

		<u>(</u> 単位:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1445	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2375	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	7.52E+06	(N)
合計重量(W+Wsr)	W+Wsr	7.78E+06	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	5.62E+06	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	5.33E+06	(N)
消防法/有効液重量率	f _{w0}	0.75	(-)
	f _{w1}	0.67	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	456.94	(cm)
$H_1 = f_{h1} * H$	H1	521.50	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.48	(-)
側板自重による鉛直抵抗力qt	qt	70.17	(N/cm)
ばね係数	K♭	1.03E+07	(N/cm)
浮き上がり抵抗力	qу	340.97	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	411.14	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.67E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.16	(cm)
減衰係数	Ce	7.09E+04	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	2 2 2	(-)

Point T	QRt	2.84E+05	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.27	-
$Q_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.02	_
$\Delta_{et} = \frac{Q_{Rt}}{K_{L}}$	∆et	0.03	cm
Point Y	mv	4.08E+03	N
$a = \frac{4}{m} \sqrt{m} \frac{m}{p_{x}} \qquad m_{y} = \frac{0}{2} \frac{y}{y} t^{2}$	av	2.78E+02	N/cm
$q_y = \sqrt{6} \sqrt{m_y P_0} \qquad \qquad$	QRv	1.13E+06	N
$2\pi R^2 a$ $Et_a^3$	αν	0.06	_
$Q_{Ry} = \frac{2\pi (q_y)}{m} D_a (= \frac{a}{12(1-v^2)})$	СМ	12.94	-
$H_1$	Da	1.89E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.44	cm
$\int \int \partial f h h h h h h h h h h h h h h h h h h$	Δey	0.58	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{i})\frac{R^{2}}{H_{1}}]^{4}}$	QRv+Qt	1 41E+06	N
$\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rl}]}{K_b}$		1.412.000	
Point P $\sigma_{y} = 2$ $a = \frac{4}{m} \sqrt{m}$	mp	6.13E+03	N
$m_p = \frac{1}{4} t_a  q_p  \sqrt{6}  \sqrt{m_p P_0}$	qp	3.41E+02	N/cm
$2 - \mathbf{P}^2$ $[O_{\pm}]C_{\pm}$	QRp	1.38E+06	N
$\boldsymbol{Q} = \frac{2\pi \mathbf{R} \ \boldsymbol{q}_p}{\mathbf{m}}  \boldsymbol{\alpha}_p = \frac{12\pi \mathbf{R} \ \boldsymbol{q}_p}{(1-2\pi)^2}$	αp	0.07	-
$\mathcal{L}_{Rp} = H_1 \qquad f = (\pi f_{W1} p_0 R^2)$	СМ	12.86	-
$H_{1}[Q_{Rp}]^{4}$	Da	1.89E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	1.02	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_i) \frac{R}{H}]^4$	∆ер	1.18	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.67E+06	Ν
Point 4	m4	8.17E+03	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	3.94E+02	N/cm
$2\pi R^2 a \qquad Q_{R4} C_{10}$	QR4	1.60E+06	Ν
$Q_{R4} = \frac{2\pi (q_4)}{H}  \alpha_4 = \frac{\pi (m + n)}{(m + n)^2}$	α4	0.08	_
$H_1$ $(9_{W1}p_0R)$	СМ	12.79	-
$\Lambda_{L} = \frac{H_1[Q_{R4}]^4}{1}$	Da	1.89E+06	N.cm
$\frac{4}{RD} n^{3} [C (\alpha + \alpha)] \frac{R^{2}}{R^{2}} [14]$	$\Delta 4$	1.85	cm
$\frac{RD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{Q_{10} + Q_{10}} H_1$	∆e4	2.03	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{K_b}$	QR4+QRt	1.88E+06	N
Point 5 4	m5	1.02E+04	Ν
$q_5 = \frac{1}{\sqrt{m_5 p_0}}$	q5	4.40E+02	N/cm
$\sqrt{6}$	QR5	1.78E+06	Ν
	α5	0.09	-
	СМ	12.73	_
	Da	1.89E+06	N.cm
	Δ5	2.95	cm
	∆ e5	3.15	cm
		2 07E+06	N

付表 1.1-3 A-1 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

付表 1.2-1 A-2 タンクの質点系モデルの諸元計算シート(No.1計算シート)

公称容量	VOL (kl)	5000	(kl)
貯槽内径	D	23240	(mm)
側板高さ	Hmax	12235	(mm)
最下段側板厚	t _s	12	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	9.2	(mm)
アニュラ板厚	t _b	9	(mm)
<u>鋼材のヤング率(SS41)</u>	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.1663	(N/mm2)
最高液高さ	Н	11790	(mm)
液密度	r	8.32E-07	(kg/mm3)
直径/液高さ比	D/H	1.97	(-)
液高さ/直径比	H/D	0.51	(-)
消防法/有効液重量率 $f_{w0}$ $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0$	$933(\frac{H}{D}) - 0.1172$		
	D	0.55	(-)
消防法/有効液重量率 $f_{w1}$ $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3$	$3017(\frac{H}{D}) - 0.1634$		
	2	0.53	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0$	$207(\frac{H}{D}) + 0.3644$	0.41	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.10	(N/mm2)

質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)

側板重量	Ws0	6.37E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	2.75E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	9.12E+05	(N)

付表 1.2-2 A-2 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:N. cm)

		(半匹.11,011)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \text{ sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1790	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3250	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	4.08E+07	(N)
合計重量(W+Wsr)	W+Wsr	4.17E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.25E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	2.27E+07	(N)
消防法/有効液重量率	f _{w0}	0.55	(-)
	f _{w1}	0.53	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	476.57	(cm)
$H_1 = f_{h1} * H$	H1	488.20	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.41	(-)
側板自重による鉛直抵抗力qt	qt	124.88	(N/cm)
ばね係数	Kb	2.85E+07	(N∕cm)
浮き上がり抵抗力	qy	356.87	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	481.75	(N/cm)
保有水平耐力(降伏耐力)	Qy	8.37E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.29	(cm)
減衰係数	Ce	2.44E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	4.76	(-)

Point T	QRt	2.17E+06	Ν
$Q = \frac{2\pi R^2 q_t}{\alpha} \qquad \alpha = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.63	_
$\mathcal{Q}_{Rt} = \underbrace{\mathcal{H}_{t}}_{H_{t}} \qquad \mathcal{H}_{t} \qquad (\pi f_{W1} p_0 R^2)$	αt	0.06	_
$\int_{A} Q_{Rt} Q_{Rt}$	Δet	0.08	cm
$\Delta_{et} - \overline{K_h}$			
Point Y $\sigma$	my	3.31E+03	N
$q_{y} = \frac{4}{2} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{2}{2} \sqrt{t_{z}^{2}}$	qy	2.91E+02	N/cm
$\int \sqrt{6^{y}} \sqrt{6^{y}}$	QRy	5.06E+06	Ν
$2\pi R^2 q_{\mu} = E t_a^3$	αγ	0.15	_
$Q_{Ry} = \frac{1}{12} D_a (= \frac{1}{12(1-v^2)})$	СМ	12.13	-
$\begin{bmatrix} & \mathbf{n}_1 \\ & 0 & 0 \end{bmatrix}$	Da	1.37E+06	N.cm
$\alpha_{y} = \frac{12 \alpha_{y} \Gamma_{10}}{2}$	Δy	0.18	cm
$f_{W1} p_0 R^2$ )	∆ey	0.43	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	7.23E+06	N
Point P $\sigma_{y}$ a = $\frac{4}{m}$	mp	4.96E+03	N
$m_p = \frac{1}{4} t_a  \mathcal{A}_p  \sqrt{6}  \sqrt{m_p P_0}$	qp	3.57E+02	N/cm
$1 - 2 - p^2 = [0, 1]C$	QRp	6.20E+06	Ν
$\int q_p = \frac{2\pi K^{-} q_p}{(1 - 2\pi K^{-} q_p)} \qquad \alpha_p = \frac{12 \epsilon_{Rp} \Gamma^{-} q_p}{(1 - 2\pi K^{-} q_p)}$	αp	0.18	
$\overset{\simeq}{=} H_1 \qquad \overset{r}{=} (\pi f_{W1} p_0 R^2)$	СМ	11.94	
$H_1[Q_{Rp}]^4$	Da	1.37E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	0.43	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\alpha_l}{H}]^4$	∆ер	0.72	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	8.37E+06	N
Point 4	m4	6.62E+03	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	4.12E+02	N/cm
$2\pi R^2 a$ $Q_{R4}C_{10}$	QR4	7.16E+06	Ν
$Q_{R4} = \frac{2\pi \alpha q_4}{\mu}  \alpha_4 = \frac{1}{(\pi f_{m} n_c R^2)}$	α4	0.21	
$\Pi_1$ $(\mathcal{Y}_W \mathcal{Y}_V)$	СМ	11.77	
$\Lambda_{1} = \frac{H_{1}[Q_{R4}]^{*}}{1}$	Da	1.37E+06	N.cm
$\int_{-4}^{-4} RD n^3 [C (\alpha + \alpha) R^2]^4$	Δ4	0.80	cm
$\begin{bmatrix} \mathbf{K} D_a p_0 [\mathbf{C}_M (\alpha_4 + \alpha_t) \overline{H_1}] \\ \mathbf{K} D_a \mathbf$	∆e4	1.13	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Ri}}{V}$			
$K_{h}$	QR4+QRt	9.33E+06	IN

付表 1.2-3 A-2 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

付表 1.3-1 A-3 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>_ 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[諸元]			
公称容量	VOL (kl)	10000	(kl)
貯槽内径	D	32930	(mm)
側板高さ	Hmax	15195	(mm)
最下段側板厚	t _s	19	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	14.11	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(SM400C)</u>	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11697	(mm)
液密度	r	7.35E-07	(kg/mm3)
直径/液高さ比	D/H	2.82	(-)
液高さ/直径比	H/D	0.36	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.42	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.41	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 (\frac{H}{D})^4 - 0.1493 (\frac{H}{D})^3 + 0.204 (\frac{H}{D})^2 - 0.0807 (\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.08	(N/mm2)

側板重量	Ws0	1.60E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	8.56E+01	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	7.37E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.34E+06	(N)

付表 1.3-2 A-3 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

#### [計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:N.cm)

		(甲1U:IN, CM)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1722	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3619	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	7.18E+07	(N)
合計重量(W+Wsr)	W+Wsr	7.41E+07	(N)
減衰比	٤	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	3.02E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	3.16E+07	(N)
消防法/有効液重量率	f _{w0}	0.42	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	468.57	(cm)
$H_1 = f_{h1} * H$	H1	459.92	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	225.75	(N/cm)
ばね係数	Кь	4.29E+07	(N/cm)
浮き上がり抵抗力	qу	445.31	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	671.05	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.49E+07	(N)
降伏変位 (=Qy/K♭)	Δy	0.58	(cm)
減衰係数	Ce	3.53E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	$D/H_1$	7.16	(-)

Point T	QRt	8.36E+06	N
$\alpha = 2\pi R^2 q_t$ $\alpha = \frac{Q_{Rt}C_{10}}{Q_{Rt}C_{10}}$	C10	0.75	-
$Q_{Rt} = \frac{1}{H_{L}} \qquad \alpha_{t} = (\pi f_{W1} p_{0} R^{2})$	αt	0.22	-
$Q_{Rt}$	Δet	0.19	cm
$\Delta_{et} = \frac{1}{K_{h}}$	200	0110	
Point Y $\sigma$	my	5.88E+03	Ν
$a = \frac{4}{m} \sqrt{m} \frac{m}{p} m = \frac{\sigma_y}{m} t^2$	av	3.64E+02	N/cm
$\int \frac{q_y}{\sqrt{6}} \sqrt{m_y r_0} \qquad \qquad y \qquad 6 \qquad a$	QRv	1.35E+07	N
$2\pi R^2 a$ $Et_a^3$	αv	0.35	-
$Q_{Ry} = \frac{2\pi a (q_y)}{H}  D_a (= \frac{a}{12(1-v^2)})$	CM	10.02	_
$H_1$	Da	3.26E+06	N.cm
$\alpha = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}$	Δv	0.39	cm
$\int \int $	Δev	0.89	cm
$H_{*}[O_{-}]^{4}$			
$\Delta_y = \frac{R^2}{R^2}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^4$	0Rv+0t	2 18E+07	N
$[O_{2} + O_{2}]$	Grity Gt	2.102.07	
$\Delta_{ey} = \Delta_y + \frac{12R_y + 2R_f}{V}$			
K _b			
Point P $\sigma_{y+2} = \frac{4}{m}$	mp	8.82E+03	N
$m_p = \frac{1}{4} t_a \qquad q_p = \sqrt{6} \sqrt{m_p p_0}$	qp	4.45E+02	N/cm
$\mathbf{D}$	QRp	1.65E+07	Ν
$\alpha_{p} = \frac{2\pi R^{2} q_{p}}{\alpha_{p}} \qquad \alpha_{p} = \frac{12 q_{p} r_{10}}{\alpha_{p}}$	αp	0.43	-
$\mathcal{Q}_{Rp} = \frac{1}{H_1} + \frac{1}{(\pi f_{W1} p_0 R^2)}$	СМ	9.56	-
$H_{1}[Q_{R_{n}}]^{4}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{\mathbf{P}^2}$	Δp	1.05	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{K}{M}]^4$	∆ер	1.63	cm
$H_1$			
$\Lambda = \Lambda + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	2.49E+07	N
$L_{ep}$ $L_{p}$ $K_{b}$			
Point 4 4	m4	1.18E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	5.14E+02	N/cm
$2\pi R^2 a \qquad Q_{RA}C_{10}$	QR4	1.90E+07	Ν
$Q_{R4} = \frac{2\pi (q_4)}{M}  \alpha_4 = \frac{2\pi (q_4)}{(\pi (q_4)^2)}$	α4	0.49	-
$H_1 \qquad (y_{W1}P_0K)$	СМ	9.17	_
$A_{1} = \frac{H_{1}[Q_{R4}]^{4}}{H_{1}[Q_{R4}]^{4}}$	Da	3.26E+06	N.cm
$A_4 = \frac{R^2}{R^2}$	Δ4	2.21	cm
$KD_a p_0^{\circ} [C_M (\alpha_4 + \alpha_t) \overline{H}]^{\circ}$	∆e4	2.85	cm
$\Lambda_{1} = \Lambda_{1} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$K_{e^4} - K_{e^4} - K_{e^4}$	QR4+QRt	2 74E+07	N

付表 1.3-3 A-3 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

付表 1.4-1 A-4 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>,質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[諸元]			
公称容量	VOL (kl)	30000	(kl)
貯槽内径	D	53600	(mm)
側板高さ	Hmax	16455	(mm)
最下段側板厚	t _s	35	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	26.89	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SS41)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σу	245.1663	(N/mm2)
最高液高さ	Н	12875	(mm)
液密度	γ	8.85E-07	(kg/mm3)
直径/液高さ比	D/H	4.16	(-)
液高さ/直径比	H/D	0.24	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.29	(-)
消防法/有効液重量率 f _{w1}			
$f_{w_1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.27	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.11	(N/mm2)

側板重量	Ws0	4.71E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.67E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.71E+06	(N)

付表 1.4-2 A-4 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:N. cm)

		(半世.11,011)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.2159	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3918	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	2.52E+08	(N)
合計重量(W+Wsr)	W+Wsr	2.57E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	7.22E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	7.30E+07	(N)
消防法/有効液重量率	f _{w0}	0.29	(-)
	f _{w1}	0.27	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	515.06	(cm)
$H_1 = f_{h1} * H$	H1	489.25	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	279.63	(N/cm)
ばね係数	Kb	6.31E+07	(N/cm)
浮き上がり抵抗力	qy	512.83	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	792.46	(N/cm)
保有水平耐力(降伏耐力)	Qy	7.31E+07	(N)
降伏変位 (=Qy/K♭)	Δy	1.16	(cm)
減衰係数	Ce	6.50E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	10.96	(-)

# 付表 1.4-3 A-4 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

非線形	コッキン	・グばれ	ı特性線	図計算
シロリック・ハン・	- / / /	1010	> いい コエ 小小	

Point T	QRt	2.58E+07	Ν
$\alpha_{t} = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\mathcal{Q}_{t}}$	C10	0.81	-
$Q_{Rt} - \frac{1}{H_1} - \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.31	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.41	cm
$\Delta_{et} - K_{b}$			
Point Y $\sigma$	my	5.88E+03	Ν
$q_{y} = \frac{4}{m_{y}p_{0}}$ $m_{y} = \frac{4}{m_{y}}t_{a}^{2}$	qy	4.19E+02	N/cm
$\sqrt{6}\sqrt{9}$	QRy	3.86E+07	N
$2\pi R^2 q_{\mu} = D \left( \frac{Et_a^3}{2} \right)$	αγ	0.46	-
$Q_{Ry} = \frac{1}{U} D_a (= \frac{1}{12(1-v^2)})$	СМ	8.83	-
$H_1$	Da	3.26E+06	N.cm
$\alpha_{x} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}$	Δy	0.32	cm
$\int_{y}^{y} (\pi f_{W1} p_0 R^2)$	∆ey	1.34	cm
$H_1[Q_n]^4$			
$\Delta_y = \frac{1}{1} \frac{1}{R^2} $			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^4$	QRv+Qt	644F+07	N
$[O_{n} + O_{n}]$	anyvac	0.112.07	
$\Delta_{ey} = \Delta_y + \frac{c \omega_{Ry} - \omega_{RI}}{K}$			
κ _b			
Point P $\sigma_{y}$ , $a = \frac{4}{\sqrt{m}}$	mp	8.83E+03	N
$m_p = \frac{1}{4} t_a  q_p  \sqrt{6}  \sqrt{m_p P_0}$	qp	5.13E+02	N/cm
$\mathbf{D} \mathbf{D}^2$ [0]C	QRp	4.73E+07	N
$Q = \frac{2\pi R q_p}{m} \qquad \alpha_p = \frac{12 \epsilon_{Rp} \sigma_{10}}{\sigma_{10}}$	αp	0.56	-
$\mathcal{P}_{Rp} = H_1 \qquad f_{W1} p_0 R^2$	СМ	8.22	-
$H_{1}[Q_{R_{R_{R_{R_{R_{R_{R_{R_{R_{R_{R_{R_{R_$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{R^2}$	Δp	0.95	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ер	2.11	cm
$\Lambda = \Lambda + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	7.31E+07	N
$-e_p$ $-p$ $K_b$			
Point 4 4	m4	1.18E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	5.92E+02	N/cm
$2\pi R^2 a \qquad Q_{PA}C_{10}$	QR4	5.46E+07	Ν
$Q_{R4} = \frac{2\pi (q_4)}{H}  \alpha_4 = \frac{2\pi (q_4)}{(\pi (p_4)^2)}$	α4	0.65	-
$H_1 \qquad (\mathcal{Y}_{W1}P_0\mathbf{X})$	СМ	7.70	_
$\Lambda = \frac{H_1[Q_{R4}]^4}{1}$	Da	3.26E+06	N.cm
$R^{2}$	Δ4	2.19	cm
$KD_a p_0 [C_M (\alpha_4 + \alpha_t)] = \frac{1}{H_1}$	∆e4	3.46	cm
$\Lambda_{L} = \Lambda_{L} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$L^{-e_4}$ $L^{-e_4}$ $K_b$	QR4+QRt	8.04E+07	N

付表 1.5-1 A-5 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>, 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[[諸元]			
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	61000	(mm)
側板高さ	Hmax	20095	(mm)
最下段側板厚	t _s	21	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	17.31	(mm)
アニュラ板厚	t _b	15	(mm)
鋼材のヤング率(SM490C)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σу	325	(N/mm2)
最高液高さ	Н	16163	(mm)
液密度	Ŷ	8.85E-07	(kg/mm3)
直径/液高さ比	D/H	3.77	(-)
液高さ/直径比	H/D	0.26	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.32	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.30	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.14	(N/mm2)

側板重量	Ws0	4.49E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.94E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.49E+06	(N)

付表 1.5-2 A-5 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

### [計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:N.cm)

貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3489	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3852	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	4.10E+08	(N)
合計重量(W+Wsr)	W+Wsr	4.14E+08	(N)
减衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	1.30E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	1.29E+08	(N)
消防法/有効液重量率	f _{w0}	0.32	(-)
	f _{w1}	0.30	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	646.44	(cm)
$H_1 = f_{h1} * H$	H1	618.39	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	234.37	(N/cm)
ばね係数	Kb	42639506.26	(N/cm)
浮き上がり抵抗力	qу	826.95	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1061.32	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.00E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.35	(cm)
減衰係数	Ce	710374.38	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	9.86	(-)

# 付表 1.5-3 A-5 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

|--|

Point T	QRt	2.22E+07	Ν
$ Q_{Rt} = \frac{2\pi R^2 q_t}{\alpha_t} \qquad \alpha_t = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\mathcal{Q}_{Rt}} $	C10	0.80	_
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \mathcal{M}_t \qquad (\pi f_{W1} p_0 R^2)$	αt	0.14	-
$A = Q_{Rt}$	Δet	0.52	cm
$\Delta_{et} - \frac{1}{K_{h}}$			
Point Y $\sigma$	my	1.22E+04	Ν
$q_{y} = \frac{4}{2} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{2}{2} \frac{y}{2} t_{a}^{2}$	qy	6.75E+02	N/cm
$\sqrt{6^{\sqrt{y}}} \sqrt{6^{\sqrt{y}}} \sqrt{6^{-y}} \sqrt{6^{-1}}$	QRy	6.38E+07	Ν
$2\pi R^2 q_{\mu} = D \left( \frac{Et_a^3}{2} \right)$	αγ	0.41	_
$Q_{Ry} = \frac{1}{U} \frac{1}{V} D_a (= \frac{1}{12(1-v^2)})$	СМ	10.08	-
$H_1$	Da	6.36E+06	N.cm
$\alpha_{ij} = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δy	0.36	cm
$y (\pi f_{W1} p_0 R^2)$	Δey	2.38	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{R^2} \frac{1}{R^2$			
$RD_a p_0^{J} [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^{T}$	QRv+Qt	8.60E+07	N
$[Q_{P_{y}}+Q_{P_{t}}]$			
$\Delta_{ey} = \Delta_y + \frac{-2\pi Ky - 2\pi K^2}{K}$			
κ _b			
Point P $\sigma_{y} \neq 2$ $q = \frac{4}{m} \sqrt{m} p_{0}$	mp	1.83E+04	N
$m_p = \frac{1}{4} t_a \qquad f_p \qquad \sqrt{6} \sqrt{1} v_p r_0$	qp	8.27E+02	N/cm
$2 - \mathbf{R}^2$ $\mathbf{D} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	QRp	7.82E+07	N
$Q = \frac{2\pi R q_p}{\alpha_p} = \frac{12 R q_p}{\alpha_p}$	αp	0.50	-
$\mathcal{L}_{Rp} \qquad H_1 \qquad (\pi f_{W1} p_0 R^2)$	СМ	9.53	-
$H_1[Q_{Rp}]^4$	Da	6.36E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	1.02	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ер	3.37	cm
$H_1$			
$\Delta_{ap} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.00E+08	N
$K_{b}$			
Point 4 4	m4	2.44E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	9.55E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	9.03E+07	N
$Q_{R4} = \frac{-2\pi (q_4)}{H}  \alpha_4 = \frac{1}{(\pi f_{max} n_c R^2)}$	α4	0.58	
	СМ	9.06	-
$\Lambda_{4} = \frac{H_{1}[Q_{R4}]^{4}}{H_{1}[Q_{R4}]^{4}}$	Da	6.36E+06	N.cm
$\int_{-4}^{-4} RD n^{3} [C (\alpha + \alpha) R^{2}]^{4}$	Δ4	2.21	cm
$\begin{bmatrix} KD_a p_0 [C_M (a_4 + a_t)] \overline{H_1} \end{bmatrix}$	∆e4	4.85	cm
$\Delta_{a4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$K_{b}$	QR4+QRt	1.12E+08	N

付表 1.6-1 A-6 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>_ 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[[諸元]			
公称容量	VOL (kl)	75000	(kl)
貯槽内径	D	70000	(mm)
側板高さ	Hmax	21958	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23.89	(mm)
アニュラ板厚	t _b	18	(mm)
鋼材のヤング率(SPV490Q)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	19618	(mm)
液密度	r	8.80E-07	(kg/mm3)
直径/液高さ比	D/H	3.57	(-)
液高さ/直径比 H/D		0.28	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.34	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.32	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.17	(N/mm2)

側板重量	Ws0	7.68E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	2.45E+03	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.68E+06	(N)

付表 1.6-2 A-6 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:N. cm)

貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3784	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3812	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	6.52E+08	(N)
合計重量(W+Wsr)	W+Wsr	6.59E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	i	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.19E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	2.18E+08	(N)
消防法/有効液重量率	f _{w0}	0.34	(-)
	f _{w1}	0.32	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	H₀	784.63	(cm)
$H_1 = f_{h1} * H$	H1	753.86	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	349.15	(N/cm)
ばね係数	Кь	6.13E+07	(N/cm)
浮き上がり抵抗力	qу	1338.61	(N∕cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1687.76	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.72E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.81	(cm)
減衰係数	Ce	1.11E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	9.29	(-)

Point T	QRt	3.56E+07	N
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{Q_{t}}$	C10	0.80	-
$Q_{Rt} = \frac{1}{H_1} - \frac{M_1}{M_1} - (\pi f_{W1} p_0 R^2)$	αt	0.13	-
$A - \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.58	cm
$\Delta_{et} = \frac{1}{K_{b}}$			
Point Y $\sigma$	my	2.65E+04	Ν
$q_{y} = \frac{4}{\pi} \sqrt{m_{y} p_{0}}$ $m_{y} = \frac{1}{\pi} t_{a}^{2}$	qy	1.09E+03	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	1.12E+08	Ν
$2\pi R^2 q_{\mu} = D \left( - \frac{E t_a^3}{2} \right)$	αy	0.42	_
$Q_{Ry} = \frac{1}{12} \frac$	СМ	10.06	_
[0, 1]	Da	1.10E+07	N.cm
$\alpha_{ii} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{2}$	Δy	0.88	cm
$(\pi f_{W1} p_0 R^2)$	∆еу	3.28	cm
$H_1[Q_{\gamma}]^4$			
$\Delta_y = \frac{1}{22} \frac{R^2}{R^2}$			
$RD_a p_0^{-1} [C_M (\alpha_y + \alpha_t) \overline{H_1}]^{-1}$	QRv+Qt	1.47E+08	N
$[Q_{P_{Y}}+Q_{P_{t}}]$			
$\Delta_{ey} = \Delta_y + \frac{-2Ky - 2K}{K}$			
ι κ _b			
Point P $\sigma_{y} \neq 2  a = \frac{4}{2} \sqrt{m p_0}$	mp	3.97E+04	N
$m_p \equiv \frac{1}{4} t_a  q_p  \sqrt{6} \sqrt{m_p F_0}$	qp	1.34E+03	N/cm
$2 - \mathbf{P}^2$ $\mathbf{a} = \begin{bmatrix} 0 \\ \mathbf{v} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{v} \end{bmatrix}$	QRp	1.37E+08	N
$Q_{p} = \frac{2\pi K q_{p}}{m} \qquad \alpha_{p} = \frac{12 q_{p} \sigma_{10}}{\sigma_{10}}$	αp	0.52	-
$\mathcal{L}_{Rp} \qquad H_1 \qquad (\pi_{W_1} p_0 R^2)$	СМ	9.49	-
$H_1[Q_{Rp}]^4$	Da	1.10E+07	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	2.48	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ер	5.30	cm
$\Delta_{rr} = \Delta_{rr} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.72E+08	N
$e^{p}$ $p$ $K_{b}$			
Point 4 4	m4	5.29E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.55E+03	N/cm
$2\pi R^2 a \qquad Q_{RA} C_{10}$	QR4	1.58E+08	Ν
$Q_{R4} = \frac{2\pi (q_4)}{M}  \alpha_4 = \frac{2\pi (q_4)}{(\pi (p_4)^2)}$	α4	0.60	-
$H_1 \qquad (y_{W1}p_0K)$	СМ	9.02	-
$\Lambda - \frac{H_1[Q_{R4}]^4}{4}$	Da	1.10E+07	N.cm
$\Delta_4 = \frac{1}{R^2 R^2}$	Δ4	5.43	cm
$RD_a p_0^{\circ} [C_M (\alpha_4 + \alpha_t) \overline{H_1}]^{\circ}$	∆e4	8.58	cm
$\Lambda_{1} = \Lambda_{1} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$K_{b}$	QR4+QRt	1.93E+08	N

付表 1.6-3 A-6 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート (No.3計算シート)

(2) B地区(代表タンク:合計7基、B-1~B-7)

付表 1.7-1 B-1 タンクの質点系モデルの諸元計算シート(No.1計算シート)

質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力值) [諸元] 公称容量 VOL (kl) 1000 (kl)貯槽内径 D 11630 (mm)<u>側板高さ</u> Hmax 10715 (mm) 最下段側板厚 (mm)t_s 6 (mm) 1/3の最高液高さにおける側板厚 4.1  $t_{1/3}$ アニュラ板厚 (mm)6 tb 鋼材のヤング率 (SS41) Е 205939.65 (N/mm2)鋼材のポアソン比 (-) ν 0.3 降伏応力 σy 245.1663 (N/mm2) 最高液高さ 9421 (mm) Н 液密度 .00E-06 (kg/mm3) γ 直径/液高さ比 D/H 1.23 (-) (-) 液高さ/直径比 H/D 0.81 消防法/有効液重量率 f_{w0}  $f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$ (-)0.71 消防法/有効液重量率 f_{w1}  $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$ (-) 0.66 消防法/有効液の重心高さ係数 f_{b0}  $f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$ (-) 0.42 消防法/有効液の重心高さ係数 f_{h1}  $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$ 0.46 (-)底板に作用する最大静液圧 0.09 (N/mm2)  $P_0 = g \gamma H$ 

<u>タンク本体重量(赤字:入力値)</u>

側板重量	Ws0	1.74E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	6.63E+01	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.40E+05	(N)
付表 1.7-2 B-1 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N, cm)

		(半位.11,011)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1489	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2609	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	9.81E+06	(N)
合計重量(W+Wsr)	W+Wsr	1.01E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	6.95E+06	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	6.68E+06	(N)
消防法/有効液重量率	f _{w0}	0.71	(-)
	f _{w1}	0.66	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	391.22	(cm)
$H_1 = f_{h1} * H$	H1	433.56	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.46	(-)
側板自重による鉛直抵抗力qt	qt	65.66	(N/cm)
ばね係数	Kb	1.21E+07	(N/cm)
浮き上がり抵抗力	qу	233.16	(N∕cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	298.82	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.46E+06	(N)
<u>降伏変位 (=Qy/Kb)</u>	Δy	0.12	(cm)
減衰係数	Ce	8.62E+04	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	2.68	(-)

付表 1.7-3 B-1 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート(No.3 計算シート)

Point T	QRt	3.22E+05	N
$Q_{Rt} Q_{Rt} Q_{t} = \frac{Q_{Rt} C_{10}}{Q_{Rt} C_{10}}$	C10	0.36	_
$\mathcal{Q}_{Rt} = \frac{1}{H_1} \qquad \qquad$	αt	0.02	_
$\Delta_{et} = \frac{Q_{Rt}}{K_{L}}$	$\Delta$ et	0.03	cm
Point Y	mv	1.47E+03	N
$a = \frac{4}{m} m = \frac{0}{m} t^2$	av	1.90E+02	N/cm
$\int \sqrt{6} \sqrt{m_y p_0} \qquad \qquad$	QRv	9.33E+05	N
$2\pi R^2 a$ $Et_a^3$	αγ	0.05	_
$Q_{Rv} = \frac{2\pi (q_y)}{m} D_a (= \frac{a}{12(1-v^2)})$	СМ	12.96	_
$H_1$	Da	4.07E+05	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.17	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.27	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	1.25E+06	Ν
Point P $\sigma$ 4 $\sim$	mn	2 21E+03	N
$m_p = \frac{\sigma_y}{4} t_a^2  q_p = \frac{\sigma_y}{\sqrt{6}} \sqrt{m_p p_0}$	an	2.33E+02	N/cm
. 4	QRn	1 14F+06	N
$2\pi R^2 q_p = q_{-10} - \frac{[Q_{R_p}]C_{10}}{[Q_{R_p}]C_{10}}$	απρ	0.06	
$Q_{Rp} = \frac{1}{H} - \alpha_p - (\pi f_{W1} p_0 R^2)$	CM	12.89	
$H[O]^4$	Da	4 07E+05	Ncm
$\Delta_p = \frac{m_{11} g_{Rp}}{m_{11}}$	Δn	0.39	cm
$RD p_0^3 [C_{\mathcal{M}}(\alpha + \alpha_1) \frac{R^2}{m}]^4$	Δ en	0.51	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.46E+06	N
Point 4 4	m4	2.94E+03	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	2.69E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.32E+06	N
$Q_{R4} = \frac{1}{H} \frac{1}{H} \frac{\alpha_4}{\alpha_4} = \frac{1}{(\pi f_{W4} p_0 R^2)}$	α4	0.07	-
$H_1 \qquad (5 W F O)$	СМ	12.84	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]}{2}$	Da	4.07E+05	N.cm
$RD_{1} p_{2}^{3} [C_{1} (\alpha_{1} + \alpha_{2}) \frac{R^{2}}{m}]^{4}$	Δ4	0.70	cm
$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ &$	∆e4	0.84	cm
$\Delta_{e4} = \Delta_4 + \frac{K_b}{K_b}$	QR4+QRt	1.64E+06	N
Point 5 4	m5	5.88E+03	Ν
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	3.81E+02	N/cm
$\sqrt{6}$	QR5	1.87E+06	Ν
	α5	0.10	-
	СМ	12.65	-
	Da	4.07E+05	N.cm
	$\Delta 5$	2.96	cm
	∆e5	3.14	cm
	QR5+QRt	2.19E+06	N

非線形ロッキングばね特性線図計算

付表 1.8-1 B-2 タンクの質点系モデルの諸元計算シート(No.1計算シート)

# _質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	6000	(kl)
貯槽内径	D	29070	(mm)
側板高さ	Hmax	10760	(mm)
最下段側板厚	t _s	14	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	8.4	(mm)
アニュラ板厚	t _b	9	(mm)
<u>鋼材のヤング率(SS400)</u>	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245.16625	(N/mm2)
最高液高さ	Н	9074	(mm)
液密度	r	1.00E-06	(kg∕mm3)
直径/液高さ比	D/H	3.20	(-)
液高さ/直径比	H/D	0.31	(-)
消防法/有効液重量率 $f_{w0}$ $f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 0.8427(\frac{H}{D})^3 - 0.916(\frac{H}{D})^2 + 0.916(\frac{H}{D})^3 - 0.916(\frac{H}{D})^3 + 0.916(\frac{H}{D})^$	$+2.0933(\frac{H}{D})-0.1172$	0.37	(-)
消防法/有効液重量率 $f_{w1}$ $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2$	$+2.3017(\frac{H}{D}) - 0.1634$	0.36	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.1493(\frac{H}{D})^2 - 0.1493(\frac{H}{D})^2 - 0.01493(\frac{H}{D})^2 - 0.01493(\frac{H}{D})^2 - 0.01493(\frac{H}{D})^2 - 0.01493(\frac{H}{D})^2 - 0.004(\frac{H}{D})^2 - 0.004(H$	$-0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1} 			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^$	$+0.0207(\frac{H}{D})+0.3644$	0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.09	(N/mm2)

