屋外貯蔵タンクの津波・水害による流出等防止に

関する調査検討報告書

令和4年3月

屋外貯蔵タンクの津波・水害による流出等防止に関する調査検討会

はじめに

平成23年の東日本大震災において、多数の屋外タンク貯蔵所が津波による被害を受けたことから、危険物の規制に関する規則が改正され、津波が発生した際の応急措置等について、予防規程に定めることが義務づけられた。この対策は主に危険物の流出等を最小限にとどめるためのソフト面の措置であり、流出等そのものを防止することは困難とされた。

近年の技術開発により、屋外貯蔵タンクに津波対策工法(PC工法)を施したもの が新たに建設されるとともに、消防庁の「消防防災科学技術研究推進制度」(競争的 資金)を活用した小規模タンク向けの津波対策工法に関する研究開発が進められるな ど、新たな知見が得られつつある。このことから、屋外貯蔵タンクの津波・水害によ る流出等防止へ寄与する対策工法に関する調査及び検討を行ってきたところである。

今回の調査検討では、競争的資金で研究開発がなされた2つの対策工法について、小 規模なタンクをターゲットとして数値解析、大規模津波載荷実験を行い、津波・水害対 策の有効性を確認し、対策工法のガイドラインをとりまとめることができた。

本報告書をとりまとめることができたのは、御多忙中にもかかわらず積極的に調査検 討に参加され、貴重な御意見を頂いた委員等の御尽力によるところが大であり、厚く御 礼を申し上げる次第である。

この調査検討結果が、危険物施設の安全性向上に寄与することができれば幸いである。

令和4年3月

屋外貯蔵タンクの津波・水害による流出等防止に関する調査検討会

座長 迁 裕 一

第	1	章		調査検討の概要	1
	1	. 1		調査検討の目的	2
	1	. 2	2	調查検討事項	2
	1	. 3	3	調査検討体制	2
	1	. 4	┝	調查検討経過	3
第	2	章	洋	聿波・水害対策に関する調査	4
	2	. 1		過去に実施された調査検討と現在の津波対策・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
		2.1	. 1	危険物施設の津波・浸水対策に関する調査検討会(平成18年度~平成20年	
		度)			5
		2.1	. 2	? 東日本大震災を踏まえた危険物施設の地震・津波対策のあり方に係る検討会	5
		(푀	乙月	成23年度)	5
		2.1	. 3	現在の津波対策	6
	2	. 2	2	近年の水害によるタンクの被害・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
		2.2	. 1	平成27年9月関東・東北豪雨	7
		2.2	. 2	2 平成30年以降の豪雨災害における危険物施設の被害	7
	2	. 3	}	現在の津波対策に関する調査	9
		2.3	. 1	宮城県気仙沼市 PCエ法 津波対策タンク	9
		2.3	. 2	2 宮城県 志津川漁港 コンクリート被覆型タンク 1	2
		2.3	. 3	B 静岡県 清水港ほか ターンバックルを用いた津波対策1	5
	2	. 4	ŀ	タンクの水害対策の調査1	6
	2	. 5	5	既存の津波対策工法の有効性の検討及び問題点の整理2	25
第	3	章	I,	ト規模屋外貯蔵タンクの津波・水害対策工法の検討	27
	3	. 1		対策工法の概要	28
		3.1	. 1		28
		3.1.	. 2	☆ 対策工法 2	29
	3	. 2	2	解析手法の検討	30
	3	. 3	3	解析条件	31
		3.3	. 1	対策工法1 解析条件	31
		3. 3.	. 2	対策工法2 解析条件	86
	3	. 4	ŀ	準備解析	1
	3	. 5	5	解析ケース	13
	3	. 6	5	各ケースのFEM解析結果4	4
	3	. 7	,	対策工法の耐震性への影響の確認6	53
	3	. 8	}	水理模型実験とその目的6	6
	3	. 9)	実験の準備	6
		3.9	. 1	. 実験場所	6
		3.9	. 2	? 模型タンクの設計	6
		3.9	. 3	3 模型タンクの製作	1
		3.9	. 4	1 固定床の設置	1
		3.9	. 5	5 タンクへの対策工法の施工	4
		3.9	. 6	う タンクの設置	4
		3.9	. 7	' 計測機器取付け	6
		3.9	. 8	3 波高計設置	;0
	3	. 1	0	実験結果	32
		3.1	0.	1 浸水実験 8	\$2
		3.1	0.	2 津波実験 8	\$7
	3	. 1	1	3.45kLタンクのFEM解析の実施 9)9