側板重量	Ws0	7.32E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	4.99E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.23E+06	(N)

付表 1.8-2 B-2 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

# 紫字:モデルの入力値

		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1785	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3729	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	5.91E+07	(N)
合計重量(W+Wsr)	W+Wsr	6.03E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.21E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	2.25E+07	(N)
消防法/有効液重量率	f _{w0}	0.37	(-)
	f _{w1}	0.36	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	363.06	(cm)
$H_1 = f_{h1} * H$	H1	352.01	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	134.86	(N/cm)
ばね係数	Kb	2.85E+07	(N/cm)
浮き上がり抵抗力	qу	343.23	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	478.10	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.80E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.63	(cm)
<u>減衰係数</u>	Ce	2.43E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	8.26	(-)

付表 1.8-3 B-2 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート(No.3 計算シート)

Point T	QRt	5.09E+06	Ν
$\alpha = \frac{2\pi R^2 q_t}{\alpha} = \frac{Q_{Rt} C_{10}}{\alpha}$	C10	0.78	-
$Q_{Rt} = \frac{1}{H_{\star}} \qquad $	αt	0.19	-
$A = Q_{Rt}$	∆et	0.18	cm
$\Delta_{et} = \frac{1}{K_h}$			
Point Y	my	3.31E+03	N
$a = \frac{4}{m_{y}} \sqrt{m_{p}} \qquad m_{y} = \frac{3}{m_{y}} t_{a}^{2}$	qy	2.80E+02	N/cm
$\sqrt{6} \sqrt{1} \sqrt{6} \sqrt{1} \sqrt{1} \sqrt{6} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} \sqrt{1} 1$	QRy	1.06E+07	N
$2\pi R^2 q$ $Et_a^3$	αγ	0.39	-
$Q_{Ry} = \frac{1}{U} \frac{1}{V} 1$	СМ	9.96	-
$H_1$	Da	1.37E+06	N.cm
$\alpha = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}$	Δy	0.24	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.79	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{R^2 + R^2}$			
$RD_a p_0 [C_M (\alpha_y + \alpha_t)] \overline{H_1}]$	QRy+Qt	1.57E+07	Ν
$[Q_{R_{y}}+Q_{R_{t}}]$			
$\Delta_{ey} = \Delta_y + \frac{1}{K}$			
		4.005.00	
$ \begin{array}{ccc} \text{Point P} \\ m &= \frac{\sigma_y}{m_p t} t^2  q_p = \frac{4}{\sqrt{c}} \sqrt{m_p p_0} \end{array} $	mp	4.96E+03	N /
$p 4^{a} \sqrt{6}$	dp OD:	3.43E+02	
$2\pi R^2 a$ $[Q_{Rp}]C_{10}$	QRp	1.29E+07	N
$Q_{Rp} = \frac{2\pi T q_p}{T} \qquad \alpha_p = \frac{2\pi T q_p}{(\pi f - p R^2)}$	<i>u</i> p	0.47	-
$H_1 \qquad (y_{W_1}p_0K)$	СМ	9.44	
$\Lambda = \frac{H_1[Q_{Rp}]}{1}$	Da	1.3/E+06	N.cm
$\sum_{p} R^{2} R^{2}$	Δp	0.68	cm
$RD_a p_0 [C_M (\alpha_p + \alpha_t) \overline{H_1}]$	Дер	1.31	cm
$O_{P_{\rm N}} + O_{P_{\rm f}}$		1.005.07	N
$\Delta_{ep} = \Delta_p + \frac{\omega_{KP} - \omega_{KI}}{K}$	QRp+Qt	1.80E+07	N
		6.625+02	N
$q_{4} = \frac{4}{\sqrt{m_{4}p_{0}}}$	m4 ~4		N/am
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$		3.90E+02	
$Q_{R4} = \frac{2\pi R^2 q_4}{\alpha_4}  \alpha_4 = \frac{Q_{R4} C_{10}}{\alpha_4}$		1.49E+07	
$\overset{\boldsymbol{\varkappa}_{R4}}{=} H_1 \overset{\tau}{=} (\pi f_{W1} p_0 R^2)$		0.00	
$H_1[Q_{R_4}]^4$		<u>9.01</u> 1.37⊑±∩6	Nom
$\Delta_4 = \frac{1}{R^2}$		1.3/ETUU	
$RD_a p_0^3 [C_M (\alpha_4 + \alpha_t) \frac{\kappa}{m}]^4$		0.40	
$A_{R4} + Q_{R4} + Q_{Rt}$		2.10	
$\Delta_{e4} = \Delta_4 + \frac{K_h}{K_h}$		2 00F+07	N
Point 5	m5	1 32F+04	N
$a_r = \frac{4}{m_r n_r}$	d5	5 60E+02	N/cm
$\sqrt{6} \sqrt{15} \sqrt{6} \sqrt{15} \sqrt{10}$	QR5	2 11F+07	N
	α.5	0.77	_
	CM	7.65	_
	Da	1.37E+06	Ncm
	Δ 5	11 20	cm
	Δ <u>ο</u> 5	12 122	cm
	QR5+QRt	2 62F+07	N
			113

非線形ロッキングばね特性線図計算

付表 1.9-1 B-3 タンクの質点系モデルの諸元計算シート(No.1計算シート)

啠	占	系	モデ	・ル	にん	kる	側札	ᢧ᠇	「端	ወ i	淫き	上が	りま	5位:	計笡	用詞	渚亓
~.	/115	12	- /		1-0	~ •	1002.14	~ !	-114			/~	12			( I J F	18 / 4

元 (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	10000	(kl)
貯槽内径	D	32940	(mm)
側板高さ	Hmax	13795	(mm)
最下段側板厚	t _s	18	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	12.8	(mm)
アニュラ板厚	t _b	8	(mm)
鋼材のヤング率(SS41)	E	205939.65	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11627	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	2.83	(-)
液高さ/直径比	H/D	0.35	(-)
消防法/有効液重量率 $f_{w0}$ $f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.$	$0933(\frac{H}{D}) - 0.1172$	0.42	(-)
消防法/有効液重量率 $f_{w1}$ $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2$	$.3017(\frac{H}{D}) - 0.1634$	0.41	(-)
消防法/有効液の重心高さ係数 f _{ho}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0000000000000000000000000000000000$	0.40	(-)	
消防法/有効液の重心高さ係数 $t_{h1}$ $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$			
		0.39	(-)
低板に作用する最大静液圧			
$P_0 = g \gamma H$		0.11	(N∕mm2)

側板重量	Ws0	1.36E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	7.02E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.06E+06	(N)

付表 1.9-2 B-3 タンクの質点系モデルの諸元計算シート(No.2計算シート)

### [計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:Nom)

		<u>(申122:N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1909	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3625	(-)
液重量 W=gγπD ² H/4	w	9.72E+07	(N)
合計重量(W+Wsr)	W+Wsr	9.92E+07	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	4.06E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	4.14E+07	(N)
消防法/有効液重量率	f _{w0}	0.42	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	465.73	(cm)
$H_1 = f_{h1} * H$	H1	456.84	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	199.36	(N/cm)
ばね係数	Kb	4.58E+07	(N/cm)
浮き上がり抵抗力	qy	345.24	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	$q_y + q_t$	544.60	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.03E+07	(N)
降伏変位 (=Qy/Kb)	Δу	0.44	(cm)
減衰係数	Ce	4.17E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	7.21	(-)

### 付表 1.9-3 B-3 タンクの非線形水平ばねの復元力特性とする Q-ム線図の計算シート

(NU.) 計昇ンニト	シート	計算	3	(No.	
-------------	-----	----	---	------	--

非線形ロッキング	ばね特性線図計	算
----------	---------	---

Point T	QRt	7.44E+06	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.76	—
$\mathcal{Q}_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.14	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{t}}$	$\Delta$ et	0.16	cm
Point Y	my	2.61E+03	N
$a = \frac{4}{m} \sqrt{m} p_a$ $m_a = \frac{6}{y} t_a^2$	av	2.82E+02	N/cm
$q_y \sqrt{6} \sqrt{m_y P_0} \qquad q_y \qquad 6$	QRv	1.05E+07	N
$2\pi R^2 a$ $Et_a^3$	αv	0.20	-
$Q_{Rv} = \frac{2\pi a (q_y)}{m} D_a (= \frac{a}{12(1-v^2)})$	СМ	11.33	_
$H_1$	Da	9.66E+05	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.12	cm
$\overset{\alpha_{y}}{=} (\pi f_{W1} p_0 R^2)$	Δev	0.51	cm
$\Lambda = \frac{H_1[Q_y]^4}{1}$			
$\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Ri}]}{K}$	QRy+Qt	1.80E+07	N
$\begin{array}{c} & & & \\ & & & \\ Point P & \sigma & 4 \end{array}$	mn	3 92E+03	N
$m_{p} = \frac{\sigma_{y}}{4} t_{a}^{2}  q_{p} = \frac{\sigma_{p}}{\sqrt{6}} \sqrt{m_{p} p_{0}}$	an	3 45E+02	N/cm
	QRn	1 29E+07	N
$2\pi R^2 q_p = \alpha - \frac{[Q_{Rp}]C_{10}}{[Q_{Rp}]C_{10}}$	0/n	0.25	_
$Q_{Rp} = \frac{1}{H} - \alpha_{p} - (\pi f_{W1} p_{0} R^{2})$	СМ	11.05	_
$H_1 [O_n]^4$	Da	9.66E+05	N.cm
$\Delta_p = \frac{1}{2} \frac{1}{2$	Δρ	0.29	cm
$RD_{\alpha}p_{0}^{3}[C_{M}(\alpha_{n}+\alpha_{t})\frac{\kappa}{m}]^{4}$	∆ep	0.73	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	2.03E+07	N
Point 4	m4	5.23E+03	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	3.99E+02	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	1.49E+07	N
$Q_{R4} = \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{W1} p_0 R^2)}$	α4	0.29	_
	СМ	10.83	_
$\Delta_4 = \frac{H_1[Q_{R4}]}{2}$	Da	9.66E+05	N.cm
$RD_{1} p_{2}^{3} [C_{11}(\alpha_{1} + \alpha_{1})] \frac{R^{2}}{m} ]^{4}$	Δ4	0.56	cm
$A = A + Q_{R4} + Q_{Rt} + H_1$	∆e4	1.04	cm
$\frac{\Delta_{e4} - \Delta_4 + \frac{1}{K_b}}{K_b}$	QR4+QRt	2.23E+07	N
Point 5 4	m5	1.05E+04	N
$q_5 = \frac{1}{\sqrt{m_5}} \sqrt{m_5} p_0$	q5	5.64E+02	N/cm
√0	QR5	2.10E+07	N
	α5	0.40	-
	CM	10.12	-
	Da	9.66E+05	N.cm
		2.91	cm
		3.53	
	QR5+QRt	2.85E+07	IN

付表 1.10-1 B-4 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

### .質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	30000	(kl)
貯槽内径	D	52330	(mm)
側板高さ	Hmax	16745	(mm)
最下段側板厚	t _s	17	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	13.8	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SPV490Q)	E	205939.65	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	13158	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	3.98	(-)
液高さ/直径比	H/D	0.25	(-)
消防法/有効液重量率 $f_{w0}$ $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.30	(-)
消防法/有効液重量率 $f_{w1}$ $f_{w1} = -0.1429 (\frac{H}{D})^4 + 0.9653 (\frac{H}{D})^3 - 2.2807 (\frac{H}{D})^2 + 2.3017 (\frac{H}{D}) - 0.1634$			
	_	0.29	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{n}{D})^4 - 0.1387(\frac{n}{D})^3 + 0.216(\frac{n}{D})^2 + 0.0000000000000000000000000000000000$	$207(\frac{n}{D}) + 0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.13	(N/mm2)

側板重量	Ws0	2.90E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	1.43E+03	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.34E+06	(N)

付表 1.10-2 B-4 タンクの質点系モデルの諸元計算シート(No.2計算シート)

### [計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:Nom)

		<u>(</u> 甲位 : N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.2896	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3888	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	2.78E+08	(N)
合計重量(W+Wsr)	W+Wsr	2.82E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	8.35E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	8.37E+07	(N)
消防法/有効液重量率	f _{w0}	0.30	(-)
	f _{w1}	0.29	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	526.30	(cm)
$H_1 = f_{h1} * H$	H1	501.53	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	263.88	(N/cm)
ばね係数	Kb	4.02E+07	(N/cm)
浮き上がり抵抗力	qy	779.09	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	$q_y + q_t$	1042.97	(N/cm)
保有水平耐力(降伏耐力)	Qy	8.95E+07	(N)
降伏変位 (=Qy/Kb)	Δу	2.23	(cm)
<u>減衰係数</u>	Ce	5.55E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	10.43	(-)

付表 1.10-3 B-4 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

非線形ロッキングはね特性線図計算			
Point T	QRt	2.26E+07	N
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.81	-
$Q_{Rt} - \frac{1}{H_1} - \frac{1}{(\pi f_{W1} p_0 R^2)}$	αt	0.23	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.56	cm
$L_{et} K_{b}$			
Point Y $\sigma_{1}$	my	1.18E+04	N
$q_{y} = \frac{4}{2} \sqrt{m_{y} p_{0}} \qquad m_{y} = \frac{y}{2} t_{a}^{2}$	qy	6.36E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	5.46E+07	N
$2\pi R^2 q_{y} = D \left(-\frac{Et_a^3}{2}\right)$	αy	0.55	-
$Q_{Ry} = \frac{-1}{H} D_a (-\frac{1}{12(1-v^2)})$	СМ	8.71	-
$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{12 \alpha_{y} \sigma_{10}}{\sigma_{x}^{2}}$	Δy	1.22	cm
$(\pi_{W_1} p_0 R^2)$	∆ey	3.14	cm
$H_1[Q_y]^4$			
$\Delta_{y} = \frac{R_{y}}{R_{y}} - \frac{R_{y}}{R_{y}} \frac{R_{y}}{R_{y}} + \frac{R_{y}}{R_{y}} + \frac{R_{y}}{R_{y}} + \frac{R_{y}}{R$			
$HD_a P_0 (C_M (\alpha_y + \alpha_t) H_1)$	QRy+Qt	7.72E+07	Ν
$[Q_{Ry} + Q_{Rt}]$			
$\Delta_{ey} = \Delta_y + \frac{K_h}{K_h}$			
		1765+04	N
$ \begin{array}{c} \text{Point P} \\ m_{p} = \frac{\sigma_{y}}{m_{p}} t_{a}^{2}  q_{p} = \frac{4}{\sqrt{c}} \sqrt{m_{p} p_{0}} \end{array} $	mp	1./0E+04	
$p^{p}$ 4 $a^{u}$ vo	dp OBr	7.79E+02	
$2\pi R^2 q_{\rm p} = [Q_{\rm Rp}]C_{10}$	QRP	0.0000/01/	
$Q_{Rp} = \frac{1}{\mu} \qquad \alpha_p - \frac{1}{(\pi f_{W1} p_0 R^2)}$	CM	7.07	
$H[O]^{4}$		3.26E+06	Nom
$\Delta_{p} = \frac{\Pi_{1} [\mathcal{Q}_{Rp}]}{2}$	<u>A</u> n	3.202+00	in.cm
$RD p_0^3 [C_{11}(\alpha + \alpha)] \frac{R^2}{R^2} $	Aen	6.13	cm
$\int a P_0 C M(\alpha_p + \alpha_t) H_1$		0.10	
$Q_{Rp} + Q_{Rt}$	$OB_{n+Ot}$	8 95E+07	Ν
$\Delta_{ep} = \Delta_p + \frac{1}{K_h}$	Grip Gr	0.002.07	
Point 4 4	m4	2.35E+04	N
$q_4 = \frac{1}{\sqrt{c}} \sqrt{m_4 p_0}$	a4	9.00E+02	N/cm
$2\pi P^2 a \qquad O_{\rm D4} C_{\rm 10}$	QR4	7.72E+07	N
$Q_{R4} = \frac{2\pi q_4}{H} \qquad \alpha_4 = \frac{2\pi q_4}{(\pi q_4 - n R^2)}$	α4	0.78	_
$H_1 \qquad (\gamma g_{W1} p_0 \mathbf{K})$	СМ	7.34	_
$\Lambda = \frac{H_1[Q_{R4}]^4}{H_1[Q_{R4}]^4}$	Da	3.26E+06	N.cm
$\Delta_4 = \frac{1}{R^2} \frac{R^2}{R^2}$	∆4	9.63	cm
$\frac{\kappa D_a p_0 [C_M (\alpha_4 + \alpha_t)]}{H_1}$	∆e4	12.12	cm
$\Delta_{L} = \Delta_{L} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$ \overset{{e4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}}{\overset{{4}}{\overset{{4}}{\overset{{4}}}{\overset{{4}}{\overset{{4}}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}{\overset{{4}}}{\overset{{4}}}{\overset{{4}}}{\overset{{4}}{\overset{{4}}}{\overset{{4}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	QR4+QRt	9.98E+07	N

非線形ロッキングばね特性線図計算

(No.3計算シート)

付表 1.11-1 B-5 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

### <u> 雪点系モデルによる側板下端の浮き上がり変位計算用諸元 </u> (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	69765	(mm)
側板高さ	Hmax	15290	(mm)
最下段側板厚	t _s	22.1	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	18.1	(mm)
アニュラ板厚	t _b	11.4	(mm)
鋼材のヤング率(HT60)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σγ	450	(N/mm2)
最高液高さ	Н	12608	(mm)
液密度	r	8.66E-07	(kg/mm3)
直径/液高さ比	D/H	5.53	(-)
液高さ/直径比	H/D	0.18	(-)
消防法/有効液重量率 $f_{w0}$ $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.20	(-)
消防法/有効液重量率 $f_{w1}$ $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$			
	D	0.18	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の里心高さ係数 $f_{h1}$ $f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.37	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.107	(N/mm2)

側板重量	Ws0	4.32E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.22E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	4.32E+06	(N)

付表 1.11-2 B-5 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

### 紫字:モデルの入力値

		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.2927	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.4080	(-)
液重量 W=gγπD ² H/4	w	4.09E+08	(N)
合計重量(W+Wsr)	W+Wsr	4.14E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	8.32E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	7.95E+07	(N)
消防法/有効液重量率	f _{w0}	0.20	(-)
	f _{w1}	0.18	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	505.38	(cm)
$H_1 = f_{h1} * H$	Hı	472.05	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.37	(-)
側板自重による鉛直抵抗力qt	qt	197.09	(N/cm)
ばね係数	Kb	3.74E+07	(N/cm)
浮き上がり抵抗力	qy	680.12	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	877.21	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.42E+08	(N)
降伏変位 (=Qy/K₀)	Δy	3.80	(cm)
减衰係数	Ce	5.22E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	14.78	(-)

付表 1.11-3 B-5 タンクの非線形水平ばねの復元力特性とする Q-∆線図の計算シート (No.3計算シート)

外線がやくている時に線画的チ			
Point T	QRt	3.19E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\mathcal{Q}_{Rt} \mathcal{C}_{10}}$	C10	0.81	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.35	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.85	cm
$K_{b}$			
Point Y $\sigma_{1}$	my	9.75E+03	N
$q_{y} = \frac{4}{\pi} \sqrt{m_{y} p_{0}}$ $m_{y} = \frac{y}{\pi} t_{a}^{2}$	qy	5.28E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	8.54E+07	N
$2\pi R^2 q_{y} = D \left(-\frac{Et_a^3}{2}\right)$	αγ	0.92	-
$Q_{Ry} = \frac{1}{\mu} D_a (-\frac{1}{12(1-v^2)})$	СМ	5.82	-
$\begin{bmatrix} II_1 \\ IO \end{bmatrix} \begin{bmatrix} IC \end{bmatrix}$	Da	2.79E+06	N.cm
$\alpha_{y} = \frac{12 \alpha_{Ry} C_{10}}{2}$	Δy	4.16	cm
$\int (\pi f_{W1} p_0 R^2)$	∆ey	7.30	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{RD n^3 [C (\alpha + \alpha) \frac{R^2}{R}]^4}$			
$HD_a p_0 [C_M (\alpha_y + \alpha_t) H_1]$	QRy+Qt	1.17E+08	N
$[Q_{Ry} + Q_{Rt}]$			
$\Delta_{ey} = \Delta_y + \frac{K_h}{K_h}$			
		1 465+04	N
$m_{p} = \frac{O_{y}}{m_{p}} t_{a}^{2}  q_{p} = \frac{-\tau}{\sqrt{\epsilon}} \sqrt{m_{p} p_{0}}$	inp	6.46E±02	N/am
$p^{p}$ 4 " $\sqrt{6}$	dp OPr	0.40E+02	
$2\pi R^2 q_p \qquad [Q_{Rp}]C_{10}$		1.00E+00	
$Q_{Rp} = \frac{Ip}{II}  \alpha_p = \frac{I}{(\pi f_{WI} p_0 R^2)}$	CM	1.13	
$H \begin{bmatrix} 0 \end{bmatrix}^4$		4.30 2.70E±06	Nom
$\Delta_n = \frac{\Pi_1[\mathcal{Q}_{Rp}]}{2}$	<u>Da</u>	24.38	ln.cm
$p^{p} RD n^{3} [C (\alpha + \alpha) \frac{R^{2}}{m}]^{4}$	Ap	28.04	
$H_{a} P_{0} C_{M} (\alpha_{p} + \alpha_{t}) H_{1}$	Дер	20.04	
$Q_{Rp} + Q_{Rt}$	$OP_{n+O+}$	1 37E+08	N
$\Delta_{ep} = \Delta_p + \frac{1}{K_h}$	Grip Gr	1.372.00	
Point 4 4	m4	1.56E+04	N
$q_4 = \frac{1}{\sqrt{c}} \sqrt{m_4 p_0}$	a4	6.67E+02	N/cm
$2 - R^2 = \sqrt{6}$	QR4	1.08E+08	N
$Q_{R4} = \frac{2\pi R q_4}{\pi}  \alpha_4 = \frac{\xi_{R4} \varepsilon_{10}}{(\pi c r_R R^2)}$	$\alpha 4$	1.17	-
$H_1 \qquad (\mathcal{Y}_{W1} \mathcal{P}_0 \mathcal{K})$	СМ	4.36	_
$H_1[Q_{R4}]^4$	Da	2.79E+06	N.cm
$\Delta_4 = \frac{R^2}{R^2}$	Δ4	33.82	cm
$RD_a p_0^{-1} [C_M (\alpha_4 + \alpha_t) - \frac{1}{H}]^*$	Δe4	37.57	cm
$\Delta = \Delta + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$L_{e4} - L_{4}$ K	OR4+OR+	1 40E+08	N

非線形ロッキングばね特性線図計算

付表 1.12-1 B-6 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u> 質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	77000	(kl)
貯槽内径	D	77270	(mm)
側板高さ	Hmax	19490	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	22.8	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率 (SM58Q)	E	205939.65	(N/mm2)
<u>鋼材のポアソン比</u>	ν	0.3	(-)
降伏応力	σy	460	(N/mm2)
<u>最高液高さ</u>	Н	16355	(mm)
液密度	γ	8.55E-07	(kg/mm3)
直径/液高さ比	D/H	4.72	(-)
液高さ/直径比	H/D	0.21	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.25	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.23	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.0807 \left(\frac{H}{D}\right) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$ P_0 = g \gamma H$		0.14	(N/mm2)

側板重量	Ws0	7.82E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.11E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.82E+06	(N)

付表 1.12-2 B-6 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

#### [計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:N.cm)

		<u>(</u> 単位:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3338	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3995	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	6.43E+08	(N)
合計重量(W+Wsr)	W+Wsr	6.51E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	1.59E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	1.56E+08	(N)
消防法/有効液重量率	f _{w0}	0.25	(-)
	f _{w1}	0.23	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	654.72	(cm)
$H_1 = f_{h1} * H$	H1	616.90	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	322.12	(N/cm)
ばね係数	K⊳	5.64E+07	(N/cm)
浮き上がり抵抗力	qу	778.19	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	qy+qt	1100.31	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.67E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.97	(cm)
減衰係数	Ce	8.98E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	12.53	(-)

### 付表 1.12-3 B-6 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

チャートレーフィンフロコロ国家			
Point T	QRt	4.90E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.81	_
$\mathcal{Q}_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.27	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.87	cm
$\overset{\rightharpoonup}{}_{et} K_{b}$			
Point Y $\sigma$	my	1.10E+04	Ν
$q_{y} = \frac{4}{\pi} \sqrt{m_{y} p_{0}}$ $m_{y} = \frac{1}{\pi} t_{a}^{2}$	qy	6.35E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	9.66E+07	Ν
$2\pi R^2 q_{\rm p} = D \left(-\frac{Et_a^3}{2}\right)$	αy	0.53	_
$Q_{Ry} = \frac{1}{\mu} D_a (-\frac{1}{12(1-v^2)})$	СМ	8.62	_
$\Pi_1$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{10^{2} Ry \Gamma_{10}}{2}$	Δy	0.87	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	3.46	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{R^2 R^2}$			
$RD_a p_0 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]$	QRv+Qt	1.46E+08	Ν
$[Q_{R_{y}}+Q_{R_{t}}]$			
$\Delta_{ey} = \Delta_y + \frac{K_{ey}}{K_{ey}}$			
<i>b</i>			
Point P m = $\frac{\sigma_y}{m} t^2$ $q_p = \frac{4}{\sqrt{m_p p_0}}$	mp	1.66E+04	N
$m_p = 4^{\nu_a} \sqrt{6^{\nu_p}}$	qp	7.78E+02	N/cm
$2\pi R^2 a [Q_{R_R}]C_{10}$	QRp	1.18E+08	N
$Q_{R_{p}} = \frac{2\pi \alpha q_{p}}{(\pi f_{p} - n_{p} R^{2})} \qquad \alpha_{p} = \frac{\pi q_{p} q_{p}}{(\pi f_{p} - n_{p} R^{2})}$	αp	0.65	-
$\begin{array}{c} \mu \\ H_1 \\ H_1 \\ H_1 \\ H_1 \\ H_1 \\ H_2 \\ H_2 \\ H_2 \\ H_1 \\ H_2 \\ H$	СМ	7.91	-
$A_{1} = \frac{H_{1}[Q_{Rp}]^{*}}{H_{1}[Q_{Rp}]^{*}}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	2.77	cm
$RD_a p_0^{-1} [C_M (\alpha_p + \alpha_t) \overline{H_t}]^{-1}$	∆ер	5.74	cm
$O_{-} + O_{-}$			
$\Delta_{ep} = \Delta_p + \frac{\mathcal{L}_{Rp} + \mathcal{L}_{Rt}}{\nu}$	QRp+Qt	1.67E+08	Ν
		0.045.04	
Point 4 $a_{\perp} = \frac{4}{\sqrt{m_{\perp} n_{\perp}}}$	m4	2.21E+04	N N (
$\int \frac{44}{\sqrt{6}} \sqrt{6} \sqrt{\frac{1}{2}} \frac{1}{\sqrt{6}} \sqrt{\frac{1}{2}} \sqrt$	<u>q4</u>	8.99E+02	N/cm
$Q_{R4} = \frac{2\pi R^2 q_4}{\alpha_4} = \frac{Q_{R4} C_{10}}{\alpha_4}$		1.3/E+08	<u>N</u>
$\mathcal{Q}_{R4} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	α4	0.75	-
$H[O]^{1}$		/.31	-
$\Delta_4 = \frac{\mu_1 \nu_{R4} J}{\rho^2}$	Da	<u>3.26E+06</u>	N.cm
$RD_{\alpha}p_{0}^{3}[C_{M}(\alpha_{A}+\alpha_{L})]^{4}$		6.76	cm
$\frac{1}{Q_{p_1}+Q_{p_2}} + H_1$	<u>∆</u> e4	10.05	cm
$\Delta_{e4} = \Delta_4 + \frac{\boldsymbol{\varepsilon}_{R4} + \boldsymbol{\varepsilon}_{Rt}}{\boldsymbol{\nu}}$			
Λ _b	QR4+QRt	1.86E+08	N

#### 非線形ロッキングばね特性線図計算

(No.3計算シート)

付表 1.13-1 B-7 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u> 質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			(赤字:入力値)
[諸元]			
公称容量	VOL (kl)	100000	(kl)
貯槽内径	D	81480	(mm)
側板高さ	Hmax	22570	(mm)
最下段側板厚	t _s	36	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	28	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(HT60)</u>	E	205939.65	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σy	450	(N/mm2)
最高液高さ	Н	19063	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	4.27	(-)
液高さ/直径比	H/D	0.23	(-)
消防法/有効液重量率 $f_{w0}$ $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$			
消防法/有効液重量率 $f_{w1}$ $f_{w1} = -0.1429 (\frac{H}{D})^4 + 0.9653 (\frac{H}{D})^3 - 2.2807 (\frac{H}{D})^2 + 2.3017 (\frac{H}{D}) - 0.1634$		0.28	(-)
	Н		
$f_{H0} = 0.0384(\frac{n}{D})^4 - 0.1493(\frac{n}{D})^3 + 0.204(\frac{n}{D})^2 - 0.0807(\frac{n}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^2 + 0.016(\frac{H}{D})^2 $	$0.0207(\frac{H}{D}) + 0.3644$	0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.19	(N/mm2)

側板重量	Ws0	1.05E+04	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	3.68E+03	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.05E+07	(N)

付表 1.13-2 B-7 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N, cm)

		/ .	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3765	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3935	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	9.75E+08	(N)
合計重量(W+Wsr)	W+Wsr	9.85E+08	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.71E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	2.66E+08	(N)
消防法/有効液重量率	f _{w0}	0.28	(-)
	f _{w1}	0.26	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	762.69	(cm)
$H_1 = f_{h1} * H$	H1	723.19	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	409.84	(N/cm)
ばね係数	Кь	7.56E+07	(N/cm)
浮き上がり抵抗力	qу	898.67	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1308.51	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.89E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.50	(cm)
減衰係数	Ce	1.36E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	11.27	(-)

### 付表 1.13-3 B-7 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

(No. 3	計算シー	ト)
--------	------	----

卵脉がロノインノはな竹山脉区的并			
Point T	QRt	5.91E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_{t}}{\alpha_{t}} \qquad \alpha_{t} = \frac{\mathcal{Q}_{Rt} \mathcal{C}_{10}}{\alpha_{t}}$	C10	0.81	-
$\mathcal{Q}_{Rt} = H_1 \qquad (\pi f_{W1} p_0 R^2)$	αt	0.19	-
$\Delta_{tt} = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.78	cm
$K_{b}$			
Point Y $\sigma_{1}$	my	1.08E+04	N
$q_{y} = \frac{4}{\sqrt{m_{y}p_{0}}} \qquad m_{y} = \frac{y}{\sqrt{m_{a}}} t_{a}^{2}$	qy	7.34E+02	N/cm
$\sqrt{6}\sqrt{9}$	QRy	1.06E+08	N
$2\pi R^2 q_y = D \left(-\frac{Et_a^3}{2}\right)$	αy	0.34	-
$Q_{Ry} = \frac{1}{H} D_a (-\frac{1}{12(1-v^2)})$	СМ	10.26	-
$\begin{bmatrix} II_1 \\ IO \end{bmatrix} C$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{10^{2} Ry \Gamma_{10}}{2}$	Δy	0.34	cm
$\int (\pi f_{W1} p_0 R^2)$	∆ey	2.52	cm
$\Lambda = \frac{H_1[Q_y]^4}{1}$			
$\frac{d^2 y}{RD} p_0^3 [C_{11}(\alpha + \alpha)] \frac{R^2}{m} ]^4$			
$a F 0 C M (C Y H_1) H_1$	QRy+Qt	1.65E+08	Ν
$\Delta = \Delta + \frac{[Q_{Ry} + Q_{Rt}]}{[Q_{Ry} + Q_{Rt}]}$			
$\Delta_{ey} - \Delta_{y} + K_{b}$			
Point P a 4	mn	1 62E+04	N
$m_{p} = \frac{\sigma_{y}}{1} t_{a}^{2}  q_{p} = \frac{1}{\sqrt{6}} \sqrt{m_{p} p_{0}}$	an	8 99E+02	N/cm
4 00	ORn	1 30E+08	N
$2\pi R^2 q_p = (Q_{Rp})C_{10}$	Q n	0.41	_
$Q_{Rp} = \frac{P}{H} - \alpha_p - \frac{1}{(\pi f_{W1} p_0 R^2)}$	CM	9.82	_
$H[O]^{4}$		3 26E+06	Ncm
$\Delta_p = \frac{\Pi_1[\mathcal{Q}_{Rp}]}{-2}$	Δn	0.202300	cm
$RD p_{\alpha}^{3}[C_{\alpha}(\alpha + \alpha)] \frac{R^{2}}{m} ]^{4}$	Δ.en	3 41	cm
$\prod_{a \neq 0} \prod_{i \neq 0} \prod_{j \neq 0} \prod_{j \neq 0} \prod_{i \neq 0} \prod_{j \neq 0} \prod_{i \neq 0} \prod_{j \neq 0} \prod_{j$		0.11	
$\mathbf{A}_{Rp} + Q_{Rp} + Q_{Rt}$	$QR_{n}+Qt$	1 89E+08	N
$\Delta_{ep} = \Delta_p + \frac{K_b}{K_b}$	dit ip · dic	1.002.00	
Point 4 4	m4	2.16E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.04E+03	N/cm
$2\pi R^2 a \qquad Q_{RA} C_{10}$	QR4	1.50E+08	Ν
$Q_{R4} = \frac{2\pi (q_4)}{U}  \alpha_4 = \frac{2\pi (q_4)}{(\pi f_{c} - p_{c} R^2)}$	α4	0.47	-
$H_1 \qquad (\gamma y_{W1} P_0 \Lambda)$	СМ	9.44	_
$H_1[Q_{R4}]^4$	Da	3.26E+06	N.cm
$\Delta_4 = \frac{1}{R^2} \frac{1}{R^2}$	Δ4	1.90	cm
$\frac{KD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{H_1}$	∆e4	4.66	cm
$\Delta_{A} = \Delta_{A} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$K_{b}$	QR4+QRt	2.09E+08	Ν

非線形ロッキングばね特性線図計算

(3) C地区(代表タンク:合計7基、C-1~C-7)

付表 1.14-1 C-1 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

<u> 質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>

(赤字:入力値)

[諸元]			
公称容量	VOL (kl)	1000	(kl)
貯槽内径	D	11620	(mm)
側板高さ	Hmax	12160	(mm)
最下段側板厚	t _s	6	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	4.4	(mm)
アニュラ板厚	t _b	9	(mm)
鋼材のヤング率(SS41)	E	205939.65	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σy	245.1663	(N/mm2)
最高液高さ	Н	10850	(mm)
液密度	r	7.20E-07	(kg/mm3)
直径/液高さ比	D/H	1.07	(-)
液高さ/直径比	H/D	0.93	(-)
消防法/有効液重量率 f _{wo}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.75	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.5$	$3017(\frac{H}{D}) - 0.1634$	0.67	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.42	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.48	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.08	(N/mm2)

側板重量	Ws0	1.95E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	6.46E+01	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.59E+05	(N)

付表 1.14-2 C-1 タンクの質点系モデルの諸元計算シート(No.2計算シート)