3.11.1 対策工法1のFEM解析	99
3.11.2 対策工法1の津波実験とFEM解析の対比	. 103
3.11.2.1 対策工法1の実験1回目計測値と解析結果の対比	. 105
3.11.2.2 対策工法1の実験2回目計測値と解析結果の対比	. 108
3.11.2.3 対策工法1の実験3回目計測値と解析結果の対比	. 111
3.11.3 対策工法2のFEM解析	. 114
3.11.4 対策工法2の津波実験とFEM解析の対比	. 118
3.11.4.1 対策工法2の実験1回目計測値と解析結果の対比	. 120
3.11.4.2 対策工法2の実験2回目計測値と解析結果の対比	. 126
3.12 実験のまとめ	. 132
3.13 まとめ	. 132
第4章 まとめ	. 133
4. 1 まとめ	. 134
4.2 今後の課題	. 134
参考文献	. 135
実験動画	. 135
別記 小規模屋外貯蔵タンクの津波・水害対策工法に係るガイドライン	. 136
別添1 対策工法1に関する設計・施工要領	. 139
別添2 対策工法2に関する設計・施工要領	. 144
別添2ー参考資料 アイプレートの設計及び製作に関する参考例	. 150
参考資料	. 155
参考資料1-対策工法に関する要素実験及び再現解析(競争的資金での実施項目)	156
参考資料2ー津波実験前の波高検定	. 166
参考資料3-模型タンクへの対策工法の施工	. 170

第1章 調査検討の概要

第1章 調査検討の概要

1.1 調査検討の目的

平成 23 年の東日本大震災において、多数の屋外タンク貯蔵所が津波による被害を受けた ことから、危険物の規制に関する規則が改正され、津波が発生した際の応急措置等につい て、予防規程に定めることが義務づけられた。この対策は主に危険物の流出等を最小限に とどめるための措置であり、流出等の原因そのものを防止する措置ではない。

津波による被害の原因となっているのは、タンク本体の浮き上がりに起因する滑動や転 倒及び漂流物による配管等の損傷といったものがあり、小規模な屋外貯蔵タンクにおける これらのアクシデントを防止するのは震災当時困難とされていた。また、近年では台風や 集中豪雨等に伴う浸水により、同様の被害事例が散見されている。

一方で、近年の技術開発により、屋外貯蔵タンクに津波対策工法(PC工法)を施した ものが新たに建設されるとともに、消防庁の「消防防災科学技術研究推進制度」(以下「競 争的資金」という。)を活用した小規模タンク向けの津波対策工法に関する研究開発が進め られるなど、新たな知見が得られつつある。このことから、屋外貯蔵タンクの津波・水害 による流出等防止へ寄与する対策工法に関する調査及び検討を行うことを目的とする。

1.2 調査検討事項

- (1) これまでと現在の津波・水害対策に関する調査
- (2) 津波・水害対策工法の検討

1.3 調查検討体制

坐 長	辻	俗一	果乐電機大字 上字部 機械上字科 教授
委員	有田	英文	石油化学工業協会
	(細瀬	泰伸	石油化学工業協会)
	岩本	善和	常総地方広域市町村圏事務組合消防本部 守谷消防署長
	村上	治三郎	川崎市消防局 予防部 危険物課長
	(小川	日	川崎市消防局 予防部 危険物課長)
	岸	正憲	一般社団法人 日本化学工業協会
	久保内	」 昌敏	東京工業大学物質理工学院 教授
	佐々木 敦		気仙沼·本吉地域広域行政事務組合消防本部 南三陸消防署長
	サッパシ-	ー・アナワット	東北大学災害科学国際研究所
			災害リスク研究部門津波工学研究分野 准教授
	田島	芳満	東京大学大学院工学系研究科 社会基盤学専攻 教授
	田山	昇	一般社団法人 日本産業機械工業会 タンク部会
	西	晴樹	消防庁消防研究センター 火災災害調査部長
	畑山	健	消防庁消防研究センター 施設等災害研究室長
	松島	<u> </u>	石油連盟 環境安全委員会 設備管理専門委員会
	宮内	孝	危険物保安技術協会 タンク審査部 審査第一課長
事務局	中本	敦也	消防庁危険物保安室長(令和3年度)
	(渡辺	剛英	消防庁危険物保安室長(令和2年度))
	鈴木	知基	消防庁危険物保安室課長補佐
	石井	直也	消防庁危険物保安室パイプライン係長(令和3年度))
	(迫田	知明	消防庁危険物保安室パイプライン係長(令和2年度))
	岸	京介	消防庁危険物保安室総務事務官

1. 4 調查檢討経過

検討の経過は以下のとおりである。

○令和2年度

第1回検討会	令和2年8月5日
第2回検討会	令和2年12月4日
第3回検討会	令和3年2月25日

○令和3年度

- 第1回検討会 令和3年7月26日 第2回検討会 令和3年12月13日 第3回検討会 令和4年2月14日 第4回検討会 令和4年3月7日
- ※ 本報告書で使用する略語は以下のとおり
 - ○消防法(昭和23年法律第186号)・・・法
 - ○危険物の規制に関する政令(昭和34年政令第306号)・・・政令
 - ○危険物の規制に関する規則(昭和34年総理府令第55号)・・・規則
 - ○危険物の規制に関する技術上の基準の細目を定める告示(昭和49年自治省告示第99
 - 号)・・・告示
 - ○屋外タンク貯蔵所のタンク本体・・・タンク
 - ○屋外タンク貯蔵所の基礎・地盤・・・基礎・地盤
 - ○競争的資金・・・総務省消防庁による消防防災科学技術研究推進制度
 - ○小規模屋外貯蔵タンク・・・500kL未満の小規模な屋外貯蔵タンクで、底板を地盤面に ☆して記号される総罟を田笠町ないな
 - 接して設置される縦置き円筒型タンク

第2章 津波・水害対策に関する調査

第2章 津波・水害対策に関する調査

2.1 過去に実施された調査検討と現在の津波対策

2.1.1 危険物施設の津波・浸水対策に関する調査検討会(平成18年度~平成20年度) 屋外タンク貯蔵所の津波被害(タンクの滑動等)を簡便に予測する手法と、この予測 手法を用いるに当たって必要となる、タンクや防油堤に作用する津波波力を算定する方 法(津波対策シミュレーション)が提案¹された。(図2-1)

図2-1 タンク本体に作用する津波波圧分布

2.1.2 東日本大震災を踏まえた危険物施設の地震・津波対策のあり方に係る検討会 (平成23年度)

東日本大震災における危険物施設への地震・津波による被害の取りまとめ(図2-2、 図2-3)及び、対策に関する提言²がなされた。屋外タンク貯蔵所については、津波に よる被害の分析の結果、2.1.1に示した津波対策シミュレーションの妥当性が確認される とともに、津波浸水深が3m以上になる容量1000kL以上の特定屋外貯蔵タンクに危険物 の流出を防止する措置(緊急遮断弁の設置又はタンク元弁を閉止できる体制の構築)が 提案された。

この提案に対し、配管を通じたタンクからの危険物流出を防止する措置について予防 規程に定める必要があることとされ、緊急遮断弁の技術基準化は見送られた。

図2-2 宮城県気仙沼市における屋外タンク貯蔵所の被害

図2-3 危険物施設における被害状況の概要

2.1.3 現在の津波対策

上述の検討会における提言を受け、屋外タンク貯蔵所について、タンクの容量や想定 津波浸水深に応じた対策をとることが法令で義務付けられている(表2-1)。

	技術上の基準	予防規程		
容量	緊急遮断弁	津波対応 一般	配管からの 危険物流出 防止措置	津波被害シミュレーショ ンの実施
1 万 kL 以上	あり※1	あり	_	あり (想定津波浸水深さ 3 m 以上のタンクのみ)
千 kL~1 万 kL	なし	あり	あり(想定津 波浸水深3m 以上のタンク のみ)	あり (想定津波浸水深さ3m 以上のタンクのみ)
500kL~千 kL	なし	あり	なし※2	あり
500kL 未満	なし	あり	なし※2	あり

表2-1 現在の屋外タンク貯蔵所の津波対策(設置義務の有無)