### [計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:N.cm)

		<u>(</u> 卑恒:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1432	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.2383	(-)
液重量 W=gγπD ² H/4	w	8.12E+06	(N)
合計重量(W+Wsr)	W+Wsr	8.38E+06	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	6.06E+06	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	5.74E+06	(N)
消防法/有効液重量率	f _{w0}	0.75	(-)
	f _{w1}	0.67	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	H₀	455.43	(cm)
$H_1 = f_{h1} * H$	H1	519.28	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.42	(-)
	f _{h1}	0.48	(-)
側板自重による鉛直抵抗力qt	qt	70.99	(N/cm)
ばね係数	Кь	1.13E+07	(N/cm)
浮き上がり抵抗力	qy	318.47	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	389.46	(N/cm)
保有水平耐力(降伏耐力)	Qу	1.59E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.14	(cm)
減衰係数	Ce	7.70E+04	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	2.24	(-)

### 付表 1.14-3 C-1 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

非称形ロッキングはね特性称凶計昇			
Point T	QRt	2.90E+05	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.27	-
$Q_{Rt} - \frac{1}{H_1} - \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.01	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{L}}$	$\Delta$ et	0.03	cm
Point Y	mv	3.31E+03	N
$a = \frac{4}{m} (m n) (m n) (m n) = \frac{O_y}{m} t^2$	av	2.60E+02	N/cm
$q_y \sqrt{6} \sqrt{m_y p_0} \qquad \qquad$	QRv	1.06E+06	N
$2\pi R^2 a$ $Et_a^3$	αv	0.05	_
$Q_{Ry} = \frac{2\pi (q_y)}{m} D_a (= \frac{a}{12(1-v^2)})$	СМ	12.98	_
$H_1$	Da	1.37E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δy	0.36	cm
$\int \int f_{W1} p_0 R^2 $	Δey	0.48	cm
$\Delta_y = \frac{H_1[Q_y]^4}{RD_a p_0^3 [C_M(\alpha_y + \alpha_t) \frac{R^2}{H_1}]^4}$ $\Delta_{ey} = \Delta_y + \frac{[Q_{Ry} + Q_{Rt}]}{K_b}$	QRy+Qt	1.35E+06	Ν
Point P $\sigma_{y} = 2 - \frac{4}{2} \sqrt{\frac{1}{2}}$	mp	4.96E+03	N
$m_p = \frac{y}{\sqrt{2}} t_a^2  q_p = \frac{1}{\sqrt{6}} \sqrt{m_p p_0}$	qp	3.18E+02	N/cm
4	QRp	1.30E+06	Ν
$\int \frac{2\pi R^2 q_p}{\alpha_1} = \frac{[\mathcal{Q}_{Rp}]\mathcal{C}_{10}}{[\mathcal{Q}_{Rp}]\mathcal{C}_{10}}$	αρ	0.06	_
$\mathcal{Q}_{Rp} \equiv \frac{1}{H_1} \qquad \qquad$	СМ	12.91	_
$H_1[O_n]^4$	Da	1.37E+06	N.cm
$\Delta_p = \frac{12 \mathcal{L}_{Rp}}{\mathcal{D}^2}$	Δρ	0.83	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\kappa}{m}]^4$	Δep	0.98	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.59E+06	Ν
Point 4 $4 \sqrt{m}$	m4	6.62E+03	N
$q_4 - \frac{1}{\sqrt{6}}\sqrt{m_4 p_0}$	q4	3.68E+02	N/cm
$2\pi R^2 q_4 - Q_{R4} C_{10}$	QR4	1.50E+06	N
$Q_{R4} = \frac{1}{H_1}  \alpha_4 = \frac{1}{(\pi f_{W1} p_0 R^2)}$	α4	0.07	-
$H[O]^{4}$	CM	12.85	-
$\Delta_4 = \frac{\Pi_1[\mathcal{Q}_{R4}]}{\Gamma_1[\mathcal{Q}_{R4}]}$	Da	1.37E+06	N.cm
$RD p_{0}^{3}[C_{14}(\alpha_{1}+\alpha_{1})\frac{R^{2}}{m}]^{4}$	Δ4	1.51	cm
$\frac{a_{I}}{Q_{PA}} + Q_{PA} + H_{1}$	∆e4	1.67	cm
$\Delta_{e4} = \Delta_4 + \frac{\omega_{K4} - \omega_{K}}{K_b}$	QR4+QRt	1.79E+06	N
Point 5 4	m5	1.32E+04	N
$q_5 = \frac{1}{\sqrt{\epsilon}} \sqrt{m_5 p_0}$	q5	5.20E+02	N/cm
νo	QR5	2.12E+06	N
	α5	0.11	-
	CM	12.67	-
	Da	1.37E+06	N.cm
	<u>Δ5</u>	6.40	cm
	∆e5	6.61	cm
	QR5+QRt	2.41E+06	N

#### (No.3計算シート) 非線形ロッキングげわ特性線図計算

付表 1.15-1 C-2 タンクの質点系モデルの諸元計算シート(No.1計算シート)

<u>、質点系モデルによる側板下端の浮き上がり変位計算用諸元</u>			<u>(赤字:入力値)</u>
[諸元]			
公称容量	VOL (kl)	5000	(kl)
貯槽内径	D	23250	(mm)
側板高さ	Hmax	13755	(mm)
最下段側板厚	t _s	13	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	9.93	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SM41C)	E	205939.65	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σy	245.16625	(N/mm2)
最高液高さ	Н	12382	(mm)
液密度	γ	7.59E-07	(kg∕mm3)
直径/液高さ比	D/H	1.88	(-)
液高さ/直径比	H/D	0.53	(-)
消防法/有効液重量率 $f_{w0}$ $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$ 消防法/有効液重量率 $f_{w1}$		0.57	(-)
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.55	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.41	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.42	(-)
底板に作用する最大静液圧			
$ P_0 = g \gamma H$		0.09	(N/mm2)

側板重量	Ws0	7.47E+02	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.42E+02	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.47E+05	(N)

付表 1.15-2 C-2 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:Nom)

		(甲位:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1561	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3192	(-)
液重量 W=gγπD ² H/4	w	3.91E+07	(N)
合計重量(W+Wsr)	W+Wsr	3.99E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.23E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	2.23E+07	(N)
消防法/有効液重量率	f _{w0}	0.57	(-)
	f _{w1}	0.55	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	501.49	(cm)
$H_1 = f_{h1} * H$	H1	517.31	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.41	(-)
	f _{h1}	0.42	(-)
側板自重による鉛直抵抗力qt	qt	102.30	(N/cm)
ばね係数	Кь	3.68E+07	(N/cm)
浮き上がり抵抗力	qy	465.74	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	568.04	(N/cm)
保有水平耐力(降伏耐力)	Qy	9.32E+06	(N)
降伏変位 (=Qy/Kb)	Δy	0.25	(cm)
減衰係数	Ce	2.74E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	4.49	(-)

## 付表 1.15-3 C-2 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

### (No.3計算シート)

非線形ロッキングばね特性線図計算

Point T	QRt	1.68E+06	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.61	-
$\mathcal{Q}_{Rt} = - H_1 \qquad i  (\pi f_{W1} p_0 R^2)$	αt	0.05	-
$\Delta_{et} = \frac{Q_{Rt}}{K_{b}}$	$\Delta$ et	0.05	cm
Point Y	my	5.88E+03	N
$q_{x} = \frac{4}{m_{x}p_{0}}$ $m_{y} = \frac{\sigma_{y}}{m_{z}} t_{a}^{2}$	qy	3.80E+02	N/cm
$\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$ $\sqrt{6}$	QRy	6.24E+06	Ν
$2\pi R^2 q_{\rm H}$ $D \left(-\frac{Et_a^3}{2}\right)$	αy	0.18	_
$Q_{Ry} = \frac{1}{\mu} D_a (-\frac{1}{12(1-v^2)})$	СМ	12.05	-
$\begin{bmatrix} II_1 \\ IO \end{bmatrix} \begin{bmatrix} IC \end{bmatrix}$	Da	3.26E+06	N.cm
$\alpha_{y} = \frac{12 \alpha_{y} C_{10}}{C_{x}}$	Δy	0.27	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	0.49	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	7.92E+06	Ν
		0.025+02	N
$ \begin{array}{c} \mathbf{P}  \mathbf{O}  \mathbf{P} \\ \mathbf{m}_{p} = \frac{\partial_{y}}{\partial t_{q}} t_{q}^{2}  q_{p} = \frac{4}{\sqrt{6}} \sqrt{m_{p} p_{0}} \end{array} $	mp	0.03E+03	N/am
	<u>qp</u> OPp	4.00E+02	N
$2\pi R^2 q_p = (Q_{Rp})C_{10}$		0.22	
$Q_{Rp} = \frac{1}{\mu} \qquad \alpha_p - \frac{1}{(\pi f_{W1} p_0 R^2)}$	CM	11.01	_
$H[O]^{4}$		3 26E+06	Nom
$\Delta_{p} = \frac{\Pi_{1} \bigcup_{R_{p}} \bigcup_{r=2}^{n}}{2}$	Δn	0.202300	cm
$RD p_0^3 [C_{11}(\alpha + \alpha_1) \frac{R^2}{m}]^4$	Δp Λen	0.00	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	9.32E+06	N
Point 4 4	m4	1.18E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	5.38E+02	N/cm
$2\pi R^2 q_{4} \qquad Q_{R4} C_{10}$	QR4	8.83E+06	Ν
$Q_{R4} = \frac{14}{H}  \alpha_4 = \frac{1}{(\pi f_{W1} p_0 R^2)}$	α4	0.25	_
$H_1 \qquad (3 \text{ with } 0)$	СМ	11.62	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]}{2}$	Da	3.26E+06	N.cm
$RD p_0^3 [C_{14}(\alpha_1 + \alpha_1) \frac{R^2}{R}]^4$	Δ4	1.25	cm
$\Delta_{A} = \Delta_{A} + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}} H_{1}^{T}$	<u>∆</u> e4	1.53	cm
^{<i>e</i>4} ⁴ <i>K</i> _{<i>b</i>}	QR4+QRt	1.05E+07	N
Point 5 4	m5	1.77E+04	Ν
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	6.59E+02	N/cm
$\sqrt{6}$	QR5	1.08E+07	Ν
	α5	0.30	-
	СМ	11.28	-
	Da	3.26E+06	N.cm
	∆5	3.16	cm
	∆e5	3.497	cm
	QR5+QRt	1.25E+07	N

付表 1.16-1 C-3 タンクの質点系モデルの諸元計算シート(No.1計算シート)

### <u>. 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)</u>

[諸元]			
公称容量	VOL (kl)	10000	(kl)
貯槽内径	D	32930	(mm)
側板高さ	Hmax	13755	(mm)
最下段側板厚	t _s	18	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	13.5	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(SM400C)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	245	(N/mm2)
最高液高さ	Н	11890	(mm)
液密度	r	8.60E-07	(kg/mm3)
直径/液高さ比	D/H	2.77	(-)
液高さ/直径比	H/D	0.36	(-)
消防法/有効液重量率 $f_{w0}$ $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 +$	$2.0933(\frac{H}{D}) - 0.1172$		
	D	0.43	(-)
消防法/有効液重量率 $f_{w1}$ $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 0.9653(\frac{H}{D})^3 - 0.0000000000000000000000000000000000$	$2.3017(\frac{H}{D}) - 0.1634$	0.41	(-)
		0.41	
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.1493(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	$0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0.0207(\frac{H}{D}) + 0.3644$	0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.10	(N/mm2)

側板重量	Ws0	1.31E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	5.07E+02	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.82E+06	(N)

付表 1.16-2 C-3 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

# 紫字:モデルの入力値

		<u>(単位:N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.1752	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3604	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	8.54E+07	(N)
合計重量(W+Wsr)	W+Wsr	8.72E+07	(N)
減衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	3.64E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	3.71E+07	(N)
消防法/有効液重量率	f _{w0}	0.43	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	476.41	(cm)
$H_1 = f_{h1} * H$	H1	468.40	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	175.62	(N/cm)
ばね係数	Kb	4.87E+07	(N/cm)
浮き上がり抵抗力	qy	485.65	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	661.26	(N/cm)
保有水平耐力(降伏耐力)	Qy	2.40E+07	(N)
降伏変位 (=Qy/Kb)	Δy	0.49	(cm)
減衰係数	Ce	4.07E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	7.03	(-)

### 付表 1.16-3 C-3 タンクの非線形水平ばねの復元力特性とする Q-Δ線図の計算シート

(No.	3	計算シー	ト)
------	---	------	----

Point T $O C$	QRt	6.39E+06	N
$ \qquad \qquad$	C10	0.75	-
$\mathcal{Q}_{Rt} = H_1 \qquad i  (\pi f_{W1} p_0 R^2)$	αt	0.14	-
$\Delta_{et} = \frac{Q_{Rt}}{K}$	∆et	0.13	cm
Point Y	my	5.88E+03	N
$a = \frac{4}{m} (m n) (m n) = \frac{0}{y} t^2$	av	3.97E+02	N/cm
$\int q_y \sqrt{6} \sqrt{m_y p_0} \qquad f = 0$	QRv	1.44E+07	N
$2\pi R^2 a = Et_{a}^3$	αv	0.31	-
$Q_{Ry} = \frac{2\pi (q_y)}{12} D_a (= \frac{a}{12(1-v^2)})$	СМ	10.74	_
$H_1$	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.25	cm
$\alpha_{y}^{y} = (\pi f_{w1} p_0 R^2)$	Δev	0.68	cm
$H_1[O_n]^4$			
$\Delta_{y} = \frac{1}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	2.08E+07	Ν
Point P a 4	mn	8 82E+03	N
$m_{p} = \frac{O_{y}}{m_{p}} t_{a}^{2}  q_{p} = \frac{-1}{\sqrt{6}} \sqrt{m_{p}} p_{0}$	an	4.86E+02	N/om
	<u>qp</u>	1 77E+07	N N
$2\pi R^2 q_{p} = [Q_{Rp}]C_{10}$		0.38	
$Q_{Rp} = \frac{1}{\mu} \alpha_p - \frac{1}{(\pi f_{W1} p_0 R^2)}$	CM	10.33	
$H[O]^{4}$		3 26E+06	Nom
$\Delta_{p} = \frac{\Pi_{1}[\mathcal{Q}_{Rp}]}{2}$	Da A n	0.66	
$\frac{p}{RD} n^{3} [C (\alpha + \alpha)] \frac{R^{2}}{m} [14]$		1 15	
$HD_{a}P_{0}CM(\alpha_{p}+\alpha_{t})H_{1}$	Дер	1.15	CIII
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	2.40E+07	Ν
Point 4	m4	1.18E+04	N
$q_4 = \overline{\sqrt{\kappa}} \sqrt{m_4 p_0}$	q4	5.61E+02	N/cm
$\gamma_{\pi R^2 a} \qquad Q_{R^4} C_{10}$	QR4	2.04E+07	N
$Q_{R4} = \frac{2\pi (q_4)}{H}  \alpha_4 = \frac{2\pi (q_4)}{(\pi (p_4)^2)}$	α4	0.43	—
$H_1$ $(\mathcal{Y}_{W1}P_0R)$	СМ	9.99	—
$\Lambda_{1} = \frac{H_{1}[Q_{R4}]^{4}}{1}$	Da	3.26E+06	N.cm
$R^{2}$	∆4	1.34	cm
$\frac{KD_a p_0 [C_M (a_4 + a_t)]}{Q_1 + Q_2} H_1$	∆e4	1.89	cm
$\Delta_{e4} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{V}$			
K _b	QR4+QRt	2.68E+07	N
Point 5 4	m5	1.76E+04	N
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	6.87E+02	N/cm
$\sqrt{0}$	QR5	2.50E+07	N
	α5	0.53	_
	СМ	9.41	_
	Da	3.26E+06	N.cm
	∆5	3.84	cm
	<u>∆</u> e5	4.481	cm
	QR5+QRt	3.14E+07	N

付表 1.17-1 C-4 タンクの質点系モデルの諸元計算シート(No.1計算シート)

### _質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	30000	(kl)
貯槽内径	D	45760	(mm)
側板高さ	Hmax	20143	(mm)
最下段側板厚	ts	18	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	12.2	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(SPV50)</u>	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490.3325	(N/mm2)
最高液高さ	Н	16481	(mm)
液密度	γ	8.00E-07	(kg/mm3)
直径/液高さ比	D/H	2.78	(-)
液高さ/直径比	H/D	0.36	(-)
消防法/有効液重量率 $f_{w0}$ $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.43	(-)
消防法/有効液重量率 $f_{w1}$ $f_{w1} = -0.1429 (\frac{H}{D})^4 + 0.9653 (\frac{H}{D})^3 - 2.2807 (\frac{H}{D})^2 + 2.3017 (\frac{H}{D}) - 0.1634$		0.41	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1} 			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^2 + 0.016(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$0.0207(\frac{H}{D}) + 0.3644$	0.39	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.13	(N/mm2)

側板重量	Ws0	2.80E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	1.30E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	2.80E+06	(N)

付表 1.17-2 C-4 タンクの質点系モデルの諸元計算シート(No.2計算シート)

[計算式と質点系モデルの入力数値]

### 紫字:モデルの入力値

		<u>(単位 : N, cm)</u>	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3197	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3606	(-)
液重量 W=gγπD ² H/4	w	2.13E+08	(N)
合計重量(W+Wsr)	W+Wsr	2.15E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1.1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	9.04E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	9.05E+07	(N)
消防法/有効液重量率	f _{w0}	0.43	(-)
	f _{w1}	0.41	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	660.34	(cm)
$H_1 = f_{h1} * H$	Hı	649.06	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	194.95	(N/cm)
ばね係数	K♭	3.56E+07	(N/cm)
浮き上がり抵抗力	qy	780.15	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(q _v +qt)	qy+qt	975.10	(N/cm)
保有水平耐力(降伏耐力)	Qy	4.94E+07	(N)
<u>降伏変位 (=Qy/Kb)</u>	Δy	1.39	(cm)
減衰係数	Ce	5.44E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	7.05	(-)

# 付表 1.17-3 C-4 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

(No. 3	計算シー	ト)
--------	------	----

Point T	QRt	9.88E+06	N
$2\pi R^2 q_t \qquad \alpha = \frac{Q_{Rt}C_{10}}{Q_{Rt}C_{10}}$	C10	0.75	-
$Q_{Rt} = \frac{1}{H_{L}} \qquad $	αt	0.08	_
$Q_{Rt} = Q_{Rt}$	∆et	0.28	cm
$\Delta_{et} = \frac{1}{K_{t}}$			
Point Y	mv	1.18E+04	N
$a = \frac{4}{m} m_{p}$ $m_{z} = \frac{O_{y}}{m} t_{z}^{2}$	av	6.37E+02	N/cm
$\int \frac{q_y}{\sqrt{6}} \sqrt{6} \sqrt{m_y p_0} \qquad \qquad$	QRv	3.23E+07	N
$2\pi R^2 a$ $Et_a^3$	αv	0.28	-
$Q_{Ry} = \frac{2\pi (q_y)}{12} D_a (= \frac{a}{12(1-v^2)})$	СМ	11.23	_
$H_1$ $H_1$ $H_1$	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.65	cm
$\alpha_{y}^{y} = (\pi f_{w1} p_0 R^2)$	∆ev	1.83	cm
$H_1[O_n]^4$			
$\Delta_y = \frac{1}{2} \frac{R^2}{R^2}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^4$	QBv+Qt	4 22F+07	N
$[O_n + O_n]$	Grity Gr	1.222.07	
$\Delta_{ey} = \Delta_y + \frac{12\kappa_y}{K}$			
<b>K</b> _b			
Point P $\sigma_{y}$ , $2 = \frac{4}{m}$ , $m$ , $p_{0}$	mp	1.77E+04	Ν
$m_p = \frac{1}{4} t_a  q_p  \sqrt{6}  \sqrt{m_p P_0}$	qp	7.80E+02	N/cm
$2 - \mathbf{P}^2$ $\mathbf{z} = \begin{bmatrix} 0 \\ \mathbf{z} \end{bmatrix} \begin{bmatrix} 0 \\ \mathbf{z} \end{bmatrix} \mathbf{C} \mathbf{z}$	QRp	3.95E+07	N
$Q_{p} = \frac{2\pi \kappa q_{p}}{m} \qquad \alpha_{p} = \frac{12\pi \kappa q_{p}}{(\kappa p)^{2}}$	αp	0.34	-
$\overset{\boldsymbol{\mathcal{L}}}{=} \boldsymbol{H}_{1} \qquad (\boldsymbol{\pi}_{W1} \boldsymbol{p}_{0} \boldsymbol{R}^{-})$	СМ	10.86	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	1.67	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{1}{H}]^4$	∆ер	3.06	cm
$\Delta_{ap} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	4.94E+07	Ν
$K_{b}$			
Point 4 $4$	m4	2.35E+04	Ν
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	9.01E+02	N/cm
$2\pi R^2 q_{4} - Q_{R4} C_{10}$	QR4	4.57E+07	N
$Q_{R4} = \frac{1}{H} \alpha_4 = \frac{1}{(\pi f_{W1} p_0 R^2)}$	α4	0.39	-
	СМ	10.55	_
$\Delta_4 = \frac{H_1[Q_{R4}]}{2}$	Da	3.26E+06	N.cm
$\int RD p_{a}^{3} [C_{a} (\alpha + \alpha)] \frac{R^{2}}{m^{4}} [1^{4}]$	Δ4	3.34	cm
$\begin{bmatrix} & A & B & B \\ & A & B & B $	∆e4	4.90	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{Q}_{R4} - \mathcal{Q}_{Rt}}{V}$			
K _b	QR4+QRt	5.55E+07	N
Point 5 4	m5	3.53E+04	N
$q_5 = \frac{1}{\sqrt{c}} \sqrt{m_5 p_0}$	q5	1.10E+03	N/cm
$\sqrt{0}$	QR5	5.59E+07	N
	α5	0.48	_
	СМ	10.02	
	Da	3.26E+06	N.cm
	$\Delta 5$	9.22	cm
	∆ e5	11.07	cm
	QR5+QRt	6.58E+07	IN

非線形ロッキングばね特性線図計算

付表 1.18-1 C-5 タンクの質点系モデルの諸元計算シート(No.1計算シート)

### <u>. 質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値</u>)

[諸元]			
公称容量	VOL (kl)	50000	(kl)
貯槽内径	D	67800	(mm)
側板高さ	Hmax	18275	(mm)
最下段側板厚	t _s	26	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	20.9	(mm)
アニュラ板厚	t _b	12	(mm)
<u>鋼材のヤング率(2H)</u>	E	205939.65	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σy	490.3325	(N/mm2)
最高液高さ	Н	14407	(mm)
液密度	r	7.48E-07	(kg/mm3)
直径/液高さ比	D/H	4.71	(-)
液高さ/直径比	H/D	0.21	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.25	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.23	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.38	(-)
底板に作用する最大静液圧			
$P_0 = g \gamma H$		0.11	(N/mm2)

側板重量	Ws0	5.53E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	6.59E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	5.53E+06	(N)

付表 1.18-2 C-5 タンクの質点系モデルの諸元計算シート(No.2計算シート)

### [計算式と質点系モデルの入力数値]

紫字:モデルの入力値 (単位:N cm)

		(甲112:1N, CM)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.2687	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3993	(-)
液重量 W = g $\gamma \pi D^2$ H / 4	w	3.82E+08	(N)
合計重量(W+Wsr)	W+Wsr	3.87E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	9.50E+07	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	9.39E+07	(N)
消防法/有効液重量率	f _{w0}	0.25	(-)
	f _{w1}	0.23	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	576.73	(cm)
$H_1 = f_{h1} * H$	H1	543.54	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	259.80	(N/cm)
ばね係数	Kb	5.24E+07	(N/cm)
浮き上がり抵抗力	qу	705.31	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	965.11	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.28E+08	(N)
降伏変位 (=Qy/Kb)	Δy	2.45	(cm)
減衰係数	Ce	6.72E+05	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	12.47	(-)

付表 1.18-3 C-5 ンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート(No.3計 算シート)

Point T	QRt	3.45E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{\alpha_{t}}$	C10	0.81	-
$\mathcal{Q}_{Rt} = \frac{1}{H_1} (\pi f_{W1} p_0 R^2)$	αt	0.32	-
$\Lambda = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.66	cm
$\Delta_{et} - K_{b}$			
Point Y $\sigma$	my	1.18E+04	Ν
$q_{\rm m} = \frac{4}{m_{\rm m} p_{\rm o}}$ $m_{\rm m} = \frac{2}{m_{\rm o}} t_{\rm o}^2$	qy	5.76E+02	N/cm
$\sqrt{6}\sqrt{9}$	QRy	7.65E+07	Ν
$2\pi R^2 q$ $Et_a^3$	αy	0.70	-
$Q_{Ry} = \frac{1}{12} \frac$	СМ	7.29	-
$H_1$	Da	3.26E+06	N.cm
$\alpha_{ij} = \frac{[\mathcal{Q}_{Ry}]\mathcal{L}_{10}}{2}$	Δy	2.53	cm
$y \qquad (\pi f_{W1} p_0 R^2)$	∆ey	4.64	cm
$\Delta_{y} = \frac{H_{1}[Q_{y}]^{4}}{RD_{a}p_{0}^{3}[C_{M}(\alpha_{y} + \alpha_{t})\frac{R^{2}}{H_{1}}]^{4}}$ $\Delta_{ey} = \Delta_{y} + \frac{[Q_{Ry} + Q_{Rt}]}{K_{b}}$	QRy+Qt	1.11E+08	N
Point P $\sigma_{y} \neq 2  q_{z} = \frac{4}{\sqrt{m_{z} p_{0}}}$	mp	1.77E+04	Ν
$m_p = \frac{1}{4} l_a \qquad l_p \qquad \sqrt{6} \sqrt{6} \sqrt{2} p l_0$	qp	7.05E+02	N/cm
$2 - R^2 \propto [O_{\rm T}] C_{\rm T}$	QRp	9.37E+07	Ν
$Q_p = \frac{2\pi \kappa q_p}{m} \qquad \alpha_p = \frac{\kappa q_p r^2}{\kappa q_p}$	αp	0.86	-
$\mathcal{L}_{Rp} \qquad H_1 \qquad (\pi_{W1} p_0 K^2)$	СМ	6.35	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	9.88	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{\alpha_l}{H}]^4$	∆ер	12.33	cm
$\Delta_{ep} = \Delta_p + \frac{Q_{Rp} + Q_{Rt}}{K_b}$	QRp+Qt	1.28E+08	N
Point 4	m4	2.12E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	7.73E+02	N/cm
$2\pi R^2 a$ , $Q_{R4}C_{10}$	QR4	1.03E+08	Ν
$Q_{R4} = \frac{2\pi (q_{14})}{\mu}  \alpha_4 = \frac{\pi (m_1 - m_2)}{(\pi f_{12} - m_2)}$	α4	0.94	-
$\Pi_1$ (9 W1 P0 ()	СМ	5.86	-
$\Lambda_{\perp} = \frac{H_1[Q_{R4}]^4}{1}$	Da	3.26E+06	N.cm
$R^{-4}$	Δ4	19.63	cm
$\frac{KD_a p_0 [C_M (\alpha_4 + \alpha_t)]}{H_1}$	∆e4	22.25	cm
$\Delta_{14} = \Delta_4 + \frac{Q_{R4} + Q_{Rt}}{Q_{R4} + Q_{Rt}}$			
$K_{b}$	QR4+QRt	1.37E+08	Ν

非線形ロッキングばね特性線図計算

付表 1.19-1 C-6 タンクの質点系モデルの諸元計算シート(No.1 計算シート)

### _質点系モデルによる側板下端の浮き上がり変位計算用諸元 (赤字:入力値)

[諸元]			
公称容量	VOL (kl)	70000	(kl)
貯槽内径	D	67800	(mm)
側板高さ	Hmax	21960	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	22.3	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(HT60)	E	205939.65	(N/mm2)
鋼材のポアソン比	u	0.3	(-)
降伏応力	σy	449.99971	(N/mm2)
最高液高さ	Н	19833	(mm)
液密度	γ	8.93E-07	(kg/mm3)
直径/液高さ比	D/H	3.42	(-)
液高さ/直径比	H/D	0.29	(-)
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.0933(\frac{H}{D}) - 0.1172$		0.35	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3017(\frac{H}{D}) - 0.1634$		0.34	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.0807(\frac{H}{D}) + 0.4096$		0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0207(\frac{H}{D}) + 0.3644$		0.39	(-)
低极に作用する最大静液圧			
$P_0 = g \gamma H$		0.17	(N/mm2)

側板重量	Ws0	7.19E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	2.10E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.19E+06	(N)
付表 1.19-2 C-6 タンクの質点系モデルの諸元計算シート(No.2 計算シート)

[計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:Nom)

		(甲位:N, cm)	
貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.3523	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3780	(-)
液重量 W=gγπD ² H/4	w	6.27E+08	(N)
合計重量(W+Wsr)	W+Wsr	6.34E+08	(N)
减衰比	ζ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	j	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.20E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	2.19E+08	(N)
消防法/有効液重量率	f _{w0}	0.35	(-)
	f _{w1}	0.34	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	Ho	793.31	(cm)
$H_1 = f_{h1} * H$	H1	764.87	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.39	(-)
側板自重による鉛直抵抗力qt	qt	337.55	(N/cm)
ばね係数	Kb	7.11E+07	(N/cm)
浮き上がり抵抗力	qу	866.21	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1203.76	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.14E+08	(N)
降伏変位 (=Qy/Kb)	Δy	1.60	(cm)
<u>減衰係数</u>	Ce	1.20E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H ₁	8.86	(-)

付表 1.19-3 C-6 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

非線形ロッキングはね特性線図計算			
Point T	QRt	3.19E+07	Ν
$\alpha_{t} = \frac{2\pi R^2 q_t}{\alpha_{t}} \qquad \alpha_{t} = \frac{Q_{Rt} C_{10}}{Q_{Rt} C_{10}}$	C10	0.79	-
$Q_{Rt} = \frac{1}{H_1} = \frac{M_1}{(\pi f_{W1} p_0 R^2)}$	αt	0.12	-
$A = Q_{Rt}$	∆et	0.45	cm
$\Delta_{et} = \frac{1}{K_{h}}$			
Point Y	my	1.08E+04	N
$a = \frac{4}{m} \sqrt{m} \frac{m}{p_0} \qquad m_{\mu} = \frac{\sigma_y}{m} t_{\mu}^2$	qv	7.07E+02	N/cm
$\sqrt{6}\sqrt{1}$	QRv	6.68E+07	N
$2\pi R^2 a$ $Et_a^3$	αν	0.25	-
$Q_{Ry} = \frac{2\pi (1 - V_{y})}{12} D_{a} (= \frac{1}{12(1 - V^{2})})$	СМ	11.19	-
$H_1$	Da	3.26E+06	N.cm
$\alpha = \frac{[Q_{Ry}]C_{10}}{[Q_{Ry}]C_{10}}$	Δv	0.33	cm
$\int dr_y (\pi f_{W1} p_0 R^2)$	Δey	1.72	cm
$H_1[O_n]^4$			
$\Delta_y = \frac{122 y^2}{R^2}$			
$RD_a p_0^3 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]^4$	QRv+Qt	986F+07	N
$[O_{p} + O_{p}]^{-1}$	any ac	0.002.07	
$\Delta_{ey} = \Delta_y + \frac{\mathcal{L}_{Ky} - \mathcal{L}_{Kt}}{V}$			
<u>к</u> _b			
Point P $\sigma_{y}$ , $2 = \frac{4}{m}$ , $\sqrt{m}$ , $n_{z}$	mp	1.62E+04	N
$m_p = \frac{1}{4} t_a  q_p  \sqrt{6}  \sqrt{m_p P_0}$	qp	8.66E+02	N/cm
$2 - \mathbf{P}^2$ $[0, 1]$	QRp	8.18E+07	N
$Q = \frac{2\pi K q_p}{\alpha_p} = \frac{12 \epsilon_{Rp} c_{10}}{\alpha_p}$	αp	0.31	-
$\Sigma_{Rp} = H_1 \qquad f  (\pi_{W_1} p_0 R^2)$	СМ	10.85	_
$H_{1}[Q_{Rp}]^{4}$	Da	3.26E+06	N.cm
$\Delta_p = \frac{R^2}{R^2}$	Δp	0.84	cm
$RD_a p_0^3 [C_M (\alpha_p + \alpha_t) \frac{R}{H}]^4$	∆ер	2.43	cm
$H_1$			
$\Delta_{ap} = \Delta_{p} + \frac{Q_{Rp} + Q_{Rt}}{Q_{Rp} + Q_{Rt}}$	QRp+Qt	1.14E+08	Ν
$K_{b}$			
Point 4	m4	2.16E+04	N
$q_4 = \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.00E+03	N/cm
$2\pi R^2 q_1 \qquad Q_{R4} C_{10}$	QR4	9.44E+07	N
$Q_{R4} = \frac{1}{H} \frac{1}{H} \frac{1}{H} \frac{1}{(\pi f_{W1}, n_0 R^2)}$	α4	0.35	-
$H_1$ (5 w1 por )	СМ	10.57	-
$\Delta_{4} = \frac{H_{1}[Q_{R4}]}{H_{1}[Q_{R4}]}$	Da	3.26E+06	N.cm
⁴ $RD n^{3}[C (\alpha + \alpha)] \frac{R^{2}}{R^{2}} l^{4}$	∆4	1.65	cm
$\frac{RD_a p_0 C_M (\alpha_4 + \alpha_1)}{Q_1 + Q_2} H_1$	∆e4	3.43	cm
$\Delta_{a4} = \Delta_{4} + \frac{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}{\mathcal{Q}_{R4} + \mathcal{Q}_{Rt}}$			
$K_b$	QR4+QRt	1.26E+08	N
Point 5 4	m5	5.40E+04	N
$q_5 = \frac{1}{\sqrt{2}} \sqrt{m_5 p_0}$	q5	1.58E+03	N/cm
$\sqrt{6}$	QR5	1.49E+08	Ν
	α5	0.56	-
	СМ	9.35	-
	Da	3.26E+06	N.cm
	∆5	16.85	cm
	∆ e5	19.40	cm
	QR5+QRt	1.81E+08	N

(No.3計算シート) 非組NDMはたけにの計算 付表 1.20-1 C-7 タンクの質点系モデルの諸元計算シート(No.1計算シート)

# <u> 質点系モデルによる側板下端の浮き上がり変位計算用諸元</u> (赤字:入力値)

【諸元】			
公称容量	VOL (kl)	100000	(kl)
貯槽内径	D	81600	(mm)
側板高さ	Hmax	21880	(mm)
最下段側板厚	t _s	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(HW50)	E	205939.65	(N/mm2)
鋼材のポアソン比	ν	0.3	(-)
降伏応力	σy	490.3325	(N/mm2)
最高液高さ	Н	18628	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	4.38	(-)
液高さ/直径比	0.23	(-)	
消防法/有効液重量率 f _{w0}			
$f_{W0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 2.09$	$933(\frac{H}{D}) - 0.1172$	0.27	(-)
消防法/有効液重量率 f _{w1}			
$f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 + 2.3907(\frac{H}{D})^2 + 2.3907(\frac{H}{D}$	$017(\frac{H}{D}) - 0.1634$	0.25	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 - 0.08$	0.40	(-)	
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.0200000000000000000000000000000000$	0.38	(-)	
底板に作用する最大静液圧			
P ₀ =gγH		0.18	(N/mm2)

#### タンク本体重量(赤字:入力値)

側板重量	Ws0	9.08E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	3.78E+03	(KN)
浮き屋根付属品重量	Wr1	0.00E+00	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	9.08E+06	(N)