※1 逆止弁の設置等により、設置が不要な場合もある。

※2 津波被害シミュレーションの結果を踏まえ、可能な限り危険物の流出を最小限にとどめ るための具体的な対策を検証し、予防規程に定めることとされた。

2.2 近年の水害によるタンクの被害

2.2.1 平成27年9月関東·東北豪雨

平成 27 年 9 月 9 日から 11 日にかけ、台風 18 号及び台風から変わった低気圧に向けて 南から流れ込む湿った風の影響により、多数の線状降水帯が次々と発生し、関東地方と 東北地方で記録的な大雨となった。旧水海道地区の油槽所では屋外タンク貯蔵所にも被 害が発生した。(図2-4、図2-5)

図 2 - 4 鬼怒川堤防決壊現場 (提供:防災システム研究所 撮影:山村武彦) 図2-5 油槽所の周辺

2.2.2 平成 30 年以降の豪雨災害における危険物施設の被害

近年の豪雨災害では、屋外タンク貯蔵所に被害は発生していないものの、令和2年7 月豪雨の際には、指定数量未満の小規模なタンクについては、浮揚・流出等の被害が発 生している。

(1) 事例1(図2-6、図2-7)
 場所:長崎県
 タンク容量:19000
 内容物:A重油
 流出量:約5000
 概要:川の氾濫によりビニールハウス用の燃料タンクが横転し、流出

図2-6 横転したタンク

図2-7 流出した重油

(2) 事例2(図2-8、図2-9)
 場所:長崎県
 タンク容量:19000×4
 内容物:A重油
 流出量:約3000
 概要:川の氾濫によりタンク配管の一部が破損し、流出

図2-8 ビニールハウス

図2-9 破損した配管

- (3) 事例3 (図2-10)
 - 場所:鹿児島県 タンク容量:20000未満

 - 内容物:重油
 - 流出量:約8000
 - 概要:大雨により土砂崩れが発生し、養鰻場の裏の重油タンクに土砂が流れ込 み、タンク底部から流出(底部溶接部に亀裂が生じたものと推定)

図 2-10 タンクと流れ込んだ土砂

2.3 現在の津波対策に関する調査

各自治体や事業者において自主的に実施されているタンクの津波対策について調査を実施 した。

2.3.1 宮城県気仙沼市 PC工法 津波対策タンク

宮城県気仙沼市に震災復興事業にてリプレースされた PC工法による津波対応型準特 定屋外貯蔵タンクについて調査を実施した。

平成23年当時、気仙沼市朝日町にある油槽所には20基のタンクが設置されていた(図 2-11)。このうち19基の縦型円筒タンクが平成23年3月東北地方太平洋沖地震に伴う 津波により移動,漂流の被害を受けた。100kL横置き円筒タンク1基は移動,漂流しなか ったが、タンクへの漂流物の衝突により凹み、損傷が見られたため、同地区のタンクを まとめてリプレースとなった。

新設されたタンクは990kL×5基の屋外タンク貯蔵所である(図2-12)。タンク高さ約11m、タンク内径は約11mである(図2-13)。津波以外に船舶の衝突を考慮する必要があったため、既往のPCタンクをヒントに設計されている。東北地方太平洋沖地震にて仙台港に設置されていたPCタンクが津波後でも機能が確保されていたことも採用を後押しした。

設計条件として津波浸水深は津波シミュレーションに基づき約7.6m(GLから5.3m) を想定、19ton級の船舶(実重量約400ton)の衝突を考慮している。想定の船舶衝突によ る弾性変形を考慮し、タンク本体とPC壁の間に10mmの緩衝材が設置されている。タン ク本体とPC壁間の結露等の排水のため、排水管及びバルブが設けられている(図2-14)。

タンク本体の津波対策だけでなく、タンクノズル部に対しても対策が講じられている。ノズル部の第一弁は電動の緊急遮断弁とし、予備動力源として無停電電源装置も備えている。また、漂流物からノズルや緊急遮断弁を守るため、防護壁が設けられている(図2-15)基礎構造は地盤改良(中層混合処理)を実施した上で、直接基礎としている。

施設総工費は約23億円。施工期間は約1年(タンクの建設は6カ月)であった。

図2-11 平成23年東北地方太平洋沖地震前の同油槽所

図2-12 気仙沼市 PC工法 津波対応型準特定屋外貯蔵タンク

図 2-13 タンク仕様

図2-14 タンクとPC壁間の排水管とバルブ

図2-15 タンクノズル部の防護壁と緊急遮断弁

2.3.2 宮城県 志津川漁港 コンクリート被覆型タンク

宮城県本吉郡南三陸町の志津川漁港に震災復興事業にてリプレースされたコンクリート被覆型タンクについて調査を実施した。

志津川漁港には船舶給油用の3基の鋼製タンク(50kL重油タンク1基, 30kL軽油タン ク2基)が設置されていた。平成23年3月東北地方太平洋沖地震により3基の既設タン クは津波により移動、漂流の被害を受けた。

新設されたタンクは $30kL \times 3$ 基(A重油2基,軽油1基)のコンクリート被覆型タン クである(図2-16)。

被災後の早期復旧のためコンクリート被覆型タンクを選定した。タンクの幅が2.5mで あるため、工場より、トレーラによる陸送が可能であり、据付は1日で終了できる。実際に工期は3カ月(工場での製作期間,基礎の改造期間)であった。

基礎は既存タンクの杭基礎16本を流用し、その杭上にコンクリートスラブを上載し基 礎としている。

タンクの構造を図2-17に示す。4.5mmの角型鋼製タンクの周囲を厚さ15cmの鉄筋コン クリートで覆う構造となっている。本タンクの寸法はL7.04m×W2.445m×H2.5mであり、 躯体重量は32.1tonである。

早期の復旧のため、津波の波圧に対しては考慮していないが、浮力により浮上、流出 しないための検討と対策を実施した(タンク全高水深での浮力を考慮)。全没しても浮上 しないという結果になっているが、追加の対策としてワイヤーにより固定している(図 2-18)。

タンク付属配管はタンク上部での取り合いとなるため、津波時に配管を損傷しても最小限の漏油となる構造である(図2-19)。

当該コンクリート被覆型タンクは製品として1kLから35kLまでラインナップされており、日本国内では2020年8月時点で256基の実績がある。また、世界では40000基の実績がある。津波対策型として鋼材フレームにて支持した事例も2件ある(図2-20)。

価格はタンク1基当たり約1200万円程度(基礎費用,付帯設備,設計費用,設置工事 費,輸送費用含まず)

図2-16 志津川漁港 コンクリート被覆型タンク

図2-17 コンクリート被覆型タンクの構造

図 2-18 コンクリート被覆型タンクの浮上・流出対策 (赤丸部で据付、緑部でワイヤー固定)

図2-19 コンクリート被覆型タンク屋根のノズル部(配管取合部)

図 2 -20 津波対策型コンクリート被覆型タンクの例 (メーカホームページhttp://convault.jp/より)

2.3.3 静岡県 清水港ほか ターンバックルを用いた津波対策

静岡市清水港の調査の際に、ターンバックルを用いた津波対策が施工されたタンクが 設置されており(図2-21)、所有者である静岡県漁業協同組合連合会にヒアリングを 実施した。平成25年にタンク建替えの際に「危険物施設の津波・浸水対策に関する調査 検討報告書総務省消防庁 平成21年3月」²に掲載の「屋外タンク貯蔵所の周囲におけ る津波被害予防・軽減対策の検討フローの例」に従い、設計施工の発注がなされ、静岡 県内のエンジニアリング会社により建設された(波力に対する詳細強度検討迄は未実施 である)。

同時期に静岡県内の他の3つの漁港に同様な設計思想のタンクが設置された。

図2-21 ターンバックルを用いた津波対策施工タンク

2.4 タンクの水害対策の調査

河川氾濫時において、強い流れによりタンクの滑動、漂流等が発生する場合があると想 定される。一方で、流れはさほど強くない区域であっても、一定の浸水深により浮き上が り等が発生する場合があると想定される。

ここではタンクの立地に応じて水害対策工法を選択と津波対策工法の適用可否について 調査・検討を行った。

(1) 既往の水害対策について

2. 2において、近年の津波・水害による屋外貯蔵タンクの被害を示した。それに対し て水害対策実施の有無を調査したが、津波対策同様(PC工法,コンクリート被覆型,タ ーンバックル等)な水害対策の実施事例は見つけられなかった。

(2) タンクの立地状況に応じた水害対策工法の検討

水害対策工法の検討のため、既往の法基準、各行政のハザードマップ等を調査した。結果として国土交通省にて「洪水浸水想定区域図作成マニュアル(第4版)」³が示され、これを基に各自治体にて洪水時の浸水想定区域を2つのレベルで定義していることがわかった。