付表 1. 20-2 C-7 タンクの質点系モデルの諸元計算シート(No. 2 計算シート)

### [計算式と質点系モデルの入力数値]

#### 紫字:モデルの入力値 (単位:N, cm)

貯槽の固有周期			
$T_{b} = 2 / \lambda \operatorname{sqrt}((W) / (g \pi E * t_{1/3})) * j$		0.4097	(sec)
$\lambda = 0.067(H / D)^2 - 0.30*(H / D) + 0.46$		0.3950	(-)
液重量 W = g $\gamma \pi D^2 H / 4$	w	9.55E+08	(N)
合計重量(W+Wsr)	W+Wsr	9.64E+08	(N)
減衰比	ξ	0.15	(-)
基礎地盤と貯槽本体の連成振動補正係数	i	1	(-)
有効液重量			
$W_0 = f_{w0} * (W)$	Wo	2.58E+08	(N)
$W_1 = f_{w1} * (W) + Wsr$	<b>W</b> 1	2.52E+08	(N)
消防法/有効液重量率	f _{w0}	0.27	(-)
	f _{w1}	0.25	(-)
有効液の重心高さ			
$H_0 = f_{h0} * H$	H₀	745.37	(cm)
$H_1 = f_{h1} * H$	H1	705.63	(cm)
消防法/有効液の重心高さ係数	f _{h0}	0.40	(-)
	f _{h1}	0.38	(-)
側板自重による鉛直抵抗力qt	qt	354.15	(N/cm)
ばね係数	Kb	6.04E+07	(N/cm)
浮き上がり抵抗力	qу	927.31	(N/cm)
浮き上がり抵抗力+鉛直抵抗力(qy+qt)	qy+qt	1281.46	(N/cm)
保有水平耐力(降伏耐力)	Qy	1.90E+08	(N)
降伏変位 (=Qy/Kb)	Δy	3.14E+00	(cm)
減衰係数	Ce	1.18E+06	(N/(cm/s))
貯蔵内径と有効液の重心高さの比	D/H1	11.56	(-)

付表 1.20-3 C-7 タンクの非線形水平ばねの復元力特性とする Q-△線図の計算シート

非称形ロッキングは信付性称凶計昇			
Point T	QRt	5.25E+07	N
$ \qquad \qquad$	C10	0.81	-
$\mathcal{Q}_{Rt} - \frac{1}{H_1} - (\pi f_{W1} p_0 R^2)$	αt	0.18	-
$\Lambda_{L} = \frac{Q_{Rt}}{Q_{Rt}}$	∆et	0.87	cm
$K_{et} = K_{b}$			
Point Y $\sigma$	my	1.18E+04	Ν
$q_{y} = \frac{4}{m_{y} p_{0}}$ $m_{y} = \frac{v_{y}}{m_{z}} t_{a}^{2}$	qy	7.57E+02	N/cm
$\sqrt{6}^{y}$	QRy	1.12E+08	Ν
$2\pi R^2 q_{\mu} = D \left( \frac{Et_a^3}{2} \right)$	αγ	0.37	_
$Q_{Ry} = \frac{1}{12} D_a (= \frac{1}{12(1-v^2)})$	СМ	10.10	_
$\Pi_1$	Da	3.26E+06	N.cm
$\alpha_{n} = \frac{[\mathcal{Q}_{Ry}]\mathcal{C}_{10}}{2}$	Δy	0.43	cm
$(\pi f_{W1} p_0 R^2)$	∆ey	3.15	cm
$H_1[Q_y]^4$			
$\Delta_y = \frac{1}{R^2 r^2}$			
$KD_a p_0 [C_M (\alpha_y + \alpha_t) \frac{1}{H_1}]$	QRy+Qt	1.65E+08	N
$[Q_{Ry} + Q_{Rt}]$			
$\Delta_{ey} = \Delta_y + \frac{1}{K}$			
		/ <b></b>	
Point P $q_n = \frac{\sigma_y}{t^2} q_n = \frac{4}{\sqrt{m_n p_0}}$	mp	1.77E+04	N
$m_p = 4^{l_a} \sqrt{6} \sqrt{6}^{p+3}$	qp	9.27E+02	N/cm
$2\pi R^2 a [Q_{P_{R}}]C_{10}$	QRp	1.37E+08	N
$O_{P_{p}} = \frac{2\pi \alpha q_{p}}{(\pi e_{p})^{2}} \qquad \alpha_{p} = \frac{2\pi \alpha p^{2}}{(\pi e_{p})^{2}} \qquad (\pi e_{p})^{2}$	αp	0.46	-
$\mathcal{L}_{\mathcal{W}} \qquad H_1 \qquad (\mathcal{U}_{W1}p_0\mathbf{K})$	СМ	9.60	-
$H_1[Q_{Rp}]^4$	Da	3.26E+06	N.cm
$\Delta_p = \frac{1}{R_p^2}$	Δp	1.18	cm
$RD_{a}p_{0}^{J}[C_{M}(\alpha_{p}+\alpha_{t})]^{T}$	∆ер	4.32	cm
$n_1$			
$\Delta_{ep} = \Delta_p + \frac{\mathcal{Q}_{Rp} + \mathcal{Q}_{Rt}}{\mathbf{V}}$	QRp+Qt	1.90E+08	N
$K_b$			
Point 4 $a = 4$ $m = n$	m4	2.35E+04	N
$q_4 - \frac{1}{\sqrt{6}} \sqrt{m_4 p_0}$	q4	1.07E+03	N/cm
$2\pi R^2 q_4 - Q_{R4} C_{10}$	QR4	1.59E+08	N
$Q_{R4} = \frac{1}{H_1}  \alpha_4 = \frac{1}{(\pi f_{w_1} p_0 R^2)}$	α4	0.53	-
$H[O]^{4}$	СМ	9.18	-
$\Delta_4 = \frac{\Pi_1[\mathcal{Q}_{R4}]}{2}$	Da	3.26E+06	N.cm
$RD p_{0}^{3}[C_{1}(\alpha + \alpha)] = \frac{R^{2}}{2} r^{4}$	Δ4	2.51	cm
$\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	∆e4	6.01	cm
$\Delta_{e4} = \Delta_4 + \frac{\mathcal{L}_{R4} + \mathcal{L}_{Rt}}{\mathcal{L}}$			
κ _b	QR4+QRt	2.11E+08	N
Point 5 4	m5	4.71E+04	N
$q_5 = \frac{1}{\sqrt{c}} \sqrt{m_5 p_0}$	q5	1.51E+03	N/cm
√0	QR5	2.24E+08	N
	α5	0.75	-
	СМ	7.87	-
	Da	3.26E+06	N.cm
	Δ5	18.61	cm
	∆e5	23.20	cm
	QR5+QRt	2.77E+08	Ν

(No.3計算シート) 非線形ロッキングげわ特性線図計算

## 代表タンク20基の浮き上がり解析結果のまとめ

以下の代表三地区の代表タンク 20 基の最大浮き上がり変位と回数のまとめを付表 2.1 に 示す。各代表タンクの浮き上がり変位の時刻歴を付図 2.1 から付図 2.34 に示す。

	タンク	タンク	EV	N		NS			
地区	番号	容量	最大浮き上がり変位	浮き上が	がり回数	最大浮き上がり変位	浮き上がり回数		
		(KL)	(cm)	0度側	180度側	(cm)	0度側	180度側	
	1	1000	2.3	36	36	0.5	21	25	
	2	5000	2.5	32	34	0.4	10	7	
A	3	10000	1	6	5	0	0	0	
	4	30000	1	2	3	0	0	0	
	5	50000	2.8	19	23	0.5	5	5	
	6	75000	6.6	20	22	0.9	4	4	
	1	1000	5.6	52	57	1.2	29	34	
	2	6000	6.7	41	38	0.9	10	8	
В	3	10000	8.8	43	38	0.9	11	13	
	4	30000	8.6	23	25	1.4	2	4	
	5	50000	14.2	15	17	0	0	0	
	6	77000	7.3	19	18	0.9	1	2	
	7	100000	6.3	20	19	0.4	3	3	
	1	1000	0.2	6	9	2.3	48	53	
	2	5000	0.2	0	4	2.3	53	58	
С	3	10000	0	0	0	1.6	29	37	
	4	30000	0.6	6	4	7.8	34	38	
	5	50000	0	0	0	6	7	4	
	6	70000	0.4	3	1	8.1	27	31	
	7	100000	0	0	0	4.1	21	22	

付表 2.1 代表タンク 20 基の最大浮き上がり変位と回数のまとめ

(1) A地区(代表タンク:合計6基、A-1~A-6)



付図 2.1 浮き上がり変位の時刻歴(A地区 EW、A-1 タンク)



^{2.5} 2.0 1.5 浮き上がり変位 [cm] 1.0 the state of the s 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 20 25 30 35 40 時間 [秒]

付図 2.2 浮き上がり変位の時刻歴(A地区 NS、A-1 タンク)

付図 2.3 浮き上がり変位の時刻歴(A地区 EW、A-2 タンク)



付図 2.4 浮き上がり変位の時刻歴(A地区 NS、A-2 タンク)



付図 2.5 浮き上がり変位の時刻歴(A地区 EW、A-3 タンク)



付図 2.6 浮き上がり変位の時刻歴(A地区 ES、A-4 タンク)



付図 2.7 浮き上がり変位の時刻歴(A地区 EW、A-5 タンク)



付図 2.8 浮き上がり変位の時刻歴(A地区 NS、A-5 タンク)



付図 2.9 浮き上がり変位の時刻歴(A地区 EW、A-6 タンク)



付図 2.10 浮き上がり変位の時刻歴(A地区 NS、A-6 タンク)



(2) B地区(代表タンク:合計7基、B·1~B·7)





付図 2.12 浮き上がり変位の時刻歴(B地区 NS、B-1 タンク)



付図 2.13 浮き上がり変位の時刻歴(B地区 EW、B-2 タンク)



付図 2.14 浮き上がり変位の時刻歴(B地区 NS、B-2 タンク)



付図 2.15 浮き上がり変位の時刻歴(B地区 EW、B-3 タンク)



付図 2.16 浮き上がり変位の時刻歴(B地区 NS、B-3 タンク)



付図 2.17 浮き上がり変位の時刻歴(B地区 EW、B-4 タンク)



付図 2.18 浮き上がり変位の時刻歴(B地区 NS、B-4 タンク)



付図 2.19 浮き上がり変位の時刻歴(B地区 EW、B-5 タンク)



付図 2.20 浮き上がり変位の時刻歴(B地区 EW、B-6 タンク)



付図 2.21 浮き上がり変位の時刻歴(B地区 NS、B-6 タンク)





付図 2.22 浮き上がり変位の時刻歴(B地区 EW、B-7 タンク)

付図 2.23 浮き上がり変位の時刻歴(B地区 NS、B-7 タンク)



(3) C地区(代表タンク:合計7基、C-1~C-7)

付図 2.24 浮き上がり変位の時刻歴(C地区 EW、C-1 タンク)



付図 2.25 浮き上がり変位の時刻歴(C地区 NS、C-1タンク)



付図 2.26 浮き上がり変位の時刻歴(C地区 EW、C-2 タンク)



付図 2.27 浮き上がり変位の時刻歴(C地区 NS、C-2 タンク)



付図 2.28 浮き上がり変位の時刻歴(C地区 NS、C-3 タンク)



付図 2.29 浮き上がり変位の時刻歴(C地区 EW、C-4 タンク)



付図 2.30 浮き上がり変位の時刻歴(C地区 NS、C-4 タンク)



付図 2.31 浮き上がり変位の時刻歴(C地区 NS、C-5 タンク)



付図 2.32 浮き上がり変位の時刻歴(C地区 EW、C-6 タンク)



付図 2.33 浮き上がり変位の時刻歴(C地区 NS、C-6 タンク)



付図 2.34 浮き上がり変位の時刻歴(C地区 NS、C-7 タンク)

## 添付資料3

### B-5 タンクの動液圧の計算結果

付表 3.1 B-5 タンクの動液圧計算用入力データ

D	69765 mm
Н	12608 mm
Kh1	0.4484
ν3	1.79
ρ	8.66E-07 kg/mm3

H/D	0.180721
分割	100
⊿н	126.08 mm
g	9.8 m/sec2
Z	3.33E+13 mm3

C00	C01	C02	C03	C04	C05
0.818987	-0.13123	0.688	-4.22843	5.706144	-2.85
C10	C12	C12	C13	C14	C15
0.810687	0.254276	-1.46843	0.572191	-0.20929	0.041771



付図 3.1 側板の高さにおける動液圧の分布(B-5 タンク)