○洪水浸水想定区域

河川が想定最大規模降雨によって破堤又は溢水した場合に、その氾濫水により浸水す ることが想定される区域。

また、市町村長による安全確保措置指示等の判断に資するため、洪水浸水想定区域の うち氾濫流が発生するおそれのある区域については、次のような区域を設定することと されている。

○家屋倒壞等氾濫想定区域(氾濫流)

洪水時に家屋の流失・倒壊をもたらすような洪水の<u>氾濫流が発生するおそれがある</u> 範囲*

洪水浸水想定区域図作成マニュアル(第4版)に示される家屋倒壊等氾濫区域における木造建屋の場合の計算例を図2-22に示す。流速が大きいほど水深が小さくても滑動,倒壊することがわかる。

*家屋倒壊等氾濫想定区域は、「避難に資する情報」として提供されているものであり、建築制限等 「規制」を目的としたものではない。

図 2-22 木造家屋の倒壊等限界の試算例

(3) 常総市における災害状況の調査

2.2.1 で平成 27 年 9 月関東・東北豪雨時の常総市の被害状況を報告した。ここでは同地 点の水害による被害状況を改めて調査し、洪水による被害モードの確認を行う。

ア 調査箇所

図2-23に示す4箇所を調査した。

図2-23 災害状況の調査箇所

イ 調査箇所1(鬼怒川堤防決壊箇所)及び調査箇所2(八間堀川越水箇所) 鬼怒川の堤防決壊箇所の調査とヒアリングを行った。現在は図2-24、図2-25のように復旧されているが、決壊状況が示される写真を図2-26に示す。鬼怒川の決壊の過程を以下に示す(同時に生じた八間堀川の越水の過程も示す)。

○鬼怒川の決壊過程

平成27年9月10日6時30分 若宮戸地先(左岸)25.35K付近より越水 平成27年9月10日7時45分 大雨特別警報 平成27年9月10日12時50分 鬼怒川堤防決壊 平成27年9月10日13時20分 新石下21K付近より氾濫 〇八間堀川の越水過程 記録なし

図2-24 鬼怒川堤防決壊箇所の現在の状況1

図2-25 鬼怒川堤防決壊箇所の現在の状況2

図2-26 平成27年9月 関東・東北豪雨(鬼怒川決壊地点)国土地理院HPより

常総市役所、S石油(調査箇所3)が存在する区域の浸水は鬼怒川決壊によるものであ り、八間堀川の越水は八間堀川よりも東側の区域へ浸水をもたらした(市役所の浸水時刻 は9月11日午前2時頃)。

全壊,半壊した家屋はすべて鬼怒川決壊箇所付近の家屋であった(決壊箇所より上流で 溢水を生じているが、家屋倒壊は発生していない)。また、決壊箇所至近となるN給油所

(調査箇所4)でも防火塀の損傷,計量器と基礎の損傷があり、図2-28に示す常総市の 洪水ハザードマップの鬼怒川決壊地点の状況を確認すると、家屋倒壊等氾濫想定区域に存 在し、同区域では大きな流体力が作用した可能性があることがわかった。

対して図2-29に示す常総市の洪水ハザードマップの八間堀川越水地点(図2-27)の 状況を確認すると、薄橙色部の洪水浸水想定区域であり、後述の調査箇所3の結果と合う ことがわかる。

図2-27 八間堀川越水箇所の現在の状況

図2-28 常総市洪水ハザードマップ(鬼怒川版)と決壊地点近傍の図

図2-29 常総市洪水ハザードマップ 八間堀川越水地点近傍の図

ウ 調査箇所3 (S石油油槽所)

タンクに被害を生じたS石油油槽所の調査とヒアリングを行った。現在の状況を図2-30~図2-35に示す。S石油油槽所浸水の過程を以下に示す。

平成 27 年 9 月 10 日 12 時 50 分 鬼怒川堤防決壊

- ・約4時間かけて緩やかに浸水
- ・八間堀川の決壊の影響は小さい
- ・鬼怒川堤防決壊の影響が主原因と考えられる

平成27年9月10日17時頃 油槽所員がひざ下高さの浸水により避難 ヒアリングより当時の状況を考察した。

- ビノ リンクより当時の状況を与奈した。
- 2.5mの浸水に至るまでに相当な時間を要した
- 急激な流れは生じていない(ガスボンベが敷地の外へ流出したが遠方まで流されていない)