## 付表 3.2 B-5 タンクの動液圧計算結果

Z         PH0(Z)         PH(Z)         PH				P = 2D*Ph(z)*π/4より			
0.00         0.02195         0.01717         0.03912         4286.80         1.8708E+11         3.8198E+07           126.06         0.02198         0.01726         0.03915         4290.35         1.7759E+11         3.717E+07           378.24         0.02186         0.01730         0.03916         4291.35         1.7294E+11         3.6578E+07           504.32         0.02186         0.01730         0.03917         4292.20         1.6838E+11         3.6538E+07           756.48         0.02176         0.01740         0.03914         4291.39         1.5541E+11         3.452E+07           782.56         0.02174         0.01740         0.03914         4283.95         1.5504E+11         3.330E+07           126.080         0.02166         0.01741         0.03914         4283.95         1.4233E+11         3.2750E+07           136.38         0.02166         0.01740         0.03906         4283.95         1.320E+11         3.1170E+07           152.96         0.02166         0.01737         0.03846         4270.48         1.3340E+11         3.1272E+07           156.00         0.01738         0.03877         4248.50         1.12561E+11         3.0366E+07           152.96         0.02146         0.01728	Z (mm)	Ph0(Z) (MPa)	Ph1(Z) (MPa)	Ph(Z) (MPa)	P (N∕mm)	M (N.mm)	Q (N)
126.08         00.2192         00.1722         0.03914         428.80         1.8230E+11         3.7517E+07           378.24         0.02186         0.01730         0.03916         4291.50         1.7294E+11         3.667E+07           504.32         0.02181         0.01730         0.03917         4292.38         1.6335E+11         3.544E+11         3.494E+07           756.44         0.02176         0.01740         0.03917         4291.39         1.594E+11         3.495E+07           1008.64         0.02176         0.01740         0.03914         4283.51         1.507E+11         3.3370E+07           1120.80         0.02176         0.01740         0.03916         4281.01         1.4550E+11         3.3370E+07           120.80         0.02166         0.01741         0.03901         4276.31         1.324E+11         3.170E+07           151.296         0.02156         0.01737         0.03896         4270.31         1.3024E+11         3.1712E+07           17651.2         0.02156         0.01734         0.03896         4270.31         1.3024E+11         3.0634E+07           181.20         0.02153         0.01734         0.03880         4220.51         1.5074E+11         2.5960E+07           2173.36 <td>0.00</td> <td>0.02195</td> <td>0.01717</td> <td>0.03912</td> <td>4286.90</td> <td>1.8708E+11</td> <td>3.8198E+07</td>	0.00	0.02195	0.01717	0.03912	4286.90	1.8708E+11	3.8198E+07
252.16         0.02189         0.01726         0.03915         4290.35         1.7758E+11         3.6576E+07           378.24         0.02183         0.01733         0.03917         4292.20         1.8836E+11         3.6576E+07           756.48         0.02179         0.01736         0.03917         4292.20         1.5504E+11         3.4548E+07           756.48         0.02176         0.01740         0.03917         4291.39         1.5504E+11         3.4548E+07           756.48         0.02174         0.01740         0.03914         4283.35         1.5074E+11         3.330E+07           1134.72         0.02174         0.01741         0.03914         4283.35         1.5074E+11         3.330E+07           1260.80         0.02166         0.01740         0.03906         4270.48         1.3420E+11         3.172E+07           1563.04         0.02166         0.01737         0.03816         4270.58         1.253E+11         3.2756E+07           2163.36         0.02146         0.01724         0.03816         4283.51         1.506E+11         2.4956E+07           2167.28         0.02146         0.01740         0.03804         4228.45         1.1875E+11         2.956E+07           2167.86         0.02136 </td <td>126.08</td> <td>0.02192</td> <td>0.01722</td> <td>0.03914</td> <td>4288.80</td> <td>1.8230E+11</td> <td>3.7658E+07</td>	126.08	0.02192	0.01722	0.03914	4288.80	1.8230E+11	3.7658E+07
3 / 8.24         0.021 kb         0.01730         0.03916         4291.50         1.7294E+11         3.657E+07           630.40         0.021 kl         0.01736         0.03917         4292.38         1.6385E+11         3.6436E+07           756.48         0.021 76         0.01736         0.03917         4291.30         1.5504E+11         3.4492E+07           1008.64         0.021 76         0.01740         0.03916         4291.00         1.5504E+11         3.3370E+07           1120.86         0.021 74         0.01740         0.03916         4281.01         1.4650E+11         3.3370E+07           152.66         0.021 66         0.01741         0.03906         4280.11         1.3823E+11         3.2270E+07           151.29.60         0.021 65         0.01737         0.03896         4270.03         1.3024E+11         3.1710E+07           163.90.4         0.021 65         0.01734         0.03880         4265.66         1.2251E+11         3.0634E+07           2107.28         0.021 45         0.01724         0.03869         4239.53         1.1134E+11         2.8491E+07           2269.44         0.021 45         0.01740         0.03850         4239.53         1.1142E+11         2.8491E+07           2395.52	252.16	0.02189	0.01726	0.03915	4290.35	1.7759E+11	3.7117E+07
504.32         0.002183         0.011733         0.003917         4292.20         1.8385E+11         3.5395E+07           756.48         0.02179         0.01736         0.03917         4291.99         1.5504E+11         3.5494E+07           188.256         0.02174         0.01740         0.03917         4291.99         1.5504E+11         3.4310E+07           1104.72         0.02174         0.01740         0.03914         4283.95         1.55074E+11         3.3300E+07           1260.80         0.02166         0.01740         0.03906         4283.95         1.4233E+11         3.2250E+07           1563.04         0.02166         0.01737         0.03961         4275.48         1.3420E+11         3.1170E+07           1659.04         0.02166         0.01734         0.03881         4256.56         1.2551E+11         3.096E+07           217.28         0.02146         0.01724         0.03880         4228.50         1.137E=11         2.956E+07           2289.44         0.02140         0.01740         0.03880         4228.51         1.506E+11         2.428E+07           2289.54         0.02135         0.01740         0.03880         4228.63         1.1148E+11         2.848E+07           2289.44 <td< td=""><td>378.24</td><td>0.02186</td><td>0.01730</td><td>0.03916</td><td>4291.50</td><td>1.7294E+11</td><td>3.6576E+07</td></td<>	378.24	0.02186	0.01730	0.03916	4291.50	1.7294E+11	3.6576E+07
b0.04/1         0.02181         0.01738         0.03317         42238         1.8343E+11         3.494E+07           882.56         0.02176         0.01740         0.03916         4291.00         1.5504E+11         3.494E+07           1108.64         0.02171         0.01740         0.03914         4283.31         1.5074E+11         3.330E+07           1200.80         0.02169         0.01741         0.03906         4223.35         1.4252E+01         3.3330E+07           1512.56         0.02160         0.01737         0.03906         4228.73         1.263.40E+11         3.1712E+07           1639.04         0.02160         0.01731         0.03891         4227.33         1.263.4E+11         3.056E+07           2017.28         0.02149         0.01728         0.03877         4248.50         1.187E+11         2.956E+07           2163.40         0.02140         0.01728         0.03804         428.73         1.266.4E+11         3.056E+07           2269.52         0.02130         0.01740         0.03829         428.73         1.1506E+11         2.956E+07           2239.52         0.02130         0.01740         0.03829         428.79         1.0787E+11         2.7495E+07           2243.66         0.02140<	504.32	0.02183	0.01/33	0.03917	4292.20	1.6836E+11	3.6035E+07
338-60         0.02173         0.01736         0.03317         423139         1.3941E+11         3.491E+01           1882.56         0.02174         0.01740         0.03914         4289.35         1.5074E+11         3.4370E+07           1184.72         0.02171         0.01741         0.03914         4283.95         1.4233E+11         3.3270E+07           1366.88         0.02169         0.01741         0.03906         4220.11         1.3822E+11         3.3270E+07           1639.04         0.02160         0.01737         0.03806         4270.03         1.3024E+11         3.1710E+07           1639.04         0.02160         0.01734         0.03806         4220.03         1.1875E+11         2.9560E+07           217.28         0.02149         0.01724         0.03860         4229.63         1.1143E+11         2.491E+07           2289.44         0.02140         0.01719         0.03860         4229.63         1.1143E+11         2.494E+07           2385.22         0.02130         0.01709         0.03801         418.05         9.7599E+10         2.5370E+07           2385.22         0.02130         0.01703         0.03801         418.58         9.4307E+10         2.5320E+07           2373.66         0.0213	630.40	0.02181	0.01736	0.03917	4292.38	1.0385E+11	3.5494E+07
002.00         002173         003140         003314         423130         1.5054211         3.330E+07           1108.64         002174         001741         003912         4287.01         1.4650E+11         3.330E+07           120.80         002169         001741         003906         4283.91         4223.82+11         3.2790E+07           1512.296         002163         001738         003906         4226.74         1.34024E+11         3.170E+07           1639.04         002163         001737         003891         4223.53         1.505E+11         2.905E+07           1785.12         002153         001731         003804         4228.53         1.1506E+11         2.905E+07           217.28         002145         001724         003804         4228.53         1.1506E+11         2.905E+07           2265.60         002130         001709         003804         4218.79         1.0787E+11         2.785E+07           2273.56         002140         001697         003815         418024         1.0086E+11         2.7426E+07           2373.60         002118         01697         003815         418024         9.7599E+10         2.86476E+07           27373.76         002118         01690	/ 30.48	0.02179	0.01738	0.03917	4291.99	1.5941E+11	3.4952E+07
113472         002111         001741         003912         128701         14650E-11         33336-07           126080         002169         001740         003906         428395         1.4233E+11         32326E-07           136688         002163         001740         003906         428011         1.3423E+11         32256E-07           1639.04         002153         001731         003806         427001         1.3024E+11         3.1716E-07           1785.12         002153         001731         003884         4265.65         1.2251E+11         30068E-07           2113.36         002145         001724         003860         4229.63         1.156E+11         2.956E+07           2251.60         002140         00179         003810         42187         10787E+11         2.7356E+07           2521.60         002140         001670         003815         4180.54         9.7599E+10         2.6376E+07           2647.66         00218         001671         003816         4180.54         9.7599E+10         2.6376E+07           273.76         002118         01687         003817         4190.29         10438E+11         2.4797E+07           389.84         002120         016680         0037	1008.64	0.02170	0.01740	0.03910	4291.00	1.5074E+11	3 3870E+07
126080         0.02169         0.01741         0.03906         428395         1.4238E+11         32250E+07           136888         0.02166         0.01738         0.03906         428011         1.3823E+11         32250E+07           151286         0.02163         0.01738         0.03801         4275.48         1.3402H+11         3.1172E+07           1765.12         0.02153         0.01731         0.03891         4283.35         1.2521E+11         3.0534E+07           2107.28         0.02149         0.01724         0.03804         4229.53         1.1506E+11         2.902E+07           2143.36         0.02145         0.01740         0.03804         4229.53         1.143E+11         2.840E+07           2259.52         0.02135         0.01700         0.03827         4194.26         1.0096E+11         2.689E+07           2773.76         0.0218         0.01697         0.03815         418054         9.7599E+10         2.5320E+07           3278.08         0.02098         0.01674         0.03772         41335         8.7822E+10         2.477E+07           3278.08         0.02090         0.01662         0.03683         40570         7.3105E+10         2.2211E+07           3378.40         0.02045	1134.72	0.02171	0.01741	0.03912	4287.01	1.4650F+11	3.3330F+07
1386.88         0.02166         0.01740         0.03906         4280.11         1.322250E-07           151.296         0.02160         0.01737         0.03896         4270.48         1.3242E+11         3.1172E+07           1765.12         0.02153         0.01731         0.03891         4263.73         1.2534E+11         3.0634E+07           2113.36         0.02149         0.01724         0.03869         4229.53         1.1506E+11         2.955E+07           2289.44         0.02140         0.01714         0.03860         4229.53         1.1506E+11         2.955E+07           22521.60         0.02130         0.01709         0.033850         4218.79         1.0787E+11         2.7595E+07           2773.76         0.0214         0.01697         0.03815         4180.54         9.7599E+10         2.5370E+07           325.92         0.02105         0.01682         0.03772         4133.55         8.792E+10         2.4370E+07           3278.08         0.02090         0.01667         0.03724         4133.55         8.792E+10         2.4277E+07           3404.16         0.02092         0.01674         0.03724         4133.55         8.792E+10         2.4277E+07           3502.44         0.02090         0.01	1260.80	0.02169	0.01741	0.03909	4283.95	1.4233E+11	3.2790E+07
1512.96         0.02163         0.01738         0.03901         4275.48         1.3420E+11         3.1710E+07           1765.12         0.02156         0.01737         0.03896         4263.73         1.2634E+11         3.0132E+11           1891.20         0.02153         0.01728         0.03877         4246.50         1.1875E+11         2.9560E+07           2143.36         0.02145         0.01728         0.03860         4229.63         1.1875E+11         2.9560E+07           2255.52         0.02135         0.01714         0.03860         4229.63         1.143E+11         2.7428E+07           2647.68         0.02140         0.01709         0.03827         4194.26         1.0098E+11         2.7428E+07           2773.76         0.02118         0.01697         0.03815         4180.54         9.7599E+10         2.5370E+07           3152.00         0.02098         0.01642         0.03767         4150.20         9.1082E+10         2.4797E+07           3278.08         0.02090         0.01666         0.03764         4150.20         9.1082E+10         2.4797E+07           3530.24         0.02055         0.01628         0.03662         4015.22         7.5398E+10         2.271E+07           3766.52	1386.88	0.02166	0.01740	0.03906	4280.11	1.3823E+11	3.2250E+07
1639.04         0.02160         0.01737         0.03896         4270.03         1.3024E-11         3.0154E-07           1765.12         0.02153         0.01731         0.03881         4266.37         1.2534E-11         3.0056E-07           2017.28         0.02145         0.01724         0.03807         4245.50         1.1875E+11         2.956E-07           2269.44         0.02145         0.01724         0.03860         4229.63         1.1143E+11         2.955E-07           2251.60         0.02130         0.01709         0.03850         4218.79         1.078TE+11         2.959E+07           2647.66         0.02140         0.01697         0.03815         4180.54         9.7599E+10         2.8370E+07           2773.76         0.02118         0.01697         0.03815         4180.54         9.7599E+10         2.8370E+07           3025.92         0.02105         0.01682         0.0376         4133.55         8.7922E+10         2.320E+07           3152.00         0.02088         0.01674         0.033721         4077.76         7.837E+10         2.324E+07           3656.32         0.02045         0.01668         0.03724         4133.55         8.7922E+10         2.221E+07          3986.48         0.02045	1512.96	0.02163	0.01738	0.03901	4275.48	1.3420E+11	3.1710E+07
1 / 65.12         0.02156         0.01 / 34         0.03891         4263.73         1.22634E+11         3.0054E+07           2017.28         0.02149         0.01724         0.03877         4245.50         1.1875E+111         2.9560E+07           2269.44         0.02140         0.01719         0.03869         4229.53         1.1145E+111         2.2451E+07           2395.52         0.02130         0.01709         0.03820         4207.00         1.0438E+11         2.7428E+07           2647.68         0.02124         0.01709         0.03815         4180.54         9.7599E+10         2.8370E+07           2773.76         0.02118         0.01697         0.03815         4180.54         9.7599E+10         2.8370E+07           2899.84         0.02126         0.01662         0.03772         4133.55         8.7922E+10         2.477E+07           3152.00         0.02098         0.01657         0.03729         407.34         8.800E+10         2.3760E+07           3530.24         0.02055         0.01668         0.03721         407.37         7.305E+10         2.2721E+07           3782.40         0.02035         0.01668         0.03721         407.32         8.800E+10         2.23760E+07           3782.40         <	1639.04	0.02160	0.01737	0.03896	4270.03	1.3024E+11	3.1172E+07
1891.20         0.01213         0.01381         0.03877         4283.80         1.225E+11         3.0386+07           2143.36         0.02145         0.01728         0.03877         4283.83         1.156E+11         2.905E+07           2265.4         0.02140         0.01719         0.03860         4229.63         1.1143E+11         2.955E+07           2365.5         0.02135         0.01714         0.03850         4218.79         1.0787E+11         2.7958E+07           2647.68         0.02124         0.01709         0.03815         4180.54         9.7598E+10         2.6370E+07           2899.84         0.02112         0.01690         0.03801         4180.54         9.7598E+10         2.5326E+07           3025.92         0.0200         0.01664         0.03726         4115.33         8.4829E+10         2.4277E+07           3404.16         0.02082         0.01657         0.03739         4097.34         8.1800E+10         2.2731E+07           378.08         0.02045         0.01617         0.03662         4015.32         7.3105E+10         2.2731E+07           378.24         0.02045         0.01617         0.03641         3989.79         6.7630E+10         2.171E+07           3782.40         0.02045 </td <td>1/65.12</td> <td>0.02156</td> <td>0.01/34</td> <td>0.03891</td> <td>4263./3</td> <td>1.2634E+11</td> <td>3.0634E+07</td>	1/65.12	0.02156	0.01/34	0.03891	4263./3	1.2634E+11	3.0634E+07
2017.26         0.0124         0.01724         0.03869         4239.53         1.1506E+11         2.9025E+07           2269.44         0.02140         0.01714         0.03860         4239.53         1.11351         2.8025E+07           2251.60         0.02130         0.01709         0.03839         4207.00         1.0438E+11         2.7458E+07           2647.68         0.02124         0.01703         0.03827         4194.26         1.0096E+11         2.6898E+07           2773.76         0.02118         0.01697         0.03801         4165.86         9.4307E+10         2.5832E+07           3025.92         0.02105         0.01662         0.03772         4133.55         8.7922E+10         2.4797E+07           3278.08         0.02000         0.01666         0.03769         4115.53         8.4829E+10         2.4797E+07           3362.4         0.020273         0.01648         0.03721         4077.76         7.837E+10         2.324E+07           3782.40         0.02055         0.01628         0.03681         4035.70         7.305E+10         2.2271E+07           3782.40         0.02025         0.01666         0.03641         3989.79         6.7630E+10         2.1209E+07           4160.64         0	1891.20	0.02153	0.01731	0.03884	4200.00	1.2201E+11	3.0096E+07
1.1000         0.02140         0.01719         0.03860         4228.03         1.1143E+11         2.8491E+07           2395.52         0.02135         0.01719         0.03830         4218.79         1.0787E+11         2.748E+07           2621.60         0.02130         0.01709         0.03827         4194.26         1.0096E+11         2.6830E+07           2773.76         0.02118         0.01697         0.03815         4180.54         9.7599E+10         2.5320E+07           3025.92         0.02105         0.01682         0.0377         4150.20         9.1082E+10         2.4377E+07           3278.08         0.02098         0.01674         0.03756         4115.93         8.4829E+10         2.4277E+07           3530.24         0.02055         0.01688         0.03702         4057.76         7.8337E+10         2.224E+07           3666.32         0.02064         0.01638         0.03702         4057.22         7.5937E+10         2.224E+07           3908.48         0.02045         0.01666         0.03561         4013.22         7.0335E+10         2.1714E+07           4160.64         0.02045         0.01617         0.03662         4013.22         7.939E+10         2.221E+07           4286.72         0.020	2143.36	0.02145	0.01728	0.03869	4240.00	1.1506E+11	2.900L+07
2395.52         0.02135         0.01714         0.03850         4218.79         1.0787E+11         2.7959E+07           2521.60         0.02130         0.01709         0.03839         4207.00         1.0438E+11         2.7959E+07           2647.68         0.02148         0.01697         0.03815         4180.54         9.7599E+10         2.6370E+07           2898.84         0.02112         0.01697         0.03815         4180.54         9.7599E+10         2.5342E+07           3025.92         0.02105         0.01682         0.03772         4133.55         8.7922E+10         2.4376E+07           3152.00         0.02090         0.01674         0.03750         4115.93         8.4829E+10         2.3760E+07           33656.32         0.02064         0.01638         0.03702         4057.22         7.5939E+10         2.2731E+07           3782.40         0.02055         0.01688         0.03702         4057.22         7.5939E+10         2.2731E+07           3782.40         0.02045         0.01680         0.03631         3985.74         6.487E+10         2.0708E+07           4034.56         0.02045         0.01680         0.03635         3940.08         6.2408E+10         2.0209E+07           4160.64 <t< td=""><td>2269.44</td><td>0.02140</td><td>0.01719</td><td>0.03860</td><td>4229.63</td><td>1.1143F+11</td><td>2.8491F+07</td></t<>	2269.44	0.02140	0.01719	0.03860	4229.63	1.1143F+11	2.8491F+07
2521.60         0.02130         0.01709         0.03839         4207.00         1.0438E+11         2.7428E+07           2647.68         0.02124         0.01703         0.03827         4194.26         1.0096E+11         2.6898E+07           2899.84         0.02118         0.01697         0.03815         4180.54         9.7599E+10         2.6370E+07           3025.32         0.02105         0.01682         0.03772         4133.55         8.7922E+10         2.4797E+07           3278.08         0.02090         0.01666         0.03766         4115.93         8.4820E+10         2.3766E+07           3404.16         0.02082         0.01657         0.03732         4097.34         8.1800E+10         2.3760E+07           3530.24         0.02055         0.01684         0.03702         4057.22         7.8337E+10         2.2731E+07           3968.48         0.02045         0.01617         0.03662         4013.22         7.0335E+10         2.1714E+07           416.64         0.02025         0.01828         0.03595         3940.08         62408E+10         2.0708E+07           4286.72         0.02013         0.01587         0.03595         3940.68         5248E+10         2.1209E+07          4466.46         0.01970 <td>2395.52</td> <td>0.02135</td> <td>0.01714</td> <td>0.03850</td> <td>4218.79</td> <td>1.0787E+11</td> <td>2.7959E+07</td>	2395.52	0.02135	0.01714	0.03850	4218.79	1.0787E+11	2.7959E+07
2647.68         0.02124         0.01703         0.03827         4194.26         1.009E+11         2.689E+07           2773.76         0.02118         0.01697         0.03815         4180.54         9.7599E+10         2.6370E+07           2899.84         0.02112         0.01690         0.03801         4165.86         9.4307E+10         2.5844E+07           3152.00         0.02098         0.01674         0.03776         4133.55         8.7922E+10         2.4320E+07           3278.08         0.02098         0.01666         0.03764         4115.93         8.4829E+10         2.4277E+07           3404.16         0.02082         0.01657         0.03739         4097.34         8.180E+10         2.3766E+07           3503.024         0.02045         0.01638         0.03721         4077.76         7.8837E+10         2.221E+07           3908.48         0.02045         0.01617         0.03662         4013.22         7.0335E+10         2.1714E+07           4180.64         0.02024         0.01594         0.03651         3989.79         6.7830E+10         2.2221E+07           4160.64         0.02024         0.01594         0.03671         3985.49         6.7430E+10         2.2731E+07           4128.62         0	2521.60	0.02130	0.01709	0.03839	4207.00	1.0438E+11	2.7428E+07
2773.76         0.02118         0.01697         0.03815         4180.54         9.7599E+10         2.6370E+07           2899.84         0.02112         0.01690         0.03807         4150.20         9.1082E+10         2.5320E+07           3152.00         0.02098         0.01674         0.03772         4133.55         8.7922E+10         2.4797E+07           3404.16         0.02090         0.01667         0.03738         4097.34         8.1800E+10         2.3760E+07           3530.24         0.02073         0.01648         0.03721         4077.76         7.8837E+10         2.2371E+07           3782.40         0.02055         0.01628         0.03663         4035.70         7.3105E+10         2.2721E+07           3908.48         0.02045         0.01617         0.03663         4035.70         7.3105E+10         2.2721E+07           4160.64         0.02025         0.01606         0.03641         3989.79         6.7630E+10         2.109E+07           4412.80         0.02001         0.01570         0.03571         3913.82         59891E+10         1.9714E+07           4538.88         0.01990         0.01557         0.03547         3886.63         5.7436E+10         1.9724E+07           5443.20	2647.68	0.02124	0.01703	0.03827	4194.26	1.0096E+11	2.6898E+07
2899.84         0.02112         0.01690         0.03801         4165.86         9.4307E+10         2.5844E+07           3025.92         0.02098         0.01674         0.03772         4133.55         8.7922E+10         2.520E+07           3278.08         0.02098         0.01666         0.03756         4115.93         8.4829E+10         2.477E+07           3404.16         0.02082         0.01657         0.03739         4097.34         8.1800E+10         2.3760E+07           3550.24         0.02073         0.01648         0.03721         4077.76         7.8837E+10         2.3244E+07           3782.40         0.02055         0.01628         0.03663         4057.07         7.3105E+10         2.2731E+07           3908.48         0.02045         0.01617         0.03662         4013.22         7.033E+10         2.1714E+07           4034.56         0.02024         0.01582         0.03595         3940.08         6.2408E+10         2.0208E+07           44286.72         0.02011         0.01582         0.03547         386.63         5.7436E+10         1.9223E+07           4664.96         0.01977         0.01544         0.03457         3885.44         5.044E+10         1.8734E+07           5743.20 <t< td=""><td>2773.76</td><td>0.02118</td><td>0.01697</td><td>0.03815</td><td>4180.54</td><td>9.7599E+10</td><td>2.6370E+07</td></t<>	2773.76	0.02118	0.01697	0.03815	4180.54	9.7599E+10	2.6370E+07
3152.92         0.02105         0.01682         0.03767         4135.20         9.1082E+10         2.5320E+07           3278.08         0.02098         0.01666         0.03756         4115.93         8.4829E+10         2.4727E+07           3404.16         0.02082         0.01657         0.03739         4097.34         8.1800E+10         2.3760E+07           3350.24         0.02073         0.01648         0.03721         4077.76         7.8837E+10         2.2374E+07           3782.40         0.02055         0.01628         0.03683         4035.77         7.3105E+10         2.2731E+07           3084.8         0.02045         0.01617         0.03662         4013.22         7.0335E+10         2.1714E+07           4034.56         0.02024         0.01582         0.03641         3989.79         6.7630E+10         2.1209E+07           4138.8         0.02001         0.01570         0.03571         3913.82         5.9891E+10         1.9714E+07           4664.96         0.01977         0.01544         0.03521         3858.54         5.044E+10         1.8734E+07           4791.04         0.01964         0.01530         0.03495         3829.54         5.2712E+10         1.8250E+07           543.20         0.	2899.84	0.02112	0.01690	0.03801	4165.86	9.4307E+10	2.5844E+07
3152.00         0.02098         0.01674         0.0372         4133.33         8.4922E+10         2.4797E+07           3270.80         0.02093         0.01666         0.03736         4097.34         81800E+10         2.3760E+07           3530.24         0.02073         0.01648         0.03721         4077.76         7.8837E+10         2.3760E+07           356.32         0.02064         0.01628         0.03633         40957.22         7.5939E+10         2.2271E+07           3908.48         0.02055         0.01617         0.03662         4013.22         7.035E+10         2.1221E+07           4160.64         0.02024         0.01594         0.03619         3965.40         6.4987E+10         2.1209E+07           4118.06         0.02001         0.01570         0.03571         3913.82         5.9891E+10         1.9714E+07           4538.88         0.01990         0.01557         0.03547         3886.63         5.7436E+10         1.9223E+07           464.96         0.01977         0.01544         0.03221         3858.54         5.504E+10         1.8734E+07           543.20         0.01984         0.01487         0.03495         3829.54         5.2712E+10         1.824E+07           5673.60         0.019	3025.92	0.02105	0.01682	0.03/8/	4150.20	9.1082E+10	2.5320E+07
3243.03         0.02082         0.01657         0.03730         4113.33         0.42251         2.42712101           3530.24         0.02073         0.01648         0.03721         4077.76         7.8337E+10         2.3246E+07           3656.32         0.02044         0.01638         0.03702         4057.22         7.5939E+10         2.271E+07           3782.40         0.02055         0.01667         0.03662         4013.22         7.0335E+10         2.1714E+07           4034.56         0.02024         0.01657         0.03641         3989.79         6.7630E+10         2.1704E+07           4160.64         0.02021         0.01570         0.03571         3913.82         5.9891E+10         2.0708E+07           4412.80         0.02001         0.01570         0.03571         3913.82         5.9891E+10         1.9714E+07           4538.88         0.01990         0.01557         0.03547         3886.63         5.7436E+10         1.8225E+07           4917.12         0.01951         0.03547         3886.63         5.7436E+10         1.8225E+07           4917.2         0.01951         0.01530         0.03495         3829.54         5.5044E+10         1.8724E+07           564.320         0.01938         0.0	3152.00	0.02098	0.01674	0.03772	4133.00	8./922E+10 9./920E+10	2.4/9/E+0/ 2.4277E+07
333024         0.02073         0.01648         0.03721         407.76         7.837E+10         2.3244E+07           3656.32         0.02065         0.01648         0.03702         4057.22         7.539E+10         2.3244E+07           3782.40         0.02055         0.01618         0.03662         4013.22         7.035E+10         2.1714E+07           4034.56         0.02024         0.01617         0.03662         4013.22         7.035E+10         2.1209E+07           416064         0.02024         0.01582         0.03595         3940.08         6.2408E+10         2.0208E+07           4412.80         0.02011         0.01570         0.03571         3913.82         5.9891E+10         1.9714E+07           458.88         0.01990         0.01577         0.03521         3856.54         5.044E+10         1.8734E+07           4791.04         0.01951         0.01544         0.03521         3858.54         5.044E+10         1.8250E+07           5169.28         0.01924         0.01487         0.03495         3829.54         5.044E+10         1.8374E+07           5265.56         0.01938         0.01502         0.03439         3768.86         4.8231E+10         1.729E+07           5647.52         0.01864 <td>3404 16</td> <td>0.02090</td> <td>0.01657</td> <td>0.03730</td> <td>4113.93</td> <td>8.1800F+10</td> <td>2.4277E+07</td>	3404 16	0.02090	0.01657	0.03730	4113.93	8.1800F+10	2.4277E+07
3556.32         0.02064         0.01338         0.03702         4057.22         7.5939E+10         2.2731E+07           3782.40         0.02055         0.01628         0.03683         4035.70         7.3105E+10         2.2221E+07           3908.48         0.02045         0.01606         0.03641         3989.79         6.7630E+10         2.1714E+07           4160.64         0.02024         0.01594         0.03619         3965.40         6.4987E+10         2.0209E+07           4286.72         0.02011         0.01570         0.03571         3913.82         5.9891E+10         1.9714E+07           4538.88         0.01990         0.01557         0.03547         388.63         5.7436E+10         1.9223E+07           4664.96         0.01977         0.01544         0.03467         3799.64         5.044E+10         1.8250E+07           4917.12         0.01951         0.01516         0.03439         3768.86         4.8231E+10         1.8250E+07           5043.20         0.01938         0.01502         0.03439         3768.86         4.8231E+10         1.842E+07           5295.36         0.01909         0.01471         0.03381         3704.69         4.3990E+10         1.6349E+07           547.52         0.	3530.24	0.02073	0.01648	0.03721	4077.76	7.8837E+10	2.3244E+07
3782.40         0.02055         0.01628         0.03683         4035.70         7.3105E+10         2.2221E+07           3908.48         0.02045         0.01617         0.03662         4013.22         7.0335E+10         2.1714E+07           4034.56         0.02035         0.01606         0.03661         3989.79         6.7630E+10         2.0708E+07           4286.72         0.02013         0.01582         0.03595         3940.08         6.2408E+10         2.0209E+07           4412.80         0.02001         0.01577         0.03571         3913.82         5.9891E+10         1.9714E+07           4538.88         0.01990         0.01557         0.03547         3886.63         5.7436E+10         1.9222E+07           4664.96         0.01977         0.01544         0.03521         3858.54         5.5044E+10         1.8734E+07           4791.04         0.01964         0.01530         0.03495         3829.54         5.2712E+10         1.8250E+07           5043.20         0.01938         0.01502         0.03439         3768.86         4.8231E+10         1.7292E+07           5169.28         0.01924         0.01487         0.03350         3671.32         4.1988E+10         1.6849E+07           5247.52 <t< td=""><td>3656.32</td><td>0.02064</td><td>0.01638</td><td>0.03702</td><td>4057.22</td><td>7.5939E+10</td><td>2.2731E+07</td></t<>	3656.32	0.02064	0.01638	0.03702	4057.22	7.5939E+10	2.2731E+07
3908.48         0.02045         0.01617         0.03662         4013.22         7.0335E+10         2.1714E+07           4034.56         0.02035         0.01606         0.03641         39897         6.7630E+10         2.1708E+07           4160.64         0.02024         0.01594         0.03619         3985.40         6.4987E+10         2.0708E+07           4286.72         0.02011         0.01570         0.03571         3913.82         59891E+10         1.9714E+07           4538.8         0.01990         0.01557         0.03547         3866.53         5.7436E+10         1.9222E+07           4664.96         0.01977         0.01544         0.03521         3858.54         5.2712E+10         1.8250E+07           4917.12         0.01951         0.01510         0.03495         3829.54         5.2712E+10         1.8250E+07           5043.20         0.01938         0.01502         0.03439         3768.86         4.8231E+10         1.7292E+07           5169.28         0.01909         0.01471         0.03310         3764.69         4.3990E+10         1.6848E+07           5295.36         0.01909         0.01447         0.03213         3637.10         3.9984E+10         1.5424E+07           5673.60 <t< td=""><td>3782.40</td><td>0.02055</td><td>0.01628</td><td>0.03683</td><td>4035.70</td><td>7.3105E+10</td><td>2.2221E+07</td></t<>	3782.40	0.02055	0.01628	0.03683	4035.70	7.3105E+10	2.2221E+07
4034.56         0.02035         0.01606         0.03641         3989.79         6.7630E+10         2.1209E+07           4160.64         0.02024         0.01594         0.03595         3940.08         6.2408E+10         2.0708E+07           4286.72         0.02011         0.01582         0.03595         3940.08         6.2408E+10         1.9714E+07           4538.88         0.01990         0.01557         0.03571         3913.82         5.9891E+10         1.9714E+07           4664.96         0.01977         0.01544         0.03521         3858.54         5.5044E+10         1.823E+07           4917.12         0.01951         0.01516         0.03495         3829.54         5.2712E+10         1.8250E+07           5043.20         0.01938         0.01502         0.03439         3768.66         4.8231E+10         1.7292E+07           5169.28         0.01993         0.01471         0.03381         3704.69         4.3990E+10         1.6349E+07           5421.44         0.01894         0.01426         0.03227         38608E+10         1.4967E+07           567.360         0.01884         0.01406         0.03254         35661.8         3.6210E+10         1.4967E+07           5925.76         0.01832	3908.48	0.02045	0.01617	0.03662	4013.22	7.0335E+10	2.1714E+07
4160.64         0.0224         0.01594         0.03595         3940.08         6.24087.14         2.0708E+07           4286.72         0.02011         0.01570         0.03595         3940.08         6.24087.10         2.0209E+07           4538.88         0.01990         0.01557         0.03597         3886.63         5.7436E+10         1.9714E+07           4538.88         0.01990         0.01557         0.03521         3856.43         5.5044E+10         1.9223E+07           4664.96         0.01977         0.01544         0.03521         3858.54         5.5044E+10         1.8734E+07           4791.04         0.01951         0.01516         0.03495         3829.54         5.0441E+10         1.7769E+07           5043.20         0.01938         0.01502         0.03493         3768.86         4.8231E+10         1.6818E+07           5295.36         0.01999         0.01471         0.03311         3704.69         4.3990E+10         1.6848E+07           547.52         0.01879         0.01440         0.03287         3602.05         38068E+10         1.4967E+07           5799.68         0.01848         0.01406         0.03254         3566.18         3.6210E+10         1.4515E+07           5925.76         0	4034.56	0.02035	0.01606	0.03641	3989.79	6.7630E+10	2.1209E+07
4280.7         0.02001         0.01382         0.03571         3913.82         59891E+10         2.0209+07           4538.88         0.01990         0.01557         0.03571         3913.82         59891E+10         1.9714E+07           4664.96         0.01977         0.01557         0.03521         3858.54         5.5044E+10         1.8734E+07           4791.04         0.01964         0.01556         0.03495         3829.54         5.2712E+10         1.8250E+07           4917.12         0.01938         0.01502         0.03439         3768.86         4.8231E+10         1.7292E+07           5169.28         0.01924         0.01471         0.03381         3704.69         4.3990E+10         1.6349E+07           5295.36         0.01909         0.01471         0.03381         3704.69         4.3990E+10         1.6349E+07           547.52         0.01879         0.01440         0.03254         3661.13         3.9984E+10         1.5424E+07           5673.60         0.01848         0.01423         0.03254         3662.10         1.4967E+07           599.576         0.01842         0.01353         0.03157         3491.99         3.2662E+10         1.3425E+07           6177.92         0.01781         0.0135	4160.64	0.02024	0.01594	0.03619	3965.40	6.498/E+10	2.0708E+07
++12.50         0.01970         0.01577         0.03571         3886.63         5.7436E+10         1.9223E+07           4664.96         0.01977         0.01544         0.03521         3858.54         5.5044E+10         1.8734E+07           4791.04         0.01964         0.01530         0.03495         3829.54         5.2712E+10         1.8250E+07           4917.12         0.01931         0.01502         0.03467         379.64         5.0441E+10         1.7769E+07           5043.20         0.01938         0.01502         0.03439         3768.86         4.8231E+10         1.8250E+07           5169.28         0.01924         0.01487         0.03410         3737.21         4.6081E+10         1.6349E+07           5295.36         0.01909         0.01471         0.03350         3671.32         4.1958E+10         1.5848E+07           5547.52         0.01879         0.01440         0.03254         366.18         3.6210E+10         1.4515E+07           5925.76         0.01832         0.01389         0.03221         3529.49         3.4408E+10         1.4068E+07           6051.84         0.01763         0.01316         0.03187         3491.99         3.262E+10         1.3625E+07           6430.08         0	4200.72	0.02013	0.01582	0.03595	3940.08	5.0801E+10	2.0209E+07 1.9714E+07
4664.96         0.01977         0.01544         0.03521         3858.54         5.5044E+10         1.8734E+07           4791.04         0.01964         0.01530         0.03495         3829.54         5.2712E+10         1.8250E+07           4917.12         0.01951         0.01516         0.03467         3799.64         5.0441E+10         1.7769E+07           5043.20         0.01938         0.01502         0.03439         3768.86         4.8231E+10         1.7292E+07           5169.28         0.01924         0.01487         0.03310         3737.21         4.6081E+10         1.6349E+07           5295.36         0.01909         0.01471         0.03381         3704.69         4.3990E+10         1.6349E+07           547.52         0.01879         0.01440         0.03319         3637.10         3.9984E+10         1.5424E+07           5673.60         0.01864         0.01423         0.03254         3566.18         3.6210E+10         1.4515E+07           5925.76         0.01832         0.01371         0.03187         3491.99         3.2662E+10         1.3625E+07           6374.00         0.01781         0.01353         0.03152         345368         3.0972E+10         1.318E+07           6304.00         0	4538.88	0.01990	0.01557	0.03547	3886.63	5.7436E+10	1.9223E+07
4791.040.019640.015300.034953829.545.2712E+101.8250E+074917.120.019510.015160.034673799.645.0441E+101.7769E+075043.200.019380.015020.034393768.864.8231E+101.7292E+075169.280.019240.014870.03410377.214.6081E+101.6818E+075295.360.019090.014710.033813704.694.3990E+101.6349E+075421.440.018940.014560.033503671.324.1958E+101.5884E+075547.520.018790.014400.033193637.103.9984E+101.5424E+075673.600.018640.014230.032543566.183.6210E+101.4967E+075799.680.018480.014060.032543566.183.6210E+101.4068E+076051.840.018150.013710.031873491.993.2662E+101.3625E+076177.920.017980.013530.031523453.683.0972E+101.3227E+076304.000.017630.013160.030793374.692.7755E+101.2275E+076656.160.017450.012970.030423334.012.6228E+101.1904E+07688.320.017080.012580.029663250.302.3331E+101.1074E+076934.400.016890.012380.029273207.272.1961E+101.0666E+077060.480.016700.012170.028873163.462.0641E+101.0265E+07	4664.96	0.01977	0.01544	0.03521	3858.54	5.5044E+10	1.8734E+07
4917.120.019510.015160.034673799.645.0441E+101.7769E+075043.200.019380.015020.034393768.864.8231E+101.7292E+075169.280.019240.014870.034103737.214.6081E+101.6818E+075295.360.019090.014710.033813704.694.3990E+101.6349E+075421.440.018940.014560.033503671.324.1958E+101.5884E+075547.520.018790.014400.033193637.103.9984E+101.5424E+075673.600.018640.014230.032543602.053.8068E+101.4967E+075925.760.018320.013890.032113529.493.4408E+101.4068E+076051.840.018150.013710.031573491.993.2662E+101.3625E+076177.920.017980.013530.031523453.683.0972E+101.3188E+076304.000.017630.013160.030793374.692.7755E+101.2275E+076430.080.017630.012970.030423334.012.6228E+101.1904E+076682.240.017270.012780.029663250.302.3331E+101.1074E+076934.400.016890.012380.029273207.272.1961E+101.0666E+077060.480.016700.012170.028863118.871.9372E+109.868E+067312.640.016300.011750.022653073.481.8152E+109.4784E+06 <td< td=""><td>4791.04</td><td>0.01964</td><td>0.01530</td><td>0.03495</td><td>3829.54</td><td>5.2712E+10</td><td>1.8250E+07</td></td<>	4791.04	0.01964	0.01530	0.03495	3829.54	5.2712E+10	1.8250E+07
5043.20         0.01938         0.01502         0.03439         3768.86         4.8231E+10         1.7292E+07           5169.28         0.01924         0.01487         0.03410         3737.21         4.6081E+10         1.6818E+07           5295.36         0.01909         0.01471         0.03381         3704.69         4.3990E+10         1.6349E+07           5421.44         0.01894         0.01456         0.03350         3671.32         4.1958E+10         1.5424E+07           5673.60         0.01864         0.01423         0.03287         3602.05         3.8068E+10         1.4967E+07           5799.68         0.01848         0.01406         0.03254         3566.18         3.6210E+10         1.4515E+07           5925.76         0.01815         0.01371         0.03187         3491.99         3.2662E+10         1.3625E+07           6177.92         0.01781         0.01353         0.03152         3453.68         3.0972E+10         1.3255E+07           6304.00         0.01763         0.01316         0.3079         3374.69         2.7755E+10         1.2327E+07           6556.16         0.01745         0.01277         0.0287         334.01         2.6228E+10         1.1904E+07           6688.32         0	4917.12	0.01951	0.01516	0.03467	3799.64	5.0441E+10	1.7769E+07
5169.28         0.01924         0.01487         0.03410         373.21         4.6081E+10         1.6818E+07           5295.36         0.01909         0.01471         0.03381         3704.69         4.3990E+10         1.6349E+07           5421.44         0.01894         0.01456         0.03350         3671.32         4.1958E+10         1.5884E+07           5547.52         0.01879         0.01423         0.03287         3602.05         3.8068E+10         1.4967E+07           5673.60         0.01884         0.01406         0.03254         3566.18         3.6210E+10         1.4515E+07           5925.76         0.01832         0.01389         0.03221         3529.49         3.4408E+10         1.4068E+07           6051.84         0.01781         0.01353         0.03152         3453.68         3.0972E+10         1.3188E+07           6304.00         0.01781         0.01355         0.03116         3414.58         2.9337E+10         1.2327E+07           6556.16         0.01745         0.01297         0.03042         3334.01         2.6228E+10         1.1904E+07           6682.24         0.01727         0.01278         0.03055         3292.55         2.4753E+10         1.486E+07           6808.32	5043.20	0.01938	0.01502	0.03439	3768.86	4.8231E+10	1.7292E+07
5295.36         0.01909         0.01471         0.03351         3704.69         4.3990E+10         1.5349E+07           5421.44         0.01894         0.01456         0.03350         3671.32         4.1958E+10         1.5884E+07           5547.52         0.01879         0.01440         0.03319         3637.10         3.9984E+10         1.5424E+07           5673.60         0.01864         0.01423         0.03287         3602.05         3.8068E+10         1.4967E+07           5925.76         0.01832         0.01389         0.03221         3529.49         3.4408E+10         1.4068E+07           6051.84         0.01815         0.01371         0.03187         3491.99         3.2662E+10         1.3625E+07           6177.92         0.01798         0.01353         0.03152         3453.68         3.0972E+10         1.3188E+07           6304.00         0.01781         0.01335         0.0316         3414.58         2.9337E+10         1.2327E+07           6556.16         0.01745         0.01297         0.03042         3334.01         2.6228E+10         1.496E+07           688.32         0.01708         0.01258         0.2966         3250.30         2.3331E+10         1.1486E+07           6934.40 <t< td=""><td>5169.28</td><td>0.01924</td><td>0.0148/</td><td>0.03410</td><td>3/3/.21</td><td>4.6081E+10</td><td>1.6818E+07</td></t<>	5169.28	0.01924	0.0148/	0.03410	3/3/.21	4.6081E+10	1.6818E+07
3421.44       0.01834       0.01430       0.03319       36371.32       4.1936±10       1.364±407         5547.52       0.01879       0.01440       0.03319       3637.10       3.9984±10       1.5424±07         5673.60       0.01864       0.01423       0.03287       3602.05       3.8068±10       1.4967±07         5799.68       0.01848       0.01406       0.03254       3566.18       3.6210±10       1.4515±07         5925.76       0.01832       0.01371       0.03187       3491.99       3.2662±10       1.3625±07         6051.84       0.01798       0.01353       0.03152       3453.68       3.0972±10       1.3188±07         6304.00       0.01781       0.01335       0.03116       3414.58       2.9337±10       1.2755±07         6430.08       0.01763       0.01297       0.03042       3334.01       2.6228±10       1.4066±07         6682.24       0.01727       0.01278       0.03005       3292.55       2.4753±10       1.1486±07         6934.40       0.01689       0.01238       0.2927       3207.27       2.1961±10       1.0666±07         7060.48       0.01670       0.01217       0.02887       3163.46       2.0641±10       1.0265±07	5295.30	0.01909	0.01471	0.03381	3/04.09	4.3990E+10	1.0349E+07
5673.60         0.01864         0.01423         0.03287         3602.05         3.8068±10         1.3424±07           5673.60         0.01848         0.01423         0.03287         3602.05         3.8068±10         1.4967±07           5799.68         0.01848         0.01406         0.03254         3566.18         3.6210±10         1.4515±07           5925.76         0.01832         0.01371         0.03187         3491.99         3.2662±10         1.3625±07           6051.84         0.01798         0.01353         0.03152         3453.68         3.0972±10         1.3188±07           6304.00         0.01781         0.01335         0.03116         3414.58         2.9337±10         1.2755±07           6430.08         0.01763         0.01297         0.03042         3334.01         2.6228±10         1.1904±07           6682.24         0.01727         0.01278         0.03005         3292.55         2.4753±10         1.1486±07           6934.40         0.01689         0.01238         0.2927         3207.27         2.1961±10         1.0666±07           7186.56         0.01650         0.01175         0.02805         3073.48         1.8152±10         9.4784±06           7438.72         0.01609	5547 52	0.01894	0.01430	0.03350	3637.10	3.9984F+10	1.5004E+07
5799.68         0.01848         0.01406         0.03254         3566.18         3.6210E+10         1.4515E+07           5925.76         0.01832         0.01389         0.03221         3529.49         3.4408E+10         1.4068E+07           6051.84         0.01815         0.01371         0.03187         3491.99         3.2662E+10         1.3625E+07           6177.92         0.01798         0.01353         0.03152         3453.68         3.0972E+10         1.3188E+07           6304.00         0.01781         0.01335         0.03116         3414.58         2.9337E+10         1.2755E+07           6430.08         0.01763         0.01316         0.03079         3374.69         2.7755E+10         1.2327E+07           6556.16         0.01745         0.01297         0.030042         3334.01         2.6228E+10         1.1486E+07           688.32         0.01708         0.01258         0.29066         3250.30         2.3331E+10         1.1074E+07           6934.40         0.01689         0.01217         0.02887         3163.46         2.0641E+10         1.0265E+07           7186.56         0.01650         0.01196         0.02846         3118.87         1.9372E+10         9.8688E+06           7312.64 <t< td=""><td>5673.60</td><td>0.01864</td><td>0.01423</td><td>0.03287</td><td>3602.05</td><td>3.8068F+10</td><td>1.4967F+07</td></t<>	5673.60	0.01864	0.01423	0.03287	3602.05	3.8068F+10	1.4967F+07
5925.760.018320.013890.032213529.493.4408E+101.4068E+076051.840.018150.013710.031873491.993.2662E+101.3625E+076177.920.017980.013530.031523453.683.0972E+101.3188E+076304.000.017810.013350.031163414.582.9337E+101.2755E+076430.080.017630.013160.030793374.692.7755E+101.2327E+076556.160.017450.012970.030423334.012.6228E+101.1904E+076682.240.017270.012780.030053292.552.4753E+101.194E+076934.400.016890.012580.029663250.302.3331E+101.1074E+076934.400.016890.012170.028873163.462.0641E+101.0265E+077186.560.016500.011960.028463118.871.9372E+109.8688E+067312.640.016300.011750.028053073.481.8152E+109.4784E+067438.720.016090.011530.027623027.291.6982E+109.0938E+067564.800.015880.011310.027202980.301.5859E+108.3242E+067816.960.015450.010870.02632283.871.3755E+107.9757E+067943.040.015230.010640.028662834.401.2772E+107.6152E+06	5799.68	0.01848	0.01406	0.03254	3566.18	3.6210E+10	1.4515E+07
6051.840.018150.013710.031873491.993.2662E+101.3625E+076177.920.017980.013530.031523453.683.0972E+101.3188E+076304.000.017810.013350.031163414.582.9337E+101.2755E+076430.080.017630.013160.030793374.692.7755E+101.2327E+076556.160.017450.012970.0300423334.012.6228E+101.1904E+076682.240.017270.012780.030053292.552.4753E+101.1904E+076808.320.017080.012580.029663250.302.3331E+101.1074E+076934.400.016890.012170.028873163.462.0641E+101.0265E+077186.560.016500.011960.028463118.871.9372E+109.8688E+067312.640.016300.011750.028053073.481.8152E+109.4784E+067438.720.016090.011530.027623027.291.6982E+109.0938E+067564.800.015880.011310.027202980.301.5859E+108.7151E+067690.880.015670.010870.02632283.871.3755E+107.9757E+067943.040.015230.010640.028662834.401.2772E+107.6152E+06	5925.76	0.01832	0.01389	0.03221	3529.49	3.4408E+10	1.4068E+07
6177.92         0.01798         0.01353         0.03152         3453.68         3.0972E+10         1.3188E+07           6304.00         0.01781         0.01335         0.03116         3414.58         2.9337E+10         1.2755E+07           6430.08         0.01763         0.01316         0.03079         3374.69         2.7755E+10         1.2327E+07           6556.16         0.01745         0.01297         0.030042         3334.01         2.6228E+10         1.1904E+07           6682.24         0.01727         0.01278         0.03005         3292.55         2.4753E+10         1.1074E+07           6934.40         0.01689         0.01238         0.02966         3250.30         2.3331E+10         1.1074E+07           7060.48         0.01670         0.01217         0.02887         3163.46         2.0641E+10         1.0265E+07           7186.56         0.01650         0.01196         0.02846         3118.87         1.9372E+10         9.8688E+06           7312.64         0.01630         0.01175         0.02805         3073.48         1.8152E+10         9.4784E+06           7438.72         0.01609         0.01153         0.02762         3027.29         1.6982E+10         9.0938E+06           7564.80         <	6051.84	0.01815	0.01371	0.03187	3491.99	3.2662E+10	1.3625E+07
6304.00         0.01781         0.01335         0.03116         3414.58         2.9337E+10         1.2755E+07           6430.08         0.01763         0.01316         0.03079         3374.69         2.7755E+10         1.2327E+07           6556.16         0.01745         0.01297         0.03042         3334.01         2.6228E+10         1.12327E+07           6682.24         0.01727         0.01278         0.03005         3292.55         2.4753E+10         1.1486E+07           6808.32         0.01708         0.01258         0.02966         3250.30         2.3331E+10         1.1074E+07           6934.40         0.01689         0.01217         0.02887         3163.46         2.0641E+10         1.0265E+07           7186.56         0.01650         0.01175         0.02805         3073.48         1.8152E+10         9.4784E+06           7438.72         0.01609         0.01153         0.02762         3027.29         1.6982E+10         9.0938E+06           7564.80         0.01588         0.01131         0.02720         2980.30         1.5859E+10         8.7151E+06           7816.96         0.01545         0.01087         0.02632         283.87         1.3755E+10         7.9757E+06           7943.04 <t< td=""><td>6177.92</td><td>0.01798</td><td>0.01353</td><td>0.03152</td><td>3453.68</td><td>3.0972E+10</td><td>1.3188E+07</td></t<>	6177.92	0.01798	0.01353	0.03152	3453.68	3.0972E+10	1.3188E+07
0430.08         0.01763         0.01316         0.03079         3374.69         2.7755±10         1.2327±407           6556.16         0.01745         0.01297         0.03042         3334.01         2.6228±10         1.1904±407           6682.24         0.01727         0.01278         0.03005         3292.55         2.4753±10         1.1486±407           6808.32         0.01708         0.01258         0.02966         3250.30         2.3331±10         1.1074±407           6934.40         0.01689         0.01218         0.02927         3207.27         2.1961±10         1.0666±407           7060.48         0.01670         0.01217         0.02867         3163.46         2.0641±10         1.0265±407           7186.56         0.01630         0.01175         0.02805         3073.48         1.8152±10         9.4784±466           7438.72         0.01609         0.01153         0.02762         3027.29         1.6982±10         9.0938±466           7564.80         0.01588         0.01131         0.02720         2980.30         1.5859±10         8.7151±466           7816.96         0.01545         0.01087         0.02632         2838.87         1.3755±10         7.9757±466           7943.04         0.01523<	6304.00	0.01781	0.01335	0.03116	3414.58	2.9337E+10	1.2755E+07
0.33.10         0.01743         0.01257         0.03042         3334.01         2.0226±10         1.1904±407           6682.24         0.01727         0.01278         0.03005         3292.55         2.4753±10         1.1486±407           6808.32         0.01708         0.01258         0.02966         3250.30         2.3331±10         1.1074±407           6934.40         0.01689         0.01238         0.02927         3207.27         2.1961±10         1.0666±407           7060.48         0.01670         0.01217         0.02887         3163.46         2.0641±10         1.0265±407           7186.56         0.01630         0.01175         0.02805         3073.48         1.8152±10         9.4784±406           7438.72         0.01609         0.01153         0.02762         3027.29         1.6982±10         9.0938±406           7564.80         0.01588         0.01131         0.02720         2980.30         1.5859±10         8.7151±466           7816.96         0.01545         0.01087         0.02632         2883.87         1.3755±10         7.9757±466           7943.04         0.01523         0.026632         2834.40         1.2772±10         7.6152±466	0430.08 6556.16	0.01763	0.01316	0.03079	33/4.69	2.//55E+10	1.232/E+U/
6808.32         0.01728         0.01258         0.02966         3252.33         2.47331E+10         1.1468E+07           6808.32         0.01708         0.01258         0.02966         3250.30         2.3331E+10         1.1074E+07           6934.40         0.01689         0.01238         0.02927         3207.27         2.1961E+10         1.066E+07           7060.48         0.01670         0.01217         0.02887         3163.46         2.0641E+10         1.0265E+07           7186.56         0.01630         0.01175         0.02805         3073.48         1.8152E+10         9.4784E+06           7438.72         0.01609         0.01133         0.02762         3027.29         1.6982E+10         9.0938E+06           7564.80         0.01588         0.01131         0.02720         2980.30         1.5859E+10         8.7151E+06           7816.96         0.01545         0.01087         0.02632         2883.87         1.3755E+10         7.9757E+06           7943.04         0.01523         0.02664         2834.40         1.2772E+10         7.6152E+06	6682.24	0.01740	0.0129/	0.03042	3334.01	2.0220E+10 2.4753E+10	1.1904E+07
6934.40         0.01689         0.01238         0.02927         3207.27         2.1961E+10         1.066E+07           7060.48         0.01670         0.01217         0.02887         3163.46         2.0641E+10         1.0265E+07           7186.56         0.01650         0.01196         0.02846         3118.87         1.9372E+10         9.8688E+06           7312.64         0.01630         0.01175         0.02805         3073.48         1.8152E+10         9.4784E+06           7438.72         0.01609         0.01133         0.02762         3027.29         1.6982E+10         9.0938E+06           7564.80         0.01588         0.01131         0.02720         2980.30         1.5859E+10         8.7151E+06           7816.96         0.01545         0.01087         0.02632         2883.87         1.3755E+10         7.975TE+06           7943.04         0.01523         0.01664         0.02886         2834.40         1.2772E+10         7.6152E+06	6808.32	0.01708	0.01258	0.02966	3250.30	2.3331F+10	1.1074F+07
7060.48         0.01670         0.01217         0.02887         3163.46         2.0641E+10         1.0265E+07           7186.56         0.01650         0.01196         0.02887         3163.46         2.0641E+10         1.0265E+07           7186.56         0.01650         0.01196         0.02846         3118.87         1.9372E+10         9.8688E+06           7312.64         0.01630         0.01175         0.02805         3073.48         1.8152E+10         9.4784E+06           7438.72         0.01609         0.01153         0.02762         3027.29         1.6982E+10         9.0938E+06           7564.80         0.01588         0.01131         0.02720         2980.30         1.5859E+10         8.7151E+06           7690.88         0.01567         0.01109         0.02632         2883.87         1.3755E+10         7.9757E+06           7816.96         0.01523         0.01087         0.02866         2834.40         1.2772E+10         7.6152E+06	6934.40	0.01689	0.01238	0.02927	3207.27	2.1961E+10	1.0666E+07
7186.56         0.01650         0.01196         0.02846         3118.87         1.9372E+10         9.8688E+06           7312.64         0.01630         0.01175         0.02805         3073.48         1.8152E+10         9.4784E+06           7438.72         0.01609         0.01153         0.02762         3027.29         1.6982E+10         9.0938E+06           7564.80         0.01588         0.01131         0.02702         2980.30         1.5859E+10         8.7151E+06           7690.88         0.01567         0.01087         0.02632         2883.87         1.3755E+10         7.9757E+06           7816.96         0.01523         0.01064         0.02886         2834.40         1.2772E+10         7.6152E+06	7060.48	0.01670	0.01217	0.02887	3163.46	2.0641E+10	1.0265E+07
7312.64         0.01630         0.01175         0.02805         3073.48         1.8152E+10         9.4784E+06           7438.72         0.01609         0.01153         0.02762         3027.29         1.6982E+10         9.0938E+06           7564.80         0.01588         0.01131         0.02720         2980.30         1.5859E+10         8.7151E+06           7690.88         0.01567         0.01087         0.02632         2883.87         1.3755E+10         7.9757E+06           7816.96         0.01523         0.01064         0.02866         2834.40         1.2772E+10         7.6152E+06	7186.56	0.01650	0.01196	0.02846	3118.87	1.9372E+10	9.8688E+06
7438.72         0.01609         0.01153         0.02762         3027.29         1.6982E+10         9.0938E+06           7564.80         0.01588         0.01131         0.02720         2980.30         1.5859E+10         8.7151E+06           7690.88         0.01567         0.01109         0.02632         2932.50         1.4784E+10         8.3424E+06           7816.96         0.01545         0.01087         0.02632         2883.87         1.3755E+10         7.9757E+06           7943.04         0.01523         0.01064         0.02886         2834.40         1.2772E+10         7.6152E+06	7312.64	0.01630	0.01175	0.02805	3073.48	1.8152E+10	9.4784E+06
/564.80         0.01588         0.01131         0.02720         2980.30         1.5859E+10         8.7151E+06           7690.88         0.01567         0.01109         0.02676         2932.50         1.4784E+10         8.3424E+06           7816.96         0.01545         0.01087         0.02632         2883.87         1.3755E+10         7.9757E+06           7943.04         0.01523         0.01064         0.02586         2834.40         1.2772F+10         7.6152F+06	7438.72	0.01609	0.01153	0.02762	3027.29	1.6982E+10	9.0938E+06
7890.88 0.01567 0.01109 0.02676 2932.50 1.4784E+10 8.3424E+06 7816.96 0.01545 0.01087 0.02632 2883.87 1.3755E+10 7.9757E+06 7943.04 0.01523 0.01064 0.02586 2834.40 1.2772E+10 7.6152E+06	/564.80	0.01588	0.01131	0.02720	2980.30	1.5859E+10	8./151E+06
7943.04 0.01523 0.01064 0.02586 2834.40 1.2772F+10 7.6152F+06	791606	0.0156/	0.01109	0.026/6	2932.50 2883.87	1.4/84E+10 1.3755E+10	0.3424E+U0 7.9757E+06
	7943.04	0.01523	0.01064	0.02586	2834.40	1.2772E+10	7.6152E+06