ハザードマップにおける家屋倒壊エリアではない浸水想定区域においては、流体力は 考慮しなくても良いといえる。

図2-30 S石油油槽所 設備仕様と被害概要

図 2-31 No.4, No.8 タンク現状 (タンク跡)

図 2-32 No.3 タンク現状 (タンク跡)

図 2-33 No.3 タンク リング基礎

図 2-34 No.3 タンク リング基礎割れ部拡大

図 2-35 No.3 タンク 被害状況

S石油油槽所の調査の結果を下記に示す。

- 被災したタンクは撤去されていた。
- 基礎(リング基礎)部は修繕が施され存置されている。
- 浸水深は 2.5m であった。
- No.4、No.8 タンクは設置時よりアンカーボルトが取り付けられておらず、内容液 量が少なかったため浮上し、横ずれ, 傾きを生じたと考えられる。
- 傾斜した No.8 タンクは浮力により浮揚したが、歩廊橋により屋根を2箇所偏心固定されていたため、片側が浮いた形となってしまったと想定される(他のアンカーボルトで固定していないタンクが大きく移動していないことから、流体力は大きくなかったものと推定できる。)
- No.4、No.8 タンク基礎には被災の痕跡が見られなかった。
- No.3 タンクは、アンカーボルトによりタンクが基礎に固定されているタンクである。当該タンクは、底板と基礎の隙間より底板下に浸水し、タンクに浮力が発生した。タンクが基礎に固定されていたため、基礎ごと浮上したものと推定される。(タンクヤードは全面コンクリート舗装であり、流体力を生じていないことから洗掘等による基礎下への浸水は考えにくい。)(図2-35)
- No.3 タンクについて浮力計算を実施した。(図2-36) アンカーボルトでタンクと基礎が固定されていたため基礎重量を考慮した計算を行ったところ、約1mの浸水でタンクが基礎ごと浮上することがわかった。

【No.3 タンク浮力の計 基礎コンクリート自重 タンク自重 内容液	算】 :約12ton :約10ton :1ton		1mの浸水にて浮上 となる
	:約23ton	<	

図 2-36 No.3 タンク 浮力計算

エ 調査箇所4 N給油所

図2-23に示す鬼怒川の決壊地点至近にN給油所が存在し、被害を受けた(現状は給油所は撤去され存在しない)。決壊箇所とN給油所の位置関係を示す(図2-37)。浸水深は腰丈程度(図2-38)とされている。

決壊時の写真(図2-39)と、被害後の写真を図2-40~2-42に示す。計量器の傾 きやその基礎の割れ,防火塀の損傷より、決壊箇所近傍では大きな流体力が発生したと 考えられる。これらのことより、ハザードマップに示される家屋倒壊等氾濫想定区域で は大きな流体力が発生したと考える。

図2-37 N給油所の配置と鬼怒川決壊箇所との位置関係

図2-38 N給油所での浸水深

図2-39 N給油所 決壊時の状況

図2-40 N給油所 計量器の傾き(赤矢印部)と基礎の割れ(緑矢印部)

図2-41 N給油所 防火塀の損傷1

図2-42 N給油所 防火塀の損傷2

2.5 既存の津波対策工法の有効性の検討及び問題点の整理

既存の津波対策工法の調査結果より表2-2に有効性の検討及び問題点を整理した。 また、対策工法の検討にあたり、下記の事項に配慮することとした。

- 消防活動への影響の無いこと
- 既往の耐震・耐風性能を損なわないこと
- タンク本体の防錆性能に影響を与えないこと
- 設置可能なスペースの有無(省スペースな構造)
- 既設の基礎への荷重を大きく増加させないこと
- 将来のメンテナンス時(側板・底板交換)の妨げにならないこと
- 設置コスト(低コストで効果が得られること)
- 施工性が良いこと