8069.12	0.01500	0.01040	0.02541	2784.07	1.1834E+10	7.2610E+06
8195.20	0.01477	0.01017	0.02494	2732.87	1.0941E+10	6.9132E+06
8321.28	0.01453	0.00993	0.02446	2680.77	1.0091E+10	6.5720E+06
8447.36	0.01429	0.00969	0.02398	2627.75	9.2832E+09	6.2373E+06
8573.44	0.01405	0.00944	0.02349	2573.78	8.5174E+09	5.9094E+06
8699.52	0.01379	0.00919	0.02298	2518.84	7.7926E+09	5.5884E+06
8825.60	0.01353	0.00894	0.02247	2462.88	7.1078E+09	5.2743E+06
8951.68	0.01327	0.00868	0.02195	2405.89	6.4622E+09	4.9674E+06
9077.76	0.01300	0.00843	0.02142	2347.81	5.8548E+09	4.6677E+06
9203.84	0.01272	0.00817	0.02088	2288.61	5.2847E+09	4.3754E+06
9329.92	0.01243	0.00790	0.02033	2228.25	4.7510E+09	4.0907E+06
9456.00	0.01214	0.00763	0.01977	2166.67	4.2527E+09	3.8136E+06
9582.08	0.01183	0.00736	0.01920	2103.83	3.7889E+09	3.5444E+06
9708.16	0.01152	0.00709	0.01861	2039.67	3.3585E+09	3.2832E+06
9834.24	0.01120	0.00681	0.01801	1974.13	2.9605E+09	3.0302E+06
9960.32	0.01087	0.00653	0.01740	1907.14	2.5938E+09	2.7855E+06
10086.40	0.01053	0.00625	0.01678	1838.66	2.2575E+09	2.5494E+06
10212.48	0.01017	0.00597	0.01614	1768.59	1.9504E+09	2.3220E+06
10338.56	0.00981	0.00568	0.01548	1696.88	1.6715E+09	2.1035E+06
10464.64	0.00943	0.00539	0.01481	1623.44	1.4194E+09	1.8942E+06
10590.72	0.00903	0.00509	0.01413	1548.19	1.1932E+09	1.6943E+06
10716.80	0.00863	0.00480	0.01342	1471.05	9.9161E+08	1.5039E+06
10842.88	0.00820	0.00450	0.01270	1391.91	8.1337E+08	1.3234E+06
10968.96	0.00776	0.00420	0.01196	1310.69	6.5725E+08	1.1531E+06
11095.04	0.00731	0.00389	0.01120	1227.29	5.2196E+08	9.9308E+05
11221.12	0.00683	0.00358	0.01042	1141.61	4.0616E+08	8.4375E+05
11347.20	0.00634	0.00327	0.00961	1053.52	3.0851E+08	7.0537E+05
11473.28	0.00583	0.00296	0.00879	962.92	2.2759E+08	5.7825E+05
11599.36	0.00529	0.00264	0.00794	869.69	1.6196E+08	4.6272E+05
11725.44	0.00473	0.00233	0.00706	773.70	1.1015E+08	3.5912E+05
11851.52	0.00415	0.00201	0.00616	674.83	7.0633E+07	2.6781E+05
11977.60	0.00355	0.00168	0.00523	572.93	4.1826E+07	1.8915E+05
12103.68	0.00291	0.00136	0.00427	467.87	2.2115E+07	1.2354E+05
12229.76	0.00225	0.00103	0.00328	359.50	9.8273E+06	7.1378E+04
12355.84	0.00156	0.00070	0.00226	247.67	3.2409E+06	3.3102E+04
12481.92	0.00084	0.00036	0.00121	132.22	5.7706E+05	9.1539E+03
12608.00	0.00009	0.00003	0.00012	12.99	0.0000E+00	0.0000E+00

## 2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2 の算定式による応力-ひずみ線図

2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2の算定式で計算した B-5 タンクの側板とアニュラ板(両方の材料:HT60)及び底板(材料:SS41)の応力一ひずみ線図の数値を付表 4.1 と付表 4.2 に示す。

ASME Code の算定式と記号に関する記述文の抜粋を付録 4.1 に示す。

σys	450	N/mm2
$\sigma$ uts	570	N/mm2
R	0.7894737	
К	0.3381026	
m2	0.1263158	
A2	839.91085	
£р	2.00E-05	
εys	2.00E-03	mm/mm
M1	5.18E-02	
A1	6.22E+02	
Ey	205940	N/mm2

付表 4.1 側板とアニュラ板(材料:HT60)の応力—ひずみ線図の計算値

σt	Н	ε1	ε2	γ1	γ2	εt
N/mm2						mm/mm
450	-2.00E+00	1.92E-03	7.15E-03	1.89E-03	1.29E-04	4.20E-03
500	4.65E-01	1.47E-02	1.65E-02	4.16E-03	1.18E-02	1.84E-02
530	1.94E+00	4.53E-02	2.61E-02	9.11E-04	2.56E-02	2.91E-02
550	2.93E+00	9.27E-02	3.50E-02	2.64E-04	3.49E-02	3.79E-02
600	5.39E+00	4.98E-01	6.97E-02	1.03E-05	6.97E-02	7.27E-02
650	7.86E+00	2.34E+00	1.31E-01	3.49E-07	1.31E-01	1.35E-01
700	1.03E+01	9.78E+00	2.36E-01	1.05E-08	2.36E-01	2.40E-01
750	1.28E+01	3.71E+01	4.08E-01	2.89E-10	4.08E-01	4.12E-01
800	1.53E+01	1.29E+02	6.80E-01	7.27E-12	6.80E-01	6.84E-01

ここに、σ_t:真応力、 ε_t:真ひずみ

σys	245	N/mm2
$\sigma$ uts	400	N/mm2
R	0.6125	
К	0.3923987	
m2	0.2325	
A2	708.50043	
£р	2.00E-05	
ε ys	2.00E-03	mm/mm
M1	1.07E-01	
A1	4.77E+02	
Ey	205940	N/mm2

付表 4.2 底板(材料: SS41)の応力—ひずみ線図の計算値

σt	Н	ε1	ε2	γ1	γ2	εt
(N/mm2)						(mm/mm)
245	-2.00E+00	1.96E-03	1.04E-02	1.93E-03	1.87E-04	3.30E-03
270	-1.18E+00	4.87E-03	1.58E-02	4.45E-03	1.37E-03	7.12E-03
300	-1.91E-01	1.30E-02	2.48E-02	7.75E-03	1.01E-02	1.93E-02
350	1.45E+00	5.51E-02	4.82E-02	2.86E-03	4.57E-02	5.02E-02
400	3.10E+00	1.92E-01	8.55E-02	3.92E-04	8.54E-02	8.77E-02
450	4.74E+00	5.79E-01	1.42E-01	4.41E-05	1.42E-01	1.44E-01
500	6.39E+00	1.55E+00	2.23E-01	4.41E-06	2.23E-01	2.26E-01
550	8.03E+00	3.78E+00	3.36E-01	4.01E-07	3.36E-01	3.39E-01
600	9.67E+00	8.54E+00	4.89E-01	3.38E-08	4.89E-01	4.92E-01
650	1.13E+01	1.80E+01	6.90E-01	2.67E-09	6.90E-01	6.93E-01
700	1.30E+01	3.61E+01	9.49E-01	1.99E-10	9.49E-01	9.53E-01

ここに、σ_t:真応力、 ε_t:真ひずみ

付録 4.1

## 2013 ASME Boiler and Pressure Vessel Code, Sec VIII, Division 2の抜粋

#### 3.D.3 Stress Strain Curve

The following model for the stress-strain curve shall be used in design calculations where required by this Division when the strain hardening characteristics of the stress-strain curve are to be considered. The yield strength and ultimate tensile strength in paragraphs 3.D.1 and 3.D.2 may be used in this model to determine a stress-strain curve at a specified temperature.

$$\varepsilon_t = \frac{\sigma_t}{E_y} + \gamma_1 + \gamma_2 \tag{3.D.1}$$

where

$$\gamma_1 = \frac{\varepsilon_1}{2} \left( 1.0 - \tanh[H] \right) \tag{3.D.2}$$

$$\gamma_2 = \frac{\varepsilon_2}{2} \left( 1.0 + \tanh[H] \right) \tag{3.D.3}$$

$$\varepsilon_1 = \left(\frac{\sigma_t}{A_1}\right)^{\frac{1}{m_i}}$$
(3.D.4)

$$A_{1} = \frac{\sigma_{yz} \left(1 + \varepsilon_{yz}\right)}{\left(\ln\left[1 + \varepsilon_{yz}\right]\right)^{m_{1}}}$$
(3.D.5)

$$m_{1} = \frac{\ln[R] + (\varepsilon_{p} - \varepsilon_{yz})}{\ln\left[\frac{\ln[1 + \varepsilon_{p}]}{\ln[1 + \varepsilon_{yz}]}\right]}$$
(3.D.6)

$$\varepsilon_2 = \left(\frac{\sigma_t}{A_2}\right)^{\frac{1}{m_2}}$$
(3.D.7)

$$A_2 = \frac{\sigma_{uts} \exp[m_2]}{m_2^{m_2}}$$
(3.D.8)

$$H = \frac{2\left[\sigma_{t} - \left(\sigma_{ys} + K\left\{\sigma_{uts} - \sigma_{ys}\right\}\right)\right]}{K\left(\sigma_{uts} - \sigma_{ys}\right)}$$
(3.D.9)

$$R = \frac{\sigma_{yz}}{\sigma_{ytz}}$$
(3.D.10)

$$\varepsilon_{yz} = 0.002$$
 (3.D.11)

$$K = 1.5R^{1.5} - 0.5R^{2.5} - R^{3.5}$$
(3.D.12)

The parameters  $m_2$ , and  $\varepsilon_p$  are provided in Table 3.D.1.The development of the stress strain curve should be limited to a value of true ultimate tensile stress at true ultimate tensile strain. The stress strain curve beyond this point should be perfectly plastic. The value of true ultimate tensile stress at true

$$\sigma_{uts,t} = \sigma_{uts} \exp[m_2] \tag{3.D.13}$$

#### 第3章 基礎・地盤の耐震安全性の解析

#### 1 基礎・地盤の耐震安全性の解析条件の検討

#### 1.1 基礎・地盤の耐震安全性の解析の流れ

東日本大震災では、石油タンクの周辺において地盤が変形したことが確認されているが、 震度6を超える地震動であったにもかかわらず、大規模な貯蔵物の流出につながる屋外タ ンク貯蔵所の損傷は無かった。このことは、1977年(昭和52年)以降に設置された屋外タ ンク貯蔵所が、堅固な地盤の上に設置することが求められていること、1977年(昭和52年) 以前に設置されていた既存の屋外タンク貯蔵所が、1994年(平成6年)の危険物の規制に 関する法令改正により、耐震対策として地盤の液状化に対する強度の確保が求められてお り、それらの成果の表れであると考えられる。また、本検討会において平成26年度に南海 トラフ地震が発生した場合の特防区域の屋外貯蔵タンク本体の直下の地盤改良効果とその 周辺地盤が屋外貯蔵タンク本体に与える影響を確認した。

しかしながら、将来発生が危惧される首都直下地震が発生した場合の東京湾周辺の特防 地区の安全性については、確認されていない。

よって、本検討では、首都直下地震が発生した場合に、屋外貯蔵タンク本体の直下の地盤 改良効果とその周辺地盤が屋外貯蔵タンク本体に与える影響を確認することを目的すると ともに、従来の設計レベルを超えるような大きな地震外力に対しての安全性を検討するう え、地盤改良効果を解析に組み込むことの効果と重要性を示すことを目指すものとする。 解析の流れを図 1.1.1 に示す。



図 1.1.1 解析の流れ

#### 1.2 解析対象地区の選定

解析対象地区は、検討目的である「屋外貯蔵タンク本体直下の地盤改良効果とその周辺 地盤の影響を確認する」ために適した地区を選定する。

東京湾沿岸の特防区域のうち想定震度が震度6強となる主な特防区域として一次元応答 解析において対象とした、3地区(A地区、B地区、C地区)のうち2地区を選定した。

なお、2地区の選定においては以下の5項目を考慮しながら総合的に判断した。

- 砂層の有無:地盤変形の可能性が高いか
- 解析精度:既存資料により解析精度が担保できるか
- 液状化対策効果:地盤改良の実施状況を確認できるか
- 特徴:東京湾沿岸の地盤条件として特徴的であるか
- 解析上異なる特徴をもつ解析対象地区を選定する

上記により総合的に判断した結果、3地区のうち一次元応答解析結果から顕著な非線形 挙動を示すA地区と、非線形挙動はしないものの地震動の短周期成分が卓越し大きな地表 面加速度が予想されるB地区を解析対象地区とした。

候補となった3地区の項目の比較を表1.2.1に示す。

なお、石油タンクの地盤については、液状化対策が講じられた地盤とすることを求めて おり、貯蔵量ベースで98%を占める大規模なタンクについては平成25年12月31日まで に全て基準に適合しており、小規模な石油タンクについても平成28年度末までに耐震基 準に適合させるよう耐震化を進めている。

## 表 1.2.1 特防区域の震度・地盤状況等の比較

	A 地区	B 地区	C 地区
想定震度階	6 強	6 強	6 強
液状化可能性	高い	中くらい	高い
(N 値≦15 程度の	N 値 5~10 程度の沖	N 値 5 以下の沖積砂	N 値 5~16 程度の沖
砂・砂礫層で高い)	積砂質土層が続く	質土層が若干ある	積砂質土層が挟在
解析精度 (既存資料)	<b>解析精度</b> (既存資料) 非常に良い		非常に良い
地盤改良 (既存資料)	サンドコンパクショ ンパイル他	サンドパイル他	サンドコンパクショ ンパイル他
一次元応答 解析結果	非線形挙動顕著であ り、長周期化	非線形挙動を示さず 短周期が卓越	ほか2地区の中間的 応答 
二次元動的変形解析 の対象とする地区	対象	対象	_

#### 1.3 解析対象地区の地層構成概要

選定した解析対象地区の地層について概要を示す。

#### 1.3.1 A地区

地質層序表を表1.3.1に示す。表層に埋土層が分布しており、その下位は完新世の粘性 土層と砂質土層が分布している。完新世の粘性土は比較的軟らかく、砂質土層は緩い~中 位の締まり具合である。これらの地層の下位は、更新世の砂質土層と粘性土層が互層に分 布、その下位に工学的基盤と考えうる礫質土層が分布する。このような堆積状況におい て、地盤の変形が懸念される層は、埋土層・第一砂質土層・第一粘性土層・第二粘性土層 である。

t	地質時代		地層名		地層名         厚生		地層名 厚生 N 値	
	現 世			埋土層	砂質土	5		
新生	第四	完新	沖積	第一砂質土層	砂	12		
工代	紀	利世	層	第一粘性土層	シルト	3		
				第二粘性土層	粘土	5		
		更新	洪積	第二砂質土層	シルト質砂	30		
		世	層	第三粘性土層	粘土	14		
				第三砂質土層	シルト質砂	30		
				第四粘性土層	シルト	14		
				礫質土層	礫	50		

表1.3.1 A地区における地質層序表

#### 1.3.2 B地区

地質層序表を表1.3.2に示す。表層に埋土層が薄く分布しており、その下位は完新世の 砂質土層と薄い粘性土層が分布している。完新世の砂質土層は緩い締まり具合、粘性土は 軟らかい。これらの地層の下位は、上総層群であり工学的基盤と考えうる砂質泥岩が分布 する。このような堆積状況において、地盤の変形が懸念される層は、埋土層・第一砂質土 層・第二粘性土層である。

t	地質時代		地層名		厚生	N 値
	現 世			埋土層	砂質土	9
新生	第四	完新	沖積	第一砂質土層	砂	3
代	紀	世	層	第一粘性土層	シルト	1
	第三紀	鮮 新 世		岩盤層	砂質泥岩	50

表1.3.2 B地区における地質層序表

#### 1.4 屋外貯蔵タンク本体の選定

解析に用いる屋外貯蔵タンク本体については、その大きさや高さによって地盤に対する 影響や地盤の変状に伴う屋外貯蔵タンク本体の変状にも影響を及ぼすため、慎重に設定を 行う必要がある。

質点系モデルによる首都直下地震における屋外貯蔵タンク本体の浮き上がり変位解析に おいて、代表的なタンクモデルとして表 1.4.1 に示す計 11 基を設定している。

解析断面に載荷させる屋外貯蔵タンク本体の選定においては以下の2項目を考慮しなが ら総合的に判断した。

○ 重量が重く地盤変形が生じた場合の影響が大きいと考えられること

○ 万が一事故が発生した場合の影響が大きいと考えられること

上記により判断した結果、A地区では(公称容量:7.5万KL)を、B地区では(公称容量:10万KL)のタンクを選定した。

屋外貯蔵タンク本体の詳細な諸元を表 1.4.2、表 1.4.3 に示す。

表1.4.1 浮き上がり変位解析で設定したタンクの諸元一覧

タンク	内容物	許可容量	貯蔵内径			
番号		(KL)	(m)			
1	ヘキサン	1000	11.60			
2	軽油	5000	23.24			
3	ナフサ	10000	32.93			
4	原油	30000	53.60			
5	原油	50000	61.00			
6	軽油	75000	70.00			

【A地区】

【B地区】

タンク	内容物	許可容量	貯蔵内径
番号		(KL)	(m)
1	潤滑油	1000	11.63
2	重油	6000	29.07
3	重油材	10000	32.94
4	重油	30000	52.33
5	原油	50000	69.77
6	原油	77000	77.27
7	原油	100000	81.48

表 1.4.2 A地区選定屋外貯蔵タンク本体の諸元一覧(SI単位)

A 地区 T801 タンク

(SI単位)

質点系モデルによる側板下端の浮き	(赤字:入力値)		
[諸元]			-
公称容量	VOL (kl)	75000	(kl)
貯槽内径	D	70000	(mm)
側板高さ	Hmax	21958	(mm)
最下段側板厚	ts	30	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	23.89	(mm)
アニュラ板厚	t _b	18	(mm)
鋼材のヤング率(SPV490Q)	E	2.06E+05	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σy	490	(N/mm2)
最高液高さ	Н	19618	(mm)
液密度	γ	8.80E-07	(kg/mm3)
直径/液高さ比	D/H	3.57	(-)
液高さ/直径比	H/D	0.28	(-)
消防法/有効液重量率 $f_{w0}$ $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 0.8427(\frac{H}{D})^3 - 0.916(\frac{H}{D})^2 + 0.916(\frac{H}{D})^3 + 0.916(\frac{H}{D})^$	$+2.0933(\frac{H}{D})-0.1172$	0.34	(-)
消防法/有効液重量率 $f_{w1}$ $f_{w1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2$	$+2.3017(\frac{H}{D}) - 0.1634$	0.32	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384 \left(\frac{H}{D}\right)^4 - 0.1493 \left(\frac{H}{D}\right)^3 + 0.204 \left(\frac{H}{D}\right)^2 - 0.1493 \left(H$	$-0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
消防法/有効液の重心高さ係数 f _{h1}			
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.1387(\frac{H}{D})^2 + 0.01387(\frac{H}{D})^2 + 0.0000000000000000000000000000000000$	$-0.0207(\frac{H}{D}) + 0.3644$	0.38	(-)
底板に作用する最大静液圧		0 17	(N/mm2)
		0.17	(N/mz)

タンク本体重量(赤字:入力値)

側板重量	Ws0	7.68E+03	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	2.45E+03	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	7.68E+06	(N)

表1.4.3 B地区選定屋外貯蔵タンク本体の諸元一覧(SI単位)

B 地区 NO.111 タンク

(SI単位)

<u>質点系モデルによる側板下端の浮き</u>	(赤字:入力值)		
[諸元]			-
<u>公称容量</u>	VOL (kl)	100000	(kl)
貯槽内径	D	81480	(mm)
側板高さ	Hmax	22570	(mm)
最下段側板厚	ts	36	(mm)
1/3の最高液高さにおける側板厚	t _{1/3}	28	(mm)
アニュラ板厚	t _b	12	(mm)
鋼材のヤング率(HT60)	E	205939.65	(N/mm2)
鋼材のポアソン比	$\nu$	0.3	(-)
降伏応力	σy	450	(N/mm2)
最高液高さ	Н	19063	(mm)
液密度	r	1.00E-06	(kg/mm3)
直径/液高さ比	D/H	4.27	(-)
液高さ/直径比	H/D	0.23	(-)
消防法/有効液重量率 $f_{w0}$ $f_{w0} = -0.1408(\frac{H}{D})^4 + 0.8427(\frac{H}{D})^3 - 1.916(\frac{H}{D})^2 + 0.8427(\frac{H}{D})^3 - 0.916(\frac{H}{D})^2$	$-2.0933(\frac{H}{D}) - 0.1172$	0.28	(-)
消防法/有効液重量率 $f_{w1}$ $f_{W1} = -0.1429(\frac{H}{D})^4 + 0.9653(\frac{H}{D})^3 - 2.2807(\frac{H}{D})^2 - 0.0000000000000000000000000000000000$	$+2.3017(\frac{H}{D}) - 0.1634$	0.26	(-)
消防法/有効液の重心高さ係数 f _{h0}			
$f_{H0} = 0.0384(\frac{H}{D})^4 - 0.1493(\frac{H}{D})^3 + 0.204(\frac{H}{D})^2 -$ 消防法/有効液の重心高さ係数 f _{h1}	$0.0807(\frac{H}{D}) + 0.4096$	0.40	(-)
$f_{H1} = 0.0256(\frac{H}{D})^4 - 0.1387(\frac{H}{D})^3 + 0.216(\frac{H}{D})^2 + 0.016(\frac{H}{D})^2 + 0.016(\frac{H}{D})^2 + 0.006(\frac{H}{D})^2 + $	$0.0207(\frac{H}{D}) + 0.3644$	0.38	(-)
<b>広</b> ඟ I 〜1作用 9 る		0.19	(N/mm2)

#### タンク本体重量(赤字:入力値)

側板重量	Ws0	1.05E+04	(KN)
側板付属品重量	Ws1	0.00E+00	(KN)
浮き屋根重量	Wr0	0.00E+00	(KN)
浮き屋根付属品重量	Wr1	3.68E+03	(KN)
固定屋根重量	Wcr0	0.00E+00	(KN)
固定屋根骨重量	Wcr1	0.00E+00	(KN)
固定屋根付属品重量	Wcr2	0.00E+00	(KN)
タンク本体重量 合計	Wsr	1.05E+07	(N)

#### 1.5 屋外タンク貯蔵所の基礎の選定、及び地盤改良工法

屋外タンク貯蔵所の基礎の施工実績では、盛り土基礎が最も多く、リング基礎を検討に加 えることにより、ほとんどの屋外タンク貯蔵所の基礎を網羅できると考えられる。今回の解 析においてはA地区についてリング基礎、B地区においては盛り土基礎を設定する。

また、本調査で収集したA地区、B地区の資料のうち、地盤改良について得られた結果を 表 1.5.1 に示す。どの地区においても砂杭による地盤改良が主であるかとがわかる。

図 1.5.1 にA地区における地盤改良事例、図 1.5.2~図 1.5.5 に地盤改良後の地盤調査結 果例を示す。図 1.5.6 にB地区における地盤改良事例、図 1.5.7 に地盤改良後の地盤調査 結果例を示す。

収集した資料からは地盤改良後の調査が、杭芯、杭間のどちらで実施されているかまでは 判明しなかったが、この地域では設計段階の改良目標N値が概ね15程度と設定されており、 地盤調査の結果からも確認された。

上記により設定した解析断面図を図 1.5.8、図 1.5.9 に示す。

本調査ではタンク周辺の地質断面図を収集しており、タンク直下に限れば概ね水平成層 であることを確認しているため解析断面においても理想的な水平成層として設定している。 しかし、自然地盤の多くでは、少なからず地層構成に傾きや工学的基盤の起伏が生じる。そ の場合、不等沈下などの問題の恐れがあるので、モデルの設定には面的な地盤調査の結果を 十分に反映させることが必要である。

地区	改良工法	収集できた 資料数
A 地区	サンドコンパクションパイル	7
	バイブロフローテーション	4
	バックドレイン	1
	サンドドレイン	1
	深層混合	1
	改良なし	2
B 地区	サンドコンパクションパイル	4

表 1.5.1 収取した地盤改良工法実績


図 1.5.1 A地区での地盤改良事例



図1.5.2 A地区での改良後の地盤調査位置

調 査 名



### 図 1.5.3 A地区での改良後の地盤結果例①

				副司		查		名													ſ	₩-1	1291	1a.				$\square$	Π
		事業・工事的																											
ボーリング	名					_		調查位置														1	北	約	T				
発注機	网						-		-	_		周子	査期	間									柬	紹	1				
調査業者	名							主任技師				現代	理	場人				コパ	マ 定 者				ボ・グ	ーリン 責任者	ŧ	-			
孔口標	裔	+2.7	(P - 164a	角	180 ⁻	<u>مر</u>	r	方 北 0 地 線 2007 99 盤 線 2	<b>大子0</b> *		使用	試	錐	概	•		YSO	- 1	н		ハンマ 落下用	一灵			Þ	Y	e.		
総掘進	長	20,-	49 <b>a</b>	度	T 0	/	-	百 <u></u> 第 30 ⁻ 第 180 ⁻ 南 180 ⁻ 前 180 ⁻	/ 		機種	я.	ンジ	×		Ξ	菱 X	F -	NE		ポン	プ	Ŷ	. B M	(	ş	P -	4 0	
標標層		栗	柱	土	色	相	相	記	17	孔					檩	щ	人貨車	試	験		····	原	位	置試	験	試	科探!	取蜜	掘
				155		34	54			水市	深	10çı	<u>ت</u> ك	Ø	打							深	試	験	名	深	試	「東京	従
尺高厚	<b>⊈</b>  {	£	状	я		ſ,				(m)		打	学回》	数	園		N		盟 				- お /	よび系	·果		料]	R ~	
				区		忀	稠			测定	度	2	102	:0 }	ģ.							度	ĺ			度	番	5	月
(m) (m) (n	m) (i	m)	図	分	顓	度	度	奪		月日	(m)	10	203	10	量		. 10 .	10	19	10	50	(m)	K		,	) (m)	号;	忠	в
1,96 0	0.83	0.86	X,	調整	暗厌			増さいが主体の現土である。		6/17 0.85		Γ				Γ			Τ			Γ							- III
1				2 32		$\vdash$			1		1.15	4	1	0	311	,	9		$\top$		+	1				1.15	B-1 (	D W	1
2			V	*	4			全般的に均衡な粒子の後期。			2.15	5	7	7	26 30 2	-		-		-		1				2,15	B-2 (	戸御	
- 3			A III	翻	K			含水量多い。 所々に貝類片を混入する。			2.45	5	5	8	16	ŀ	+/			-		-				3,15	8-3 (	ல கா	
4 -1.39	3.15	4.15		2							3,65	3	4	5	12		_L/	_	1				11			3.45 4.15			, least
			X	環土( シルト 泪とり	暗			金根にシルトを含む。 目標度は後期3-4-2			1.45	-		+	39 1	z	Í									4.45	B-4 (	2) 800	
-2.54	1.25	5,10		相砂)	灰暗	-	-	所々に腐植物、雪母、貝殻片を混入			5,45	-	H	1	30 1	٥	K	·		-						5,45	8-5 (	P翻	a la la
6 -3,44	0.83	5.28	N₹	黄粘土	厌			\$6. 			6.15 6.45	5	9	10	25 30 2	8		Þ	-	1		1				5,15 6,45	B-6 (	<u>)</u>	s Int
- 7				纐	暗			上部礎を所々に混入する。 所々に貝段片を混入する。			1,19	3	2	3	8	۶ŀ	- 1		+	┢	+	1				7.15	8-7	DW	n International
8				酚	灰			全体に含水量が多い。 不均質である。			7.43 8.1	1	2	2	50	ŀ	/	$\vdash$		+-						8,15	8-8	D the	6 17
-5,99	2,50	8.70		相	谙	┝		均質な粒子の砂層である。		ĺ	8.48	8	8	9	25	Ľ	$\searrow$	L			-				i i	8.46 9.15			
-6.84	0.90	9.50		砂 シルト	灰暗	┝	-	要単片混入する。 全般にシルトを混入する又、ブロッ	,		3.4			_	30 1	25		P								9,43	B-9	Pitt	
-10	1.19	10.70	Ż	温じり 相妙	厌			クで狙入する。 貝殻、霎時片を混入する。			10.1	5	ŀł	-	30	۵ſ	X	Γ								10.4	B-10 (	P	
11			Ø	砂質	嗜			所々に頁敵,席植物。雪母を混入す エ			111	1	2 16	늿	1 32	۰ŀ		$\uparrow$	+	$\top$		1			<u>iii</u>	11.1	3-11	Юħ	*
-12		ľ		シル	背灰			つ。 ブロック状で砂を含む尺、砂屑をレ ンズがに何かかなか。			12,1	12	1	닄	1	ŀ		+	+	-		-			HH	12.1	B-12	() ()	*
1 3 -10.14	2.20	12.90	di.	ト初初	128 8		$\vdash$	カキ貝数を含む、蜀母県入する。	-	1	12.4	5 4	3	2	an [3		$\downarrow$		_	$\vdash$		-				13.1	B-13	(P)	* m
E14	4.44		Â	砂質	暗		T	所々に現後、腐植物、雲母視入する	5		13.7	S Z	1	2	5	"	/	$\vdash$	_		ŀ				<u>iii</u>	13,4	5		
-12.24	155	15.00		1	111			プロック状に影を含む			14.5	Ī	5 6	II	15	4	1								雦	14.5	B-14	0 m	× 1
-15	1.00		1º				T	房々に貝殻、営母、腐植物を犯入。			15,7		5 -5	ĥ	ż	5	Ì			Γ		]				15,7	9-15 7	⑧黝	* 1
16			<i>4</i>					全球に均衡な状態である。	ļ	ļ	16.1		1	1	3	3	$\left\{ + - \right\}$	1-	+	t	-	1				16,1	5 B-18	(P) P2	st la
17		-	đ.	n	 晴						17.1	15 1	215	1	1	ł	$\frac{1}{2}$	┿		÷		1.	T			17.1	3	Ð	- International
-18				计锁	<b>W</b>			18.00m付近 レンズ状に細砂		1	17.3 18.1	1	3	1	1			-			-	-				17,4	7 5 8-17	PB	
-19			1	粘+	l [°]			を挟む.			18,		1	1	3	4	[		_							18.4	8		- turb
			,ii	-	·	1	ŀ				5	d I	2	-	33	3	1									19.4	5	© .	. Internet
-20	5.49	20,49	2		-	_	-				20.		11	1	1	4	0	Τ		Γ		1				20.	8-18 3	Da	R U
21	ļ						1			1								1	+	$\uparrow$		1							ahuda
22																		+	+	+-		-							- munit
23										-								+-				-							. Indu
24																					_				htti				dende
		-											ŀ				· [												ani na

# 図 1.5.4 A地区での改良後の地盤結果例②

副衙	75	2	

marane.

ж-уу%ъ.

					•	潮野	業	. ]	24	11名													- ,-			_			<u>≫–</u> N	fla,					
4	- 1	リン	7名			-	-	•		調査位置															-			1Ľ	á	蹿					
R	讨	目標	·焛	L	_						·			_	周済	期	問					_						東	1	Ĕ					_
8	査	業?	名		ND.	1.26	teó*			主任技師	10%				現代	; Щ	<b>閉</b> 人						日定	;者		0.477		1	責任	者					
귀	, [	] 標	高	+2	643a	Л	Ē	),	0-	270 50	盤如	新行	0**	(2) 月期	試	) ) ) )	浅			Y	s c	) -	• 1	н		落下用	具			}	~ ~	2			
兼	折	1 進	長	21	,45a	度	Т. D.			向 101 南	ñ	10-P		羅	# >	2	~		=	. 癸	,	K F		NE		* >	7	Y	В	M	\$	P -	- 4	0	
様	1	盟	圈	深	柱	±	色	相	相	記			孔内					檺	i	龟貫	ŧ.	У	獻	験			原	位	置診	影験	試	料採	取	窒内	掘
						雷		21	対				水位	深	10cm	රඋ	D	Į.				N			r		深	試	験	名	深	試	採	試験	進
尺	.   i	高	厚	度	状								(m) /	nir:	打ち			副数					0	"	•		HÊ	18	202	船采	) Inter	料	取		
						K		密	褐				測定	De.	2	1		質入									~				Ĩ	番	方		^и
(m		m)	(m)	(m)	Ø	分	飅	度	度	康			月日	(m)	10	203	00	Ē (≈)	<u>-</u> 9-	10	·			e	-1º	. 67 . e	(m)	L	mm	0000	) (m)	号	法	-	П
and here										1.50mまで暗褐色で 奈細片少量很入。	合体的	кл	0.85					,																	Instan
- under	1				V	粗土	뫸			1.50四付近より時历	5.S.	<u>不規</u>		1.45	-	-	-	30	7	٩											1.45	B-1	Ð	抱皮	and and
a dama t	2				1	ŝ	12			用に現状でシルトと見る ・	和方	406		2,15	3	4	4	1	11		8	1			1	-					2.15	B-2	O	<b>粒</b> 度	duratu
u salaara	з				A	8	骑			6.1.W001-001-1				2.15	4	5	5	1	14	-	f	+			1.						3.19	1-1	Ð	粒度	adam
hunda.	4					~	l			EXTROCES.				3,45	4	5	6	E.		_	┦	-		<u> </u>	+						41	8-4	Ø	約度	6 18
1	5	-1.95	4.10	4.80		題主(	暗	-						4.45 5.15	4	4	4	12			Ļ			<u> </u>	_						44 5.1				daulu
nu (m	-	-2.76	6,80	5.80	Ą	能訪	R			シルトと欽用時後継く3	日間をい	π <b>γ</b> .		5,45			+	30	12	1	~	$\downarrow$									5.4	B-S	Ø	ang	in the
يىلىمى ^ل ەر	6				Y	80±(	聘	t		中国も大変語とり、前の	<b>拉皮</b>	分布统	~	6.45	-			3	ग		•		~	h							8.4	B-8	0	物政	urfare
للسمالي	7	-4.65	1.90	.7.50	$\Lambda$	細砂)	灰	L	·	貝殻少量混入。 7、00m以深 シルト	少量技	ю.		7.15	12	12	3	32 N	33			1	_	þ	$\top$	-	İ				7.1	1 8-7	O	拉皮	- tends
	8				j,	~							1	8,15	2	3	2	1 30	,ŀ	8	~	4	_			+					81	i   B-6	O	饱度	tenda
ملين سا	9				Z.	n	1			シルトと結婚が不規則	混合	.		8.45 9,15	2	3	3	8		-+		+			-	_							6	tötte	u leu
E,					, ×	混	府			含水量中位。				9.45	z	3	z	7	1	Ĩ					_					<u>ni</u> t	9.4 10.1	1			Indi
in a state of the	1				, 	じっ	厌							107.4			-	30	7	1											10.4	78-10 5	P	粒度 ]	and set
1	1	1			1	相				11.00m以来では ルト分が優勢する所有	局翻	家シ		11.1	2	2	2	5	6	+									Ш.		117	8-11 5	Ð	粒度	- dou
Ë1	2	-0.26	510	12.6		1		l		全体的に有機質分をかい	い多	く合む		12.1	1	2	2	\$ M	5	1		+		1		+	1				12.1	5 B-12	D	拉皮	dends
1	3	- 6,10	5,10			助賞	暁	1	Γ	小さな塊状で補助を混	ς.			13.1	5 1	2	1	4		-		+			+						13.	5 B-1	D	拉度	- during
1	4				í.	シル	R		ŀ	会体的に粘土分少量含い 含水量中位。	×.			13.4 14.1	2 2	2	2	8		+	_	$\downarrow$		-	+						13.	5	L.	1.10	
L.	ľ	11.55	1.83	14.4		制	R	╈	┢	会体的にシルト少量会	<b>.</b>			14.4				30	5	^									t		16.	6 15		12/2	death
	°	-12,56	1.00	.15.4		<u></u>	-	+-	╞					15.4	5	ľ	-	10	14		P										16.	15 ⁸⁻¹¹	۶D	植度	and the
and house to	6									Autobiotic L. D. Art				18.1	51	2	1	4 50	1	1	1	1		Γ			1				16.	四 日-11 約-	6 D	独皮	- International Provide Provid
in the second	7			1	1 2000	~	1			不規則に撤却動を薄い ンズ状に迎え	可預決	wv		17.3	ş z	1	2	5 30	5	ł	-			+		-	1				17.	5	P		
1	8					N	晴灰			全体的に有機質分かな	りずく	合む.		17.2 [A.1	5 5 1	2	2	5		+				-							18	15 B-1	10	粒度	
أستنقده	9					1								18.4	5 1	2	2	5	ľ	1				1		_				Щ	18.	5 15			1
and we							1.			19.50m()梁、色)	请厌	edita		19.4				<u>30</u>	б	1											19,	8	P	1	6
dimeter of	20	-17,61	5,00	20.4			_	-	-					20.1 20.4	5 8	1	4	う頭	5	6	Γ						1				- In	35 <b>8-1</b>	۶D	粒虎	n
ليسلب	21																				$\vdash$			+	+										
in it	22																				$\vdash$	_		+-	+-						Н				
علىسته	23					1															-			+			-								
instant.							ŀ														L														

# 図 1.5.5 A地区での改良後の地盤結果例③



図1.5.6 B地区での地盤改良事例



図1.5.7 B地区での改良後の地盤調査・断面例



図 1.5.8 A地区の二次元動的変形解析用断面



図 1.5.9 B地区の二次元動的変形解析用断面

#### 1.6 解析条件の設定

平成26年度に行った南海トラフ地震に対する解析(第2部第3章)と同様に以下のよう な流れで、地盤及び構造物(基礎及び屋外貯蔵タンク本体)の解析を行う。

解析で入力する地震動は、首都直下地震の想定地震とする。

動的変形解析は、3次元非線形有効応力解析を実施することが望ましいが、現状では3 次元非線形有効応力解析の実績はまだ少ないため、より使用実績の多い断面2次元非線形 有効応力解析で実施するものとする。 また、断面の切り方にもよるが、一般的に3次元 解析よりも2次元解析の方が厳しい条件となることから、2次元解析による評価は安全側 の検討になることが言われている。

断面2次元非線形有効応力解析によって、地盤の変形の評価を行うとともに、変形の発 生が想定される場合は、屋外貯蔵タンク本体の沈下量や変形角及び過剰間隙水圧比の経時 変化の評価を行う。

上記の評価を行うために、加振後(動的解析後)の排水解析(過剰間隙水圧の消散に伴う圧密解析)が可能なプログラムが必要であり、これらの条件を満足するプログラムである、『Computer Program for Liquefaction Analysis(以下「LIQCA」という。)』 を使用して解析を行う。断面2次元非線形有効応力解析の流れを図1.6.1に示す。



図1.6.1 断面2次元解析の流れ

以下に『LIQCA』の概要について説明する。

『LIQCA』は、固体力学に基づく土の骨格と間隙水圧の連成問題の支配方程式を解 く数値解析コードである。この連成問題は、固相と液層の二相からなる飽和多孔質体を扱 ったBiotの理論より導かれる。Biotの式は、未知数の取り方や近似の方法により、様々な 定式化がなされているが、『LIQCA』では、固相の変位u、液相の間隙水圧pを未知数 としたu-p定式化を用いている。支配方程式の離散化は、力のつりあい式の空間的な離散 化には有限要素法、連続式の間隙水圧の項の空間的な離散化には直交格子に対する有限差 分を拡張した有限体積法を用いている。また、時間離散化には陰解法であるNewmarkのβ 法を用い、減衰にはRayleigh減衰が用いられている。

定式化には以下のことが仮定されている。

- 1) ひずみは微少ひずみ
- 2) 間隙率、液相(間隙水)の密度、透水係数の空間に対する勾配は十分小さい
- 3) 液相の固相に対する相対加速度は、固相の加速度に比べて十分に小さい
- 4) 土粒子は非圧縮性である
- 5) 温度変化は無視する

なお、『LIQCA』では動解後の排水解析が可能であり、過剰間隙水圧の消散に伴う 圧密解析を行うことができる。

以下に、『LIQCA』中で使用する構成式および各条件について概要を示す。

- (1) 動的解析に用いられる土の構成式
- 1) 0kaら(1999)の砂の繰返し弾塑性モデル
- 2) 修正Ramberg-Osgood(RO)モデル
- 3) 弾性モデル
- 4) 繰返し弾粘塑性モデル(2011年度版より配布開始、2次元のみ適用)
- (2) 要素

取り扱っている要素は、平面要素、ジョイント要素、ビーム要素(タイロッドは曲 げ剛性を非常に小さくすることで表現)、付加質量

(3) 境界条件

変位境界、等変位境界、粘性境界、排水境界

- (底面境界は剛基盤(E+F)および弾性基盤(2E)の設定が可能)
- (4) 入力動条件

sin波、地震波(水平、鉛直の同時入力が可能)、表面力

(5) 計算条件

計算条件の設定について、表1.6.1に示す。

条件項目	条件内容
バージョン	LIQCA2D16(2016 公開版)
ᄮᇔᅮᅩ	液状化層:砂の繰返し弾塑性モデル
地盛モナル	非液状化層:修正 R−O モデル
解析領域	150m の領域
<b>拉田</b> 久卅	底面:粘性境界( <i>q</i> , V _s , Vp)
現介末件	側方:疑似自由地盤(1500m)の同一深度等変位境界とする
	1次元線形地盤の第1次固有振動モードに対して、小さな減衰定数
レーレー減衰	(1.0%)を与えるように設定
	<i>α</i> ₆ =0.0, <i>α</i> ₄ =0.002
Newmark の <i>β</i> 去	β=0.3025, γ=0.6
解析時間間隔	ΔT=0.002(入力地震波の時間間隔 0.02 秒の 1/10)
	初期応力:地盤の自重による初期応力解析
解析ステップ	動的解析:地震応答解析
	圧密排水解析:加振終了後に圧密解析

表1.6.1 計算条件の設定

(6) 境界条件

解析モデルの底面及び左右側面に用いる境界条件は、初期自重解析及び地震応答解 析に対してそれぞれ、表1.6.2に示す通り設定する。

位置	初期自重解析	地震時応答解析
底面境界	XY 固定境界	粘性境界
左右側方境界	鉛直ローラー	疑似自由地盤境界

表1.6.2 境界条件の設定



LIQCA2D マニュアル資料より抜粋

#### 1.7 解析対象地区における物性値の設定

A地区、B地区ともに、物性値については、関係団体から提供された屋外タンク貯蔵所 に係る地盤調査資料等のデータにおいて地区における既往の室内土質試験結果が存在する 場合はその結果を用いるとともに、既往調査資料や各種文献などのデータも参考にしなが ら設定した。主な設定項目を以下に示す。

- ① 地下水位
- ② 地盤改良
- ③ 基礎部分
- ④ 屋外貯蔵タンク本体部分
- ⑤ 繰返し応力振幅比
- ⑥ 解析地盤メッシュ

なお、本検討では平成26年度の検討手法を基本に検討した。さらに、動液圧が地盤の液 状化程度に与える影響を加味するために、新たにタンク本体と内容液を個別に考慮するこ とで、タンク本体と内容液の固有周期の違いなどを反映させるモデルの検討を別途行っ た。参考として巻末に解析結果を示す。

また、本検討で採用しているような断面2次元非線形有効応力解析は、地震動による影響について時刻歴を追って詳細を把握することができる反面、設定する定数なども多く、 高度な技術・専門性が要求される。よって、二次元解析の導入として、近似的であるがよ り実務的な手法である「全応力法の地震応答解析に基づく飽和土の非排水せん断強度の非 排水繰返し載荷による低下を考慮した残留変形解析」のタンクへの適用性を検討すること とした。具体的には龍岡らが提唱、ため池などの安全性検討に採用されている手法を参考 とした。(参考資料1)

# 1.7.1 A地区

A地区において設定した物性値を表1.7.1に示す。

【地下水位】

地下水位は、季節や時間によって変動するものであるが、解析においてはその設定が 重要となってくる。A地区では、ボーリング調査結果の孔内水位よりGL-1.5mに設定した。

【地盤改良】

A地区の地盤は、地表から埋土層〜沖積砂層、粘性土層、その下部に洪積層となって おり、地下水位より深い埋土層と第一砂質土層が液状化対象層と考えられる。当該地に 関しては、液状化対策の地盤改良としてリング基礎直下のサンドコンパクションパイル 工法が施工されている。(図1.5.1参照)。

地盤改良後の地盤情報としては、地盤改良後の地盤調査結果のデータが存在してお り、サンドコンパクションパイル打設前後のN値を比較することができる。

地盤改良前後のN値から推定されるS波速度(推定S波)は、砂質土層で1.2~1.4 倍程度 となった。

【基礎部分】

屋外タンク貯蔵所の基礎部分の鉱滓の物性値についてはコンクリート並みの強度を与 えた。

【屋外貯蔵タンク本体部分】

基礎・地盤の解析において、屋外貯蔵タンク本体部分の物性値については上載圧とし て、表1.4.2からタンク本体重量と底板に作用する最大静液圧から単位面積当たりの重 量を算出し、液面高を考慮したうえで、各メッシュに重量を割り当て、地盤に対して十 分に大きな剛性を与えて設定した。よって、本来ならば円形を三次元で表現するところ を二次元断面にて設定することなど、別途検討している屋外貯蔵タンク本体部分の解析 を主目的にしていないため、簡易的な設定となっていることに注意する必要がある。

【繰返し応力振幅比】

図1.7.1に地盤改良前後の繰返し応力振幅比を示す。縦軸の $\sigma_d/2\sigma_0$ 、は室内土質試験結果における繰返し応力振幅比(R)を表わしており、せん断応力( $\tau$ )を有効拘束 圧( $\sigma_0$ , )で除した(正規化)もの( $R=\tau/\sigma_0$ , )をいう。ここで、せん断応力( $\tau$ ) と、繰返し軸差応力の片振幅( $\sigma_d$ )の関係は、 $\tau = \sigma_d/2$ であるため、 $R=\sigma_d/2\sigma_0$ 、と なる。この図では、N値より道路橋示方書(2012)に従って算出したものを参考に、解析 モデルとしてフィッティングさせた関係が黒線である。繰返し応力振幅比についても、 地盤改良後のN値を用いて地盤改良効果を見込んだ設定を行う。

【解析地盤メッシュ】

図1.5.8に示した断面図から、解析を実施するのに必要となるメッシュ図を作成した。解析地盤メッシュを図1.7.2に示す。

以上のように、解析モデルを設定した。解析モデルの設定に際し、地盤改良の効果を 表わす各パラメータについては、表1.7.2に示すとおりである。

	地層名	平均 N値 _{改良前→後}	湿潤 密度 _A (g/cm3)	間隙比 e	細粒分 含有率 Fc	内部 摩擦角 ¢ (° )	S波速度 V₅(m∕s) 改良前⇒後
	埋土層	5⇒13	1.90	0.95	40	36	110⇒150
沖	第一砂質土層	12⇒21	1.85	0.80	30	36	160⇒190
層	第一粘性土層	3	1.65	1.65	80	_	130
	第二粘性土層	5	1.65	1.15	85	40	150
洪	第二砂質土層	30	1.80	0.85	_	_	250
層	第三粘性土層	14	1.75	1.15	_	40	250
	第三砂質土層	30	1.80	0.85	-	-	250
	第四粘性土層	14	1.75	1.15	_	_	250
	礫質土層	50	2.00	_	_	_	450

表1.7.1 A地区の物性値一覧表(地盤改良後の値を含む)

	-		
1	σ	繰返し応力振幅比	N値より改良による効果分を設定
			Δu(間隙水圧)より効果分を把握
2	G.0	剛性	S波速度より改良による効果分を設定
3	φ	内部摩擦角	変更なし
4	-	鉱滓	コンクリート並みの強度を与えた

表1.7.2 地盤改良の効果を表す各パラメータ



図1.7.1 A地区の地盤改良前後の繰返し応力振幅比

※ここでの繰返し応力振幅比は、ひずみ5%でのものを示している。ひずみレベルが変わることにより曲線は変化することになる。



図1.7.2 A地区解析地盤メッシュ

# 1.7.2 B地区

B地区において設定した物性値を表1.7.3に示す。

【地下水位】

地下水位は、季節や時間によって変動するものであるが、解析においてはその設定が 重要となってくる。B地区では、ボーリング調査結果の孔内水位よりGL-1.5mに設定し た。

【地盤改良】

B地区の地盤は、地表から埋土層〜沖積砂層、粘性土層、その下部に岩盤層となって おり、地下水位より深い埋土層と第一砂質土層が液状化対象層と考えられる。当該地に 関しては、液状化対策の地盤改良として岩盤層までサンドコンパクションパイル工法が 施工されている。(図1.5.6参照)。

改良後の情報としては、地盤改良後のボーリング調査結果のデータが存在しており、 サンドコンパクションパイル打設前後のN値を比較することができる。地盤改良前後のN 値から推定されるS波速度(推定S波)は、粘性土層で1.4倍程度、砂質土層で1.1~1.5倍 程度となった。

【基礎部分】

解析において土構造物として設定する盛土基礎部分については、十分に締固められて 施工されていると考えられることから、施工管理の条件などを確認の上、基礎部分を設 定した。

【屋外貯蔵タンク本体部分】

基礎・地盤の解析において、屋外貯蔵タンク本体部分の物性値については上載圧とし て、表1.4.3からタンク本体重量と底板に作用する最大静液圧から単位面積当たりの重 量を算出し、液面高を考慮したうえで、各メッシュに重量を割り当て、地盤に対して十 分に大きな剛性を与えて設定した。よって、本来ならば円形を三次元で表現するところ を二次元断面にて設定することなど、別途検討している屋外貯蔵タンク本体部分の解析 を主目的にしていないため、簡易的な設定となっていることに注意する必要がある。

【繰返し応力振幅比】

図1.7.3に地盤改良前後の繰返し応力振幅比を示す。縦軸の $\sigma_d/2\sigma_0$ 、は室内土質試験結果における繰返し応力振幅比(R)を表わしており、せん断応力( $\tau$ )を有効拘束 圧( $\sigma_0$ 、)で除した(正規化)もの( $R=\tau/\sigma_0$ 、)をいう。ここで、せん断応力( $\tau$ ) と、繰返し軸差応力の片振幅( $\sigma_d$ )の関係は、 $\tau = \sigma_d/2$ であるため、 $R=\sigma_d/2\sigma_0$ 、と なる。この図では、N値より道路橋示方書(2012)に従って算出したものを参考に、解析 モデルとしてフィッティングさせた関係が黒線である。繰返し応力振幅比についても、 地盤改良後のN値を用いて地盤改良効果を見込んだ設定を行う。

【解析地盤メッシュ】

図1.5.9に示した断面図から、解析を実施するのに必要となるメッシュ図を作成した。解析地盤メッシュを図1.7.4に示す。

以上のように、解析モデルを設定した。解析モデルの設定に際し、地盤改良の効果を 表わす各パラメータについては、表1.7.4に示すとおりである。

		平均	湿潤	間隙比	細粒分	内部	S波速度
	地層名	N 値	密度	е	含有率	摩擦角	V₂₅(m∕s)
		改良前⇒後	Ą(g∕cm3)		Fc	<i>ф</i> ' (° )	改良前⇒後
	埋土層	9⇒10	1.60	1.15	50.7	40	150⇒160
沖	第一砂質土層	3⇒11	1.70	1.20	24.1	37	150⇒230
層	第一粘性土層	1⇒3	1.60	1.70	85.5	-	150⇒220
	岩盤層	50	1.80	_	-	-	470

表1.7.3 B地区の物性値一覧表(地盤改良後の値を含む)

1)	σ	繰返し応力振幅比	N値より改良による効果分を設定
			$\Delta_{\mathbb{U}}(間隙水圧)より効果分を把握$
2	G.0	剛性	S波速度より改良による効果分を設定
3	φ	内部摩擦角	変更なし

表1.7.4 地盤改良の効果を表す各パラメータ



図1.7.3 B地区の地盤改良前後の繰返し応力振幅比

※ここでの繰返し応力振幅比は、ひずみ5%でのものを示している。ひずみレベルが変わることにより曲線は変化することになる。



図1.7.4 B地区解析地盤メッシュ

# 1.8 工学的基盤面の加速度波形

解析対象地区で採用する工学的基盤面における加速度波形を図1.8.1に示す。本検討では、各地点共に最大加速度が大きいEW成分を入力地震動とした。



# 2 基礎・地盤の耐震安全性の解析

# 2.1 静的自重解析

前述の解析条件における初期応力状態の解析結果を図2.1.1、図2.1.2に示す。



図 2.1.1 A地区の鉛直応力分布図(kN/m2)



図 2.1.2 B地区の鉛直応力分布図(kN/m2)

#### 2.2 動的変形解析

前述の解析条件における動的解析による解析結果を図2.2.1~図2.2.8に示す。

A地区では、最終的に屋外貯蔵タンク本体の直下で32cm 沈下し、その周辺の未改良地 盤では10cm程度沈下することが予測された。首都直下地震の想定地震動が大きく、沖積層 も厚いため、屋外貯蔵タンク本体の直下の沈下はやや大きい結果となっている。なお、過 剰間隙水圧は、埋土層、砂層で上昇が激しい結果となっているが、リング基礎直下の地盤 改良効果が表れていることから不等沈下などの傾きが起こるようなことはなく、屋外貯蔵 タンク本体に大きな影響を与えるほどの変形とはなっていない。

そのうえ、本解析は2次元で表現しているため、特にリング基礎直下の3次元的な地盤 改良効果を評価できていない。安全側の検討ではあるが、実際の改良効果はもっと期待で きるものと考えられるため、さらに厳しい条件の場合などには3次元解析によって表現す ることが考えられる。

さらに、タンク直下の支持地盤はタンク脇の同様な自由地盤よりも、通常は液状化しに くくなる。これは、タンクの重量によって地盤内の初期有効上載圧が増加して液状化しに くくなる一方、タンクに作用する水平地震荷重による支持地盤に作用する地震時水平せん 断応力が増加して液状化しやすくなるが、通常は前者の要因が後者の要因よりも大きくな るためである。これは、1)タンクは剛体ではなく入力地震動に対する水平加速度応答倍率 は自由地盤内よりも小さくなることと、2)「タンク直下の支持地盤内での、タンクの全重 量に比例するとした地震時水平せん断応力のタンク全重量による地盤内の初期有効応力に 対する比」は「自由地盤内での、対象深度よりも上層の地盤の全重量に比例するとした地 震時水平せん断応力の上層地盤の有効重量による初期有効上載圧に対する比」よりも小さ くなる、と言う二つの理由のためである。この点では本解析は安全側であり、より詳細な 解析ではこの点を慎重に検討する必要がある。

B地区では、最終的に屋外貯蔵タンク本体の直下で4mm 沈下し、その周辺の未改良地盤 では、7cm 程度沈下することが予測された。工学的基盤層まで地盤改良がおこなわれてい るため、屋外貯蔵タンク本体や基礎に影響を与えるような変形はないことが分かる。

また、F₁法、P₁法及び1次元の有効応力解析を実施した結果、A地区及びB地区にお ける地盤改良前後の間隙水圧の上昇具合や変位を比較する限り、液状化対策の効果は2地 区ともに確認できた。



図 2.2.4 加振終了時の過剰間隙水圧比分布図(実スケールの 10 倍表示)



#### 3 基礎・地盤の耐震安全性の解析のまとめ

#### 3.1 解析手法等

今年度は、首都直下地震が発生した場合における、屋外貯蔵タンク本体の直下の液状化 対策による地盤改良効果、仮に液状化が生じた場合における屋外貯蔵タンク本体の周辺地 盤が屋外貯蔵タンク本体に与える影響を確認することを目的とし、断面2次元非線形有効 応力解析を実施した。本調査では行っていないが、液状化改良における効果を具体的に把 握するためにも、未改良であった場合を想定して解析を行うことも有効な手段である。

本解析により、屋外タンク貯蔵所の地盤の変形の評価を行うとともに、屋外貯蔵タンク 本体の沈下量や変形角、過剰間隙水圧比の経時変化の評価を行った。

評価には、加振後(動的解析後)の排水解析や過剰間隙水圧の消散に伴う圧密解析が可能なプログラムが必要であり、これらの条件を満足するプログラムとして『LIQCA』を採用した。

#### 3.2 解析結果

解析対象としたA地区の過剰間隙水圧消散後の変形を図 3.2.1 に、B地区の過剰間隙水 圧消散後の変形を図 3.2.2 に示す。

A地区では、液状化対策のため地盤改良された屋外貯蔵タンクのリング基礎直下の地盤 で 32cm の沈下が予測されたが、一様沈下であり、屋外貯蔵タンク本体に大きな応力がか かるような不等沈下は確認されなかった。屋外貯蔵タンク本体直下から外れた未改良地盤 については、10cm の沈下となっている。未改良地盤の沈下量と屋外貯蔵タンク本体直下 の改良地盤の沈下量との差は 20cm 程度であり、屋外貯蔵タンク本体や基礎への影響がみ られるような変形は確認されなかった。

B地区では、液状化対策のため地盤改良された屋外貯蔵タンク本体の直下の地盤で4mm の沈下が予測されたが、屋外貯蔵タンク本体に大きな応力がかかるような沈下は確認され なかった。また、屋外貯蔵タンク本体から外れた未改良地盤については、7cmの沈下とな っている。未改良地盤の沈下量と屋外貯蔵タンク本体直下の改良地盤の沈下量との差は小 さく、B地区と同様に屋外貯蔵タンク本体や基礎への影響がみられるような変形は確認さ れなかった。

なお、A地区とB地区における過剰間隙水圧消散後の地表面での鉛直変位量分布を参考 として図 3.2.3、図 3.2.4 に示す。





図 3.2.3 A地区における過剰間隙水圧消散後の地表面の鉛直変位量分布



図 3.2.4 B地区における過剰間隙水圧消散後の地表面の鉛直変位量分布

#### 3.3 まとめ

首都直下地震に対して、屋外貯蔵タンク直下の液状化対策による地盤改良効果と周辺の 未改良地盤が屋外貯蔵タンク本体に与える影響を確認するために解析を実施した。解析の 対象とした地区は、想定地震動が大きく、また、当該地区の中では液状化が発生する可能 性の高いA地区と地震動が大きく慣性力が大きく働くB地区を選定したが、想定地震動が 大きいにもかかわらず、構造物に影響を与えるような地盤の変形は確認されないという解 析結果が得られた。また、液状化対策による地盤改良についてもその効果を考慮していく ことの必要性が確認された。

簡易的な手法であるFRLR法・PRLR法では、明治以前など古い時代に建設された埋立地 や自然沖積地盤など年代効果が大きくなる地盤ほど、非液状化箇所で「液状化する」と判 定されるケースが相当数みられ液状化危険度を過大評価することが指摘されている一方、 若い時代の埋め立て地の液状化をほぼ妥当に判定する(国土交通省、2011P0F1P)。この 簡易法は、基本的には通常の地盤を検討対象としており、大型タンクの支持地盤の液状化 の可能性を検討するためには、タンクの自重とタンクに作用する水平慣性力が支持地盤の 液状化強度に与える影響を適切に考慮する必要がある。また、この簡易法は地盤液状化に 伴う地盤と構造物の変位を直接に予測する方法ではない。なお、過剰間隙水圧の最大値だ けに着目する有効応力法による解析では、締固めの効果を著しく過小評価する可能性があ ることが指摘されている(龍岡ら、2014P1F2P)。よって、本調査では基礎・地盤の安全 性について、平成26年度調査の詳報を踏襲しながら、新たな知見として、より実務的な手 法である「飽和土の非排水せん断強度の非排水繰返し載荷による低下を考慮した残留変形 解析」のタンクへの適用性を参考資料に示した。

また、一般的にはタンク直下の支持地盤はタンク脇の同様の自由地盤よりも液状化しに くくなる。その要因の一つとして、動液圧が地盤の液状化程度に与える影響を加味するた めに、新たにタンク本体と内容液を個別に考慮することで、タンク本体と内容液の固有周 期の違いなどを反映させるモデルの検討を別途行い参考資料に示した。その結果、条件に よってはタンクと内溶液を個別に評価することで、位相などの違いが表現され、地盤に働 く地震力が相殺されて液状化及び変形に対する影響が小さくなる可能性を解析において確 認した。その反面、動液圧を表現するモデル化に際して、基礎形式によってはタンク重量 を上載圧として地盤に適切に伝えられていない課題も挙げられた。この課題を含め、タン ク重量によって生じる地盤内の初期有効上載圧の増加による増加を適切に考慮した液状化 強度を設定することが重要である。その解決方法の一つとして、上載圧を加味したうえで 液状化強度を設定することなどが考えられる。

以上の検討より、東京湾沿岸に屋外タンクを保有する各事業者が、従来の設計レベルを 超えるような大きな地震外力に対しての安全性を検討する際には、検討対象地の既往地盤 調査資料を可能な限り収集し、これまで実施してきた地盤改良効果を見込むことの重要性 を示した。 今後は、本検討結果を参考に、地盤状況の把握したうえで地震動を適切に評価し、簡易 的手法から、二次元解析、高度な三次元解析まで、各解析レベルの特徴を把握したうえ で、その結果を適正な安全確認、対策につなげていくことが必要である。

1.「液状化対策技術検討会議」検討成果:国土交通省液状化対策技術検討会議、2011.3 2² 龍岡ほか:非排水繰り返し載荷による強度低下とひずみ軟化を考慮したニューマーク法による地震時 斜面残留変位推定、地盤工学シンポジウム、2014.5

#### 飽和土の非排水せん断強度の非排水繰返し載荷による低下を考慮した残留変形解析の概説

本検討で用いる「飽和土の非排水せん断強度の非排水繰返し載荷による低下を考慮した 残留変形解析 1 (以下、本手法と称する)」は龍岡らにより提唱され、ため池などの安全性 検討に使用されている手法である。本手法は、地震時の液状化による変形を土の剛性劣化・ 強度劣化を考慮した応力ひずみ関係で簡易的に模擬する手法であり、有効応力動的 FEM 解 析と比較すると以下の特徴があげられる。

- ・本手法は、全応力解析である。
- ・有効応力動的 FEM 解析は、時刻歴を追って解析を実施するため、より詳細に現象を把 握できる反面、高度な専門知識がないと実施が難しく、構成則の違いや解析者の技術 的な力量によって結果が左右される可能性がある。一方で、本手法には構成則がなく、 実際の土質試験結果を直接、解析に反映させることができるため、解析者による結果 の違いが小さく、また有効応力動的 FEM 解析に比べて安全側の評価となる傾向である。

#### ①地震応答解析

せん断剛性率と減衰係数のひずみ依存性を考慮した全応力法による等価線形化法によ る断面 2 次元地震応答解析(全応力解析)を実施し、応答加速度、応答応力の時刻歴を 求める。

### ②液状化による構造劣化・強度低下の算出1(室内土質試験)

非排水繰返し試験を実施した直後に、非排水単調載荷試験を実施、強度低下と両振幅 せん断ひずみの関係(図1)、液状化による構造劣化を考慮した応力ひずみ関係(図2) を求める。

#### ③液状化による構造劣化程度の算出2(断面2次元解析)

液状化による構造劣化程度は、累積損傷度理論の枠組みで評価する。すなわち、①で 算出した応答応力の時刻歴を用い、FEM の各要素における損傷度 D およびひずみ振幅 DA の時刻歴を求め、ひずみ振幅 DA に応じて②で求めた強度低下とそれに対応した劣化 した応力ひずみ関係を設定する。

# ④変形解析

③で求めた強度低下、応力ひずみ関係を用いて準静的な力の釣り合いより変形量(図 3)を求める。なお、例として示した A 地区の計算結果に用いた室内土質試験値は、今 回の検討では収集もされていないため、龍岡らがため池の検討に用いた関係を利用した。 よって、ここで示させるものは解析の一例であることに注意する必要があり本来は室内 土質試験を実施するなどして、適切に物性値を設定する必要がある。また、本結果は地 震による加振時の結果を示しているため、本編で示した過剰間隙水圧消散後の沈下状況 を得るには別途の解析が必要となる。

¹ DUTTINE, Antonie,新保,龍岡,矢崎:非排水繰返し載荷による土の剛性・強度の劣化 を考慮した Newmark 法と準静的 FEM による盛土の残留変形解析,第51回地盤工学研究 発表会(岡山), pp.1039-1040,2016年6月.



図1 強度低下率と DA の関係の例1



図2 構造劣化を考慮した応力ひずみ関係の例1



図3 計算結果例(最大せん断ひずみ分布)

# タンクのモデル化方法の差異について

本検討では動液圧が地盤の液状化程度に与える影響を加味するために、新たにタンク本 体と内容液を個別に考慮することで、固有周期の違いなどを反映させるモデルの検討を行 った。検討概要について以下に示す。

【モデル化】

タンクを以下の2つの方法でモデル化した。

① 平成 26 年度検討と同様に、タンクと内容液を一体として平面要素でモデル化(以 下, 平面モデル, 図1参照)



図1 平面モデルのモデル化の概略図

② 内容液の動液圧の影響を考慮できるように、タンクおよび内容液をそれぞれ梁・質 点モデルでモデル化(以下,梁モデル,図2参照)



図2 梁モデルのモデル化の概略図

【検討ケース】

それぞれのタンクのモデル化の影響を確認するため4ケースの検討を行った。

	衣⊥	検討クース	
ケース名	タンクのモデル化	液状化の考慮	備考
Case1	平面モデル	なし	
Case2	梁モデル	なし	
Case3	平面モデル	あり	H26 検討
Case4	梁モデル	あり	

± 1 +∆⇒+ L -
【検討結果】

検討結果を表2、図3~図6に示す。なお B 地区については本編でも示した通り、 液状化による地盤沈下量が数 mm と極僅かということもあり、ここでは A 地区の結果 のみを示す。

- ▶ 液状化を考慮しない状態でタンクのモデル化の違いを比較(Case1 と Case2) すると、平面モデルの方が、沈下量が数 cm 大きい結果である。これはタンク本 体と内容液の周期が異なるため、タンクが地盤に及ぼす外力が相殺されて小さ くなっているものと考えられる
- 液状化の考慮あり(Case1、Case2)、なし(Case3、Case4)を比較すると液状 化を考慮した方が、大きな沈下量という当然の結果が得られた。

検討ケースのなかで一番大きな沈下量 32cm が想定されたのは、液状化を考慮した平面モデル(Case3)、平成 26 年度検討と同等の条件である。今回新たに検討した梁モデルでの沈下量は 23cm 程度となっている。

タンクの沈下量は、地震動、タンク、内容液の周期特性により異なり、どのような 状況においても梁モデルの方が小さくなるという結論ではないが、動液圧を考慮する ことが解析結果に影響することを示した。

表2 検討ケース

液状化考慮なしのモデル

地点	ないクエデル	デル、海性化程度		タンク沈下量 ^{※1} (m)				
	ダンクモアル	/仪1人11_1至/受	左端	中央	右端	相対沈下 ^{※2}		
A地区	平面モデル (Case1)		0.099	0.093	0.086	0.013		
	はりモデル (Case2)		0.085	0.085	0.085	0.000		

※1 沈下を正、隆起を負とする。

※2 相対沈下は左端と右端の相対沈下量。左端の沈下量が大きい場合を正とする。

液状化考慮のモデル

ᄴᇰ	ないカエデル。 海岸化程度		タンク沈下量 ^{※1} (m)(消散終了時)				
也示	ランクモアル	/仪1人11_1生反	左端	中央	右端	相対沈下 ^{※2}	
平面モデル (Case3) (はりモデルと同等)		改良域以外ほぼ液状化 (はりモデルと同等)	0.319	0.305	0.291	0.028	
Alle	はりモデル (Case4)	改良域以外ほぼ液状化	0.225	0.228	0.230	-0.005	

※1 沈下を正、隆起を負とする。

※2 相対沈下は左端と右端の相対沈下量。左端の沈下量が大きい場合を正とする。



# 二次元解析の追加検討について

- 1 はじめに
  - 本検討では、以下の点に着目した2次元有効応力動的解析(LIQCA)を実施した。
    - ①タンクモデル化(液面揺動を考慮できるモデルと液面揺動を考慮できないモデル)による 影響検討

# 2 タンクモデル化による影響検討

# 2.1 タンクのモデル化方法

本検討では、タンクを以下の2つの方法でモデル化した。

① 一昨年の検討と同様に、タンクと内容液を一体として平面要素でモデル化(以下、平面 モデル、図 2.1 参照)



図 2.1 平面モデルのモデル化の概略図

② 内容液の液面揺動の影響を考慮できるように、タンクおよび内容液をそれぞれ梁・質点 モデルでモデル化(以下、梁モデル、図 2.2参照)



図 2.2 梁モデルのモデル化の概略図

②地盤改良のモデル化(A地区において締固め改良体の中に存在する鋼滓のモデル化の違い) による影響検討

## ※梁モデルについて

本検討では、タンク本体及び内容液を梁・質点系でモデル化を行った。モデル化に当たって、 それぞれの梁の長さはタンク及び内容液の重心までの高さとし、梁自体の重量はゼロとした。梁 の剛性は、タンク及び内容液の1次固有周期と一致するように調整した。なお、梁・質点系の応 答を地盤に伝えるために地盤とタンク底板の接触部に当たる部分には剛はりを配置した。

## 2.2 検討ケース

本検討では,前述したそれぞれのタンクモデルについて地盤の液状化を考慮したケースと考慮 しないケースを実施した。検討ケースは以下のとおりである。

ケース名	タンクのモデル化	液状化の考慮
Case1	平面モデル	なし
Case2	梁モデル	なし
Case3	平面モデル	あり
Case4	梁モデル	あり

表 2.1 検討ケース

※Case1 vs Case2:タンクモデル化の影響検討(液状化考慮なし)
 Case3 vs Case4:タンクモデル化の影響検討(液状化考慮)

## 2.3 タンクモデル化の影響検討(液状化を考慮しないケース(Case1と Case2)の比較)

まずは、タンクモデル化のみの影響を確認するために、地盤の影響化を考慮しないケースについて比較を行った。

(1) タンクの変位,水平加速度(図 2.3,図 2.4)

水平変位に着目すると、A 地区、B 地区ともに梁モデルでは、タンクと内容液がそれぞれ独立して変位しており、内容液の液面揺動を表現できていることがわかる。

また、加振中の鉛直変位は、梁モデルと平面モデルのタンク中央部ではほぼ同等である。

水平加速度は、梁モデルでは、タンク本体の加速度が卓越し、内容液の加速度は小さいことが わかる。なお、梁モデルのタンク本体の加速度と平面モデルの加速度を比較すると梁モデルの方 が短周期の波形となっており、かつ加速度の絶対値は梁モデルの方が大きい。この差が地盤の液 状化を考慮した場合の液状化程度や変形の違いを生じさせる要因の一つであると考えられる。

(2) タンク直下地盤の上載応力の変化(図 2.5,図 2.6)

タンク直下地盤の初期の上載応力は,梁モデルと平面モデルで同等である。一方,入力地震動 最大時および地震動終了時の上載応力を見ると,タンク中央付近では概ね同等であるが,タンク 左右端部付近で差異を生じている。この差が地盤の液状化を考慮した場合の液状化程度や変形の 違いを生じさせる要因の一つであると考えられる。



図 2.3 A地区(鋼滓部コンクリート相当)の変位と加速度(非液状化)



図 2.4 B地区の変位と加速度(非液状化)



図 2.5 A地区(鋼滓部コンクリート相当)のタンク直下地盤要素の上載圧分布(非液状化)



図 2.6 B地区のタンク直下地盤要素の上載圧分布(非液状化)

### 2.4 タンクモデル化の影響検討(液状化を考慮するケース(Case3と Case4)の比較)

水平変位は, A 地区, B 地区ともに非液状化の場合と同様に梁モデルでは, タンクと内容液がそ れぞれ独立して変位しており, 内容液の液面揺動を表現できていることがわかる。

また,加振中の鉛直変位は,梁モデルと平面モデルのタンク中央部では表2.2に示すような差が生じる結果となった。これは,モデル化の違い(タンク本体と内容液の位相差の影響など)による水平加速度の違い(図2.7,図2.8参照)や,上載応力の違い(図2.9,図2.10参照)に起因するものであると考えられる。

地占	タンクモデル	Y)	ツ況下重二〇	m)(地農於「	時)	タンクルト重 ⁽⁽⁽⁾ ())()消散終了時)				
-0.	////	左端	中央	右端	相対沈下 ^{※2}	左端	中央	右端	相対沈下 ^{※2}	
사바고	はりモデル	0.140	0.143	0.146	-0.006	0.225	0.228	0.230	-0.005	
A地区	平面モデル	0.182	0.168	0.155	0.027	0.319	0.305	0.291	0.028	
B地区	はりモデル	0.009	0.009	0.009	0.000	0.010	0.010	0.010	0.000	
	平面モデル	0.004	0.004	0.004	0.000	0.004	0.004	0.004	0.000	

表 2.2 梁モデルと平面モデルの沈下量の比較

※1 沈下を正、隆起を負とする。

※2 相対沈下は左端と右端の相対沈下量。左端の沈下量が大きい場合を正とする。





図 2.8 B地区の変位と加速度(液状化考慮)



図 2.9 A地区(鋼滓部コンクリート相当)のタンク直下地盤要素の上載圧分布(液状化考慮)



図 2.10 B 地区のタンク直下地盤要素の上載圧分布(液状化考慮)

## 2.5 タンクモデル化の影響のまとめ

上述したタンクのモデル化の違いによって、解析結果に以下の差異が生じた。

①タンク(タンク本体及び内容液)の水平加速度

② タンク直下地盤の上載応力

③①および②に起因する地盤の液状化程度の違い、変位の違い

ただし、地盤の条件(基盤層までの層厚や液状化層厚など)によって、梁モデルと平面モデル のどちらのモデルが安全側となるかはまちまちであった(基盤までの層厚および液状化層厚が厚 いA地区では平面モデルの方が沈下量が大,基盤までの層厚や液状化層厚が厚いB地区では 梁モデルの方が沈下量が大)。一般的に、基盤までの層厚や液状化層厚が厚くなると、応答地震動 の周期が長くなり、固有周期がタンクよりも長周期である液面揺動の影響が大きくなると考えら れる。このことを考慮すると、基盤までの層厚、液状化層厚が厚いA地区で、梁モデルと平面モ デルの差異が大きくなった本検討は妥当な結果であると考える。なお、本検討では、表2.3に示 すようにモデル化の違いによるタンク直下地盤の沈下量の違いは、タンクの絶対沈下量で最大 10cm 程度、タンク左右の相対変位量で4cm 程度であった。

表 2.3 梁モデルと平面モデルの沈下量の比較(まとめ)

#### 液状化考慮なしのモデル

李正	タンクエデル	タンク沈下量 ^{※1} (m)(地震終了時)					
也示	<i>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</i>	左端	中央	右端	相対沈下 ^{※2}		
∧ ₩ Iマ	はりモデル	0.085	0.085	0.085	0.000		
A地区	平面モデル	0.099	0.093	0.086	0.013		
모바이다	はりモデル	0.003	0.003	0.003	0.000		
B地区	平面モデル	0.002	0.003	0.003	-0.001		

※1 沈下を正、隆起を負とする。

※2 相対沈下は左端と右端の相対沈下量。左端の沈下量が大きい場合を正とする。

液状化考慮のモデル

まし	<i>ねい /</i> カエデル	タンク沈下量 ^{※1} (m)(消散終了時)				
也只	ダンクモアル	左端	中央	右端	相対沈下 ^{※2}	
~ +바 [고	はりモデル	0.225	0.228	0.230	-0.005	
A地区	平面モデル	0.319	0.305	0.291	0.028	
B地区	はりモデル	0.010	0.010	0.010	0.000	
	平面モデル	0.004	0.004	0.004	0.000	

※1 沈下を正、隆起を負とする。

※2 相対沈下は左端と右端の相対沈下量。左端の沈下量が大きい場合を正とする。

# 3 地盤改良のモデル化による影響検討(A 地区)

A 地区の地盤改良は、図 3.1に示すように地盤改良の一部(タンクの端部付近の地盤)に鋼滓が用いられている。この鋼滓の考慮の仕方が、どの程度タンクの沈下に対する影響をするか検討 を行った。鋼滓の考慮の仕方については以下の2パターン検討した。

①鋼滓が固化していることを想定し、コンクリート相当の物性値を設定したケース

②鋼滓は周りの地盤改良相当であると考え、周辺改良地盤相当の物性値を設定したケース

解析結果の変形図を図 3.2, 図 3.3 に示し, タンク沈下量のまとめを表 3.1 に示す。鋼滓をコン クリート相当と想定したケースの方が周辺地盤相当と想定したケースよりも最大で 12cm 程度沈 下量が小さくなる結果となった。なお, 図 3.2, 図 3.3 にはタンクを平面モデルでモデル化したケ ースを示したが, この傾向は梁モデルでも同様であった。



図 3.1 A 地区の地盤改良状況

	盆さいのエデルル	タン	<b>׳ク沈下量^{※1}(</b>	m)(地震終了	時)	タンク沈下量 ^{※1} (m)(消散終了時)			時)
	動さいのモナルに	左端	中央	右端	相対沈下 ^{※2}	左端	中央	右端	相対沈下 ^{※2}
はりモデル	コンクリート相当	0.140	0.143	0.146	-0.006	0.225	0.228	0.230	-0.005
	改良地盤相当	0.147	0.152	0.157	-0.010	0.235	0.239	0.244	-0.009
꼬중도르비	コンクリート相当	0.182	0.168	0.155	0.027	0.319	0.305	0.291	0.028
平面モデル	改良地盤相当	0.222	0.205	0.189	0.033	0.352	0.336	0.320	0.032

表 3.1 鋼滓のモデル化の違いによるタンク沈下量



過剰間隙水圧消散後

図 3.2 鋼滓:コンクリート相当の変形図



過剰間隙水圧消散後

# 図 3.3 鋼滓:周辺地盤改良相当の変形図

# 第4部 まとめ

# 第4部 まとめ

#### 1 南海トラフ地震に対する耐震安全性の確認

# 1.1 地震波形の作成

1.1.1 地震波形作成手法の検証

東北地方太平洋沖地震における観測地震波形を用い、工学的基盤の地震波形から地表の地 震波形を解析する手法について検証を行った。

この地震応答解析には、地盤の非線形効果を考慮して全応力逐次非線形解析を採用し、プログラムコードには YUSAYUSA-2(注1)を採用した。併せて、地震動応答解析の実績が格段に多い、等価線形解析法による計算も行い、両者による解析と観測地震波形とを比較した。

また、東北地方太平洋沖地震の2日前に起こった前震や昭和 53 年宮城県沖地震の観測地 震波形と比較し、その妥当性を確認した。

その結果、解析手法などに起因するいくつかの課題はあるものの、以下に示す条件が整っていれば、非線形解析を用いた提案手法は概ね妥当であると考えられる。

- ・ 波形を観測した地盤に、著しい非線形挙動は生じていない。
- 再現波を作成する対象地域が非線形挙動を生じる可能性が高い。
- ・ 検討対象で議論する卓越周期の再現性が確認できる。

#### 1.1.2 地震波形の作成

内閣府から公開されている南海トラフ地震の震度分布を参照し、想定震度が7となる特防 区域を抽出した。これらの中から、コンビナート地域の最大計測震度の大きい5地区(A地 区からE地区)を抽出した。解析の幅を持たせる観点から、5地区のうち、計測震度や地盤 構成、液状化対策の状況等を勘案して3地区(A地区、B地区、E地区)を選定し、東北地 方太平洋沖地震の観測地震波形を用いて検証された地震波形作成手法により、内閣府から公 開された工学的基盤における南海トラフ地震の想定地震動を基に地表の地震波形をそれぞれ 作成した。

この地震波形は、震源特性や地盤特性等以外の要因の影響が大きくなかったため、妥当なものであると考えられる。

#### 1.2 屋外貯蔵タンクの耐震安全性の解析

1.2.1 屋外貯蔵タンクの耐震安全性の解析手法の検証(平成 26 年度、平成 27 年度)

屋外貯蔵タンクの耐震安全性の解析手法の妥当性を検証するため、東北地方太平洋沖地震 における屋外タンク貯蔵所の被害を再現できることの確認を行った。

今回の解析においては、入力する地震動は、揺れが大きい地区を選定するなど安全側とな るような評価を実施しつつ、このような地震動に対するタンクの挙動を再現し耐震安全性を 確認するという観点から、通常の耐震設計で用いられている簡易な方法ではなく、詳細な解 析手法を採用し、より精緻に耐震安全性を確認した。タンクで通常用いられている耐震設計 と今回の解析の主な違いについては、表1.2.1のとおりである。

	耐震設計	今回の耐震評価
評価手法	静的耐震評価法の1つである修正震度法を 用いて、構造物の固有周期に応じた加速度を構 造物の中心に作用させる。	動的耐震評価法の1つである時刻歴応答法 を用いて、加速度を1/100 秒程度の刻みで構造 物に作用させる。
耐震評価	以下のような簡易的な方法で評価 〇隅角部 保有水平耐力が必要保有水平耐力以上であ ること。 Q _{dw} =0.15 ν ₋₁ .ν ₋₂ .ν ₋₃ .ν _p ・D _s ・W ₀ 0.15 ν ₋₁ .ν ₋₂ .ν ₋₃ .:設計水平震度 ν _p :塑性設計係数 D _s :構造特性係数 W ₀ :有効液重量 〇側板部 発生応力が許容応力以下であること。 (例) 許容圧縮応力 S'= $\frac{0.4E \cdot t}{2.25D} \times 1.5$ D: 直径、E: ヤング率、t:側板厚	以下のような詳細な方法で評価  〇隅角部  質点系による浮き上がり量に基づくFEM モデルによる評価  解析モデルのイメージ  〇側板部  質点系による浮き上がり量に基づくFEM モデルによる評価  解析モデルのイメージ

表 1.2.1 特定屋外タンク貯蔵所の耐震設計と今回の耐震評価による主な比較

また、今回の解析に用いた解析条件については、表 1.2.2 のとおり、実態に即した形とし ながらも、安全側の評価となるように設定を行った。

項目	解析条件
	特防区域を含む市町村において南海トラフ巨大地震の想定震
入力地震動	度が7の地域を抽出し、その中で特防区域の揺れが大きい地区
	を選定し入力地震動を作成
	容量の違いを考慮した代表的なタンクモデルについて、簡易的
タンクモデル	に浮き上がり量を解析し、浮き上がり量が大きいものを選定し
	詳細解析を実施
応共員 (法古ナ)	100%の液高さで解析
町風重(液高さ)	(液高さを変化させた場合も解析)
山王	石油類の比重の最大値を想定し 0.95 で解析
	(0.85 の場合も解析)
タンクの弾塑性の	非線形ばね特性の第2剛性のK2を0として解析
復元力モデルの	(タンクの底部板の全断面が塑性化した以降のばね特性は 0~
非線形ばね特性	0.3の値と想定されるが、安全側となるよう0とした。)
浮き上がり量の	1 質点系モデルにより解析
解析手法	(一般に3質点系より安全側の評価を与える。)
地下海勘減春	通常 10%であるが、東日本大震災での実態の再現性から、15%
地下起脉波衣	を採用

表 1.2.2 解析に用いた条件

解析の結果、最大の浮き上がり変位は仙台・塩釜地区の旧法タンク(2272 KL)の6.3 cm であり、これ以外のタンクの浮き上がり変位は非常に小さいものであった。

今回解析対象とした全てのタンクについて、関係団体を通じて地震の影響による浮き上が りを確認したが、関係各社から浮き上がりがなかったとの回答が得られており、タンクの浮 き上がりによって生じることが想定される接地(アース線)の破断や雨水浸入防止材の巻き 込みなどにつながるような浮き上がりを示す痕跡も確認されなかった。本解析で示した浮き 上がり程度ではこのような痕跡は残らないと考えられるため、解析結果は現実を説明できて いる。

また、浮き上がり変位で大きい結果が生じたタンク(仙台・塩釜地区の旧法タンク(2272 KL)及び広野地区の新法タンク(50000 KL))について、タンク隅角部の疲労強度及び沈み込み側のタンク側板の座屈強度について有限要素法解析によって評価した。この2基のタンクのそれぞれの隅角部の疲労強度において、疲労損傷度Dは1.0以下という結果が、また、最大浮き上がり変位が生じるときの側板の座屈強度の解析結果において、軸圧縮応力が限界座

屈応力以内という結果が得られ、この解析結果は、東北地方太平洋沖地震における実態と矛 盾しないことを確認できた。

# 1.2.2 屋外貯蔵タンクの耐震安全性の解析(平成26年度)

作成した3つの特防区域の地震波形を用いて解析した結果、旧法タンク及び新法タンクの それぞれで最も大きな浮き上がりが生じたタンクは、以下のとおりであった。

- ・ 旧法タンク: A地区(3万KL) 104.3cm 浮き上がり
- ・ 新法タンク:A地区(3万KL) 77.5cm 浮き上がり

この2基のタンクについて、タンク隅角部の疲労強度及び沈み込み側のタンク側板の座屈 強度について有限要素法解析によって評価した。この2基のタンクのそれぞれの隅角部の疲 労強度において、旧法タンク、新法タンクともに疲労損傷度 D は 1.0 以下という結果にな ったが、旧法タンクについては、板表面上の全ひずみ振幅の一部には約 35%という飯田 の最適疲労曲線式のグラフ範囲外の数値が出ており、適切な評価ができなかった。

また、最大浮き上がり変位が生じるときの側板の座屈強度の解析結果において、軸圧縮応 力が限界座屈応力以内という結果が得られた。

## 1.2.3 屋外貯蔵タンクの耐震安全性の解析(平成27年度)

平成 26 年度は消防法の終局強度耐震設計法に採用された解析モデルの基本的考え方に沿って作成した1質点非線形ばね系モデルを用いて時刻歴地震応答解析を行い、南海トラフ巨大地震発生時におけるタンクの浮き上がり量の検討を実施した。当該解析・検討では、解析を効率的に進めるため、非線形水平ばね特性に実際よりも浮き上がり変位が大きくなるS字 非ループ型の簡便な弾塑性復元力特性(第2剛性を無視した水平抵抗力Qと水平変位 $\Delta$ の線図を持つ動液圧の影響を無視した簡便な非線形水平ばね(バイリニア $Q-\Delta$ 特性ばね))を使用したため、検討対象タンクのうち、A地区の旧法タンク(3万KL)では大きな浮き上がり変位を生じる結果となった。そこで、平成27年度はタンクの浮き上がり量をより適切に評価するため、1質点系モデルの非線形水平ばね特性を見直し、第2剛性以降も考慮し、かつ動液圧の影響も考慮した非線形水平ばね(マルチリニア特性ばね)を採用して解析を行った。

採用した非線形ばねは、定式化による  $Q-\Delta$ 線図の特性(ケース 1 という)と 3D のシェ ルモデルから得られた  $M-\theta$ 線図の特性(ケース 2 という)を有するものであり、それぞれ 以下のような違いがある。

	ケース 1 定式化による特性のばね	ケース 2 3D シェルモデルより 得られる特性のばね
動液圧の影響	考慮	考慮
タンク浮き上がりを繰り返すことにより 2回目以降は浮き上がり易くなる効果	Wozniak ^{※1} モデルを使用繰返しにより 浮き上がり易くなる傾向を考慮	考慮せず
作成されるばね特性	比較的柔らかいばね (保守的な設定)	比較的固いばね
ばね特性作成の簡便さ	作成が容易 (算定式を利用)	時間と手間がかかる (FEM 解析が必要)

# 表1.2.4 採用した非線形ばね特性の比較

※1 参考文献:

Wozniak, R.S. and Mitchell, W.W. "Basis of Seismic Design provisions for Welded Steel Oil Storage Tanks", API Refining Dept. 43rd Midyear Meeting, Toronto, May 1978

これらの特性を活用して、前年度と同条件である南海トラフの想定地震波形 A 地区 EW 方向を入力地震波形とした旧法タンクの浮き上がり解析を実施した結果は以下となった。

- ・ ケース1:最大75.1cmの浮き上がり
- ・ ケース2:最大45.0cmの浮き上がり
- 参考(平成 26 年度):最大 104.3cm の浮き上がり

平成 26 年度は、バイリニア  $Q-\Delta$ 特性ばねを持つ1 質点系モデルで求めたタンク浮き 上がり履歴を使用して解析した旧法タンク隅角部のひずみ振幅の一部に飯田の最適疲労 曲線式の範囲外となる大きなひずみ量があり、同値を使用しての疲労損傷評価の妥当性 が懸念された。平成 27 年度はより精緻に検討したばね(ケース1及びケース 2)の1 質 点系モデルでの浮き上がり履歴を使用して解析を実施したところ、ひずみ振幅は飯田の 最適疲労曲線式の範囲内であり、両ケースともに隅角部の疲労損傷度 D は 1.0 以下とな り、許容値以内であった。

評価ケーマ	最大浮き上がり変位	疲労損傷度		
	(cm)	D		
ケース 1	75. 1	0. 33		
ケース 2	45.0	0. 05		

表 1.2.5 浮き上がり変位と疲労損傷度の比較

また、最大浮き上がり変位が生じるときの側板の座屈強度の解析結果において、軸圧縮応 力が限界座屈応力以内という結果が得られた。

#### 1.3 基礎・地盤の耐震安全性の解析

南海トラフ地震が発生した場合における、屋外貯蔵タンク本体の直下の液状化対策による 地盤改良効果、仮に液状化が生じた場合における屋外貯蔵タンク本体の周辺地盤が屋外貯蔵 タンク本体に与える影響を確認することを目的とし、断面2次元非線形有効応力解析を実施 した。評価には、加振後(動的解析後)の排水解析や過剰間隙水圧の消散に伴う圧密解析が 可能なプログラムが必要であり、これらの条件を満足するプログラムとして『LIQCA』 (注2)を採用した。

解析の幅を持たせる観点から、計測震度や砂層の有無、液状化対策の状況等を勘案して2 つの特防区域を選定(B地区及びE地区)し、解析対象地区とした。

B地区では、液状化対策のため地盤改良された屋外貯蔵タンク本体の直下の地盤で27.7cm の沈下が予測されたが、一様沈下であり、屋外貯蔵タンク本体に大きな応力がかかるような 不等沈下は確認されなかった。また、屋外貯蔵タンク本体直下から外れた未改良地盤につい ては、12.7cmの沈下となっている。未改良地盤の沈下量と屋外貯蔵タンク本体直下の改良地 盤の沈下量との差は 25cm 程度であり、屋外貯蔵タンク本体や基礎への影響がみられるよう な変形は確認されなかった。

E地区では、液状化対策のため地盤改良された屋外貯蔵タンク本体の直下の地盤で 8.7cm の沈下が予測されたが、B地区と同様に一様沈下であり、屋外貯蔵タンク本体に大きな応力 がかかるような不等沈下は確認されなかった。また、屋外貯蔵タンク本体から外れた未改良 地盤については、12.6cmの沈下となっている。未改良地盤の沈下量と屋外貯蔵タンク本体直 下の改良地盤の沈下量との差は5cm程度であり、B地区と同様に屋外貯蔵タンク本体や基礎 への影響がみられるような変形は確認されなかった。

#### 1.4 浮き屋根の耐震安全性の解析

告示第4条の21の3に規定される容量2万キロリットル以上、または第2条の2に規 定する Hc が 2.0m 以上となる一枚板構造で、現行の技術基準を満足するタンクを対象と して、内閣府から示された南海トラフ地震の想定地震動(長周期成分)に対する耐震安全 性を確認するため、本詳細解析の対象とするタンクの浮き屋根を選定して 3 次元 FEM 解 析を行った。

タンク選定の前段階として、三大都市圏の首都圏、中京圏、関西圏近傍の特防区域から 1カ所ずつ区域を選定した後、各区域からタンク容量も考慮して、強度上不利であると考 えられるタンクを2基ずつ選定した。また、その中から線形 FEM 浮き屋根動的応答解析 システム及び消防法告示による算定式を併用して、想定地震動に対する浮き屋根の耐震 強度が最も不利となると考えられるタンクを FEM 解析の対象に選定した。

当該タンクの浮き屋根の詳細 FEM 解析モデルを作成し、想定地震動を入力とした線形 FEM 浮き屋根動的応答解析システムによる時刻歴応答解析の結果のうち、浮き屋根の変位 が最大になる応答変位(揺動変位①:1次モード卓越)、及び浮き屋根ポンツーンの断面力 が最大になる変位(揺動変位②:2次モード卓越)を選定して、これらの揺動変位を強制変 位入力とした。これらを入力した場合にポンツーン断面に発生する円周方向面外、水平面 内曲げモーメント及び円周方向圧縮力を応力解析結果から求めた。これらの結果を用い て消防法告示の応力評価算定から耐震強度を評価したところ、算定応力値は、2 ケースと もに許容応力以下となり、当該浮き屋根のポンツーン断面強度は許容値を満足している ことが確認された。また、許容耐力の算定方法によるポンツーン断面の耐震強度でも評価 したところ、塑性崩壊に対するポンツーン断面強度評価指標値は、2 ケースともに 1.0 以 下となり、当該浮き屋根のポンツーン断面強度は許容値を満足していることが確認され た。

(注1) YUSAYUSAは、東京大学・土木工学科・土質研究室(石原研而、東畑郁生)により 開発された一次元有効応力地震応答解析プログラムである。その後、石原と佐藤工業 (株)・吉田望により新しい応力ひずみ関係がつけ加えられる等の改良が行われ、それを YUSAYUSA-2と呼んでいる。

(注 2) 『LIQCA』 (Computer Program for Liquefaction Analysis) は、固体力学に基づく土の骨格と間隙水圧の連成問題の支配方程式を解く数値解析コードである。詳細はp357 参照。

## 2 首都直下地震に対する耐震安全性の確認

## 2.1 地震波形の作成

内閣府から公開されている首都直下地震による震度分布を参照して、東京湾沿岸の特防区域のうち、大規模な屋外タンク貯蔵所が多数所在し、かつ、想定震度が震度6強となる主な特防区域として、A地区、B地区、C地区の3地区を選定し、南海トラフ地震の地震波形作成手法と同様の手法により、内閣府から公開された工学的基盤における首都直下地震の想定地震動を基に地表の地震波形をそれぞれ作成した。

3地区において短周期成分が卓越しタンクの浮き上がりなどに一番厳しい状況が予想 されるのはB地区であった。また、非線形特性が顕著に表れ地震動の長周期化や大きな地 盤変形が予想されるのはA地区であった。C地区は、どの周期帯をとっても、特徴的な2 地区の中間的な地震応答結果を示した。

# 2.2 屋外貯蔵タンクの耐震安全性の解析

南海トラフ地震の解析と同様の手法(平成27年度)を用い、首都直下地震の発生を想 定し、代表とする3地区のタンク20基の浮き上がり挙動と耐震安全性を解析により検討 した。検討した代表タンクのうち、B地区のB-5タンク(50000 KL)が最も大きな浮き上 がり変位(14.2 cm)を生じる結果となり、当該タンクをFEM詳細解析による隅角部疲 労損傷度評価、側板座屈評価の対象に選定した。選定したB-5タンクの質点系モデルで の浮き上がり履歴を使用して、2次元軸対称ソリッド要素モデルによる静的弾塑性大たわ み解析を実施した。タンク隅角部に発生したひずみ両振幅と飯田の最適疲労曲線式から 算定した疲労寿命、及びその繰り返し回数から求めた疲労損傷度Dは0.00033となり、 許容値以内であった。また、3次元シェル要素モデルによる静的弾性解析を実施した。選 定した B-5タンクが14.2 cm の浮き上がりを発生する時の側板沈み込み側の最大軸圧縮 応力(4.5 N/md)は、軸圧縮限界座屈応力(26.1 N/md)及び象の脚型限界座屈応力(23.2 N/md) 以内であることを確認した。

#### 2.3 基礎・地盤の耐震安全性の解析

首都直下地震が発生した場合における、屋外貯蔵タンク本体の直下の液状化対策によ る地盤改良効果、仮に液状化が生じた場合における屋外貯蔵タンク本体の周辺地盤が屋 外貯蔵タンク本体に与える影響を確認することを目的とし、断面2次元非線形有効応力 解析を実施した。

本解析により、屋外タンク貯蔵所の地盤の変形の評価を行うとともに、屋外貯蔵タンク 本体の沈下量や変形角、過剰間隙水圧比の経時変化の評価を行った。

評価には、加振後(動的解析後)の排水解析や過剰間隙水圧の消散に伴う圧密解析が可 能なプログラムが必要であり、これらの条件を満足するプログラムとして『LIQCA』 を採用した。

解析の幅を持たせる観点から、計測震度や砂層の有無、液状化対策の状況等を勘案して2

つの特防区域を選定(A地区及びB地区)し、解析対象地区とした。

A地区では、液状化対策のため地盤改良された屋外貯蔵タンクのリング基礎直下の地 盤で 32cm の沈下が予測されたが、一様沈下であり、屋外貯蔵タンク本体に大きな応力 がかかるような不等沈下は確認されなかった。屋外貯蔵タンク本体直下から外れた未改 良地盤については、10cm の沈下となっている。未改良地盤の沈下量と屋外貯蔵タンク本 体直下の改良地盤の沈下量との差は 20cm 程度であり、屋外貯蔵タンク本体や基礎への 影響がみられるような変形は確認されなかった。

B地区では、液状化対策のため地盤改良された屋外貯蔵タンク本体の直下の地盤で 4mmの沈下が予測されたが、屋外貯蔵タンク本体に大きな応力がかかるような沈下は確 認されなかった。また、屋外貯蔵タンク本体から外れた未改良地盤については、7cmの 沈下となっている。未改良地盤の沈下量と屋外貯蔵タンク本体直下の改良地盤の沈下量 との差は小さく、B地区と同様に屋外貯蔵タンク本体や基礎への影響がみられるような 変形は確認されなかった。

(注3) 首都直下地震の長周期地震動の地震波形は公開されていないため、浮き屋根の耐震 安全性の解析は行っていない。

## 3 耐震安全性確保策

南海トラフ地震及び首都直下地震に対する屋外タンク貯蔵所の耐震安全性の検討では、 解析のために一定の条件を設定して解析を行っているが、当該検討で前提とした条件を 超えるような場合も否定できないことや、今後、新たな知見を踏まえた地震動の想定も考 えられることから、当該検討結果が今後起こり得る全ての大規模地震に対する屋外貯蔵 タンクの耐震安全性を必ずしも担保するものではないことに留意が必要である。

したがって、新たな知見を踏まえた地震動の想定への対応や個々の屋外タンク貯蔵所 の耐震安全性の確保には、当該検討の手法も参考にして各事業所において検証し、必要な 対策を講ずることが望まれる。

各事業者が自ら地震のリスクを検証して必要な改修を行う上で、一般的に懸念される 事象に対して更なる耐震安全性を確保する上で有効な対策については、以下の内容が考 えられる。

#### 3.1 短周期地震動に対する安全性確保策

## 3.1.1 隅角部の破断への対策

検討結果では、隅角部の破断は起きないが、かなりの疲労損傷が蓄積するという評価 であった。このため、熊本地震のように大きな地震が続けて起こったり、維持管理が不 十分で必要な板厚が確保できていなかったりする場合等も考慮する必要がある。

隅角部の疲労強度はアニュラ板の厚さに依ることから、底板の取替えの際に、より板 厚の厚いアニュラ板に更新することが考えられる。

# 3.1.2 液状化への対策

容量 500KL 以上の屋外タンク貯蔵所については、液状化対策を含む耐震改修が平成 28 年度末までに完了しているところであるが、屋外貯蔵タンク周辺の地盤については、 液状化の可能性も否定できない。以下の対策をとることにより、液状化による被害を軽 減できると考えられる。

## 3.1.2.1 緊急遮断弁の設置

液状化により配管が損傷する過程の解明が十分にされていないものの、液状化に よりタンクと配管の相対的な位置が大きくずれると、配管を通じて危険物が大量に 流出する可能性がある。現行法令では10,000KL以上の屋外タンク貯蔵所には緊急遮 断弁が義務づけられているが、タンク周辺の液状化が予想される場合には、10,000KL 未満のタンクにも緊急遮断弁を設置することが考えられる。その際、停電時にも確実 に弁の閉鎖を行えるよう必要な対策をとることが望ましい。

なお、緊急遮断弁は津波対策にも有効である。

## 3.1.2.2 防油堤の補強

液状化により防油堤が損傷する過程の解明が十分にされていないものの、タンク から危険物が流出した場合、防油堤による被害の拡大防止が重要であることから、液 状化対策技術の開発動向を踏まえた防油堤の液状化対策を行うことが考えられる。

## 3.1.3 配管の耐震対策

配管の支持物について、想定する地震動にも耐えうるよう、基礎部の連結や柱の補強、 ブレースの追加等により耐震補強を図ることが考えられる。

#### 3.2 長周期地震動に対する安全性確保策

一部の特防区域に所在する容量 20,000KL 以上又は Hc が 2m 以上のタンクの浮き屋根に ついては、平成 28 年度までに耐震改修が行われることとなっているが、浮き屋根は風雨 にさらされやすく、過去に維持管理不十分により沈降する事故やデッキ上に危険物が流 出する事故等が数多く起きている。風荷重を受けた場合の耐風強度の評価手法について は検討が必要であるものの、このような状態にある浮き屋根は、スロッシングに対する強 度も落ちていることが推測される。

このことから、耐震改修が行われた浮き屋根についても、維持管理を十分に行うべきである。

## 3.3 その他

# 3.3.1 タンク及び危険物の配置

屋外タンク貯蔵所において貯蔵する危険物について見直す場合は、地震や津波等の 自然災害のリスクを低減するため、危険物の危険性に応じて津波や液状化等の被害を 受けにくいタンクに貯蔵することを検討することが考えられる。

# 3.3.2 地震後の点検

地震の際、安全かつ迅速に被害状況を確認するため、地震動等からスロッシング高さ 等を推測するシステムや監視カメラ等の遠隔から様子を確認できる設備の導入が考え られる。

# 4 おわりに

本検討は、従来の想定を超えるような南海トラフ地震及び首都直下地震の想定地震動 に対し、現行の耐震設計基準によって建設された屋外タンク貯蔵所のうち、最も条件が厳 しいと考えられるタンクを選定し、詳細な解析手法を採用してより精緻に耐震安全性を 確認したものであり、タンク隅角部の破断、側板の座屈、基礎・地盤の大きな不等沈下、 浮き屋根の沈没といった被害は生じないという結果となった。この結果から、これらの地 震に対して現在設置されている屋外タンク貯蔵所について、危険物の大量流出や全面火 災につながる油面の露出といった大きな被害が生じる蓋然性は低いと評価できる。

しかしながら、当該検討で前提とした条件を超えるような場合も否定できないことや、 今後、新たな知見を踏まえた地震動の想定も考えられることから、当該検討結果が今後起 こり得るすべての大規模地震に対する屋外タンク貯蔵所の耐震安全性を必ずしも担保す るものではないことに留意が必要である。

また、本検討に使用した解析手法や提示した耐震安全性確保策について、各事業所が新 たな知見を踏まえた地震動の想定への対応や個々の屋外タンク貯蔵所の耐震安全性の確 保を検討する上で参考とされることを期待する。