工法	ターンバックルを用いた津波対策	本検討で狙いたい部分	コンクリート被覆型タンク	
写真				
コスト	数十万円/基 程度	数百万円/基 程度	約 1000 万円前後(容量による。基礎費用,付帯設 備,設計費用,設置工事費,輸送費用含まず)	タンク1基 7
			効果 ·	⊐.
効果	 ある程度の浮上・漂流対策が期待できるものの、どの程度の規模の津波に耐えうるかは未知数。 	 地上より 3m~6m 程度の津波に対する浮上・漂流対策が期待できる 面的にタンクを拘束することで、応力集中を抑えることができる 	 構造として重く、漂流しにくい。 配管の取り合いをタンク上部としており、被災時でも内容物の流出がしにくい。 コンクリートで被覆されているため、漂流物にも一定の効果が期待できる。 	 外槽の計。 漂流物 最も刻
耐震性	不明	既存の耐震性への影響を最小限 耐震性を確認(0.3Gベース)	耐震性あり	耐震性あり
メリット	 安価である 対策設備が小規模であり、日常運用に障害を 与えない 	 安価なコストで一定の効果を期待できる 対策設備が小規模であり、日常運用に障害を 与えない 	 製品として購入できるため据え付け工期を短 くできる 	● どの構 また、 い。
デメリット	 どの程度の規模の津波に耐えうるかは未知数。 	● 施工に CFRP 施工の専門知識を要する	 既存タンクに対してはリプレースが前提。 横置き方形のため、縦型円筒タンクに比べて 設置面積が大きい。 タンク容量と形状が製品型式に限定される。 また、最大 35kL とラインナップが限定。 	 既存タ PC外 設置面 上部構 であり

表2-2 既存の津波対策工法の有効性と問題点の比較

第3章 小規模屋外貯蔵タンクの津波・水害対策工法 の検討

第3章 小規模屋外貯蔵タンクの津波対策工法の検討

平成23年の東北地方太平洋沖地震では、津波によりタンクに漂流等の移動被害が発生した。 津波被害を受けたタンクの約90 %が1,000 kL 未満である「小規模タンク」に該当し、これ らの津波被害を予防・軽減するため、津波時の安全対策を講じることは急務となっていたが、 タンクに対する安価で効果的な津波対策は未だ課題として残されていた。

平成 29 年度より競争的資金により、小規模屋外貯蔵タンクで施工することが可能な津波被 害の軽減対策工法 2 案が提案され、それらの対策により一定の効果が期待できることが示さ れた。

本検討では、タンクへの津波対策として、引張強度に優れた炭素繊維シートに接着強度に 優れたCFRP用エポキシ樹脂を含浸させた炭素繊維強化プラスチック(以下、「CFRP」とい う。)を用いた対策工法1及び対策工法2の二つの滑動・漂流防止対策工法について検討を行 う。

3.1 対策工法の概要

3.1.1 対策工法1

既往のアンカーボルトでの固定は"点"でタンクを拘束しているため、応力集中の懸 念がある。対策工法1は、CFRP により"面"でタンクを拘束することによって、応力集 中の軽減を狙ったものである。また、CFRP を隙間なく施工することを想定しており、 CFRP の性状からタンク底板下に浸水しないため、"浮力を発生させない"こともメリッ トとして挙げられる。

CFRP を構成する炭素繊維には方向性があるため、効果的な方向に貼付けが必要である。 図3-1に対策工法1の施工イメージと炭素繊維の貼付け方向例を示す。方向を変えて 2層以上の施工が有効と考えられる。

既存のタンクにアンカーボルトが設置されている場合には、アンカーボルトは撤去する。なお、アンカーボルトを撤去した場合でも CFRP により法令上必要な耐震・耐風性能が確保されていることを事前に確認する必要がある。

本工法は基礎スラブを有するタンクへの施工を前提としている。基礎の高さ方向への CFRP の施工が非常に効果を発揮する。そのため、基礎の高さが十分(200mm 以上)に無 い場合には後述する対策工法2での施工を推奨する。

なお、対策工法1は検証を進めるに従い、既往のタンクの耐震性能に影響を与えるこ とがわかった。これに対して「底板張出部上にスペーサーを設置する」ことで、耐震性 能に影響を与えないことが可能であることがわかっている(図3-2)。

図 3-1 対策工法1 イメージ

図3-2 対策工法1 底板張出部上 スペーサー設置イメージ

3.1.2 対策工法2

対策工法2はワイヤーと防油堤内に設置されたアンカーにてタンクを拘束する工法である(図3-3)。タンク側板へのワイヤー取付けを"点"にて接続すると、波力載荷時に 側板部に応力集中を生じることとなることから、ワイヤーを接続するための接続孔(以下 「アイ」という。)をプレートに溶接で取り付け、当該プレートを周方向の CFRP にてタン ク側板に設置する。

対策工法2は対策工法1に比べ、タンクの拘束が弱いため、タンクの有する耐震性能に 影響を与えにくい(重量の増加とワイヤーの張力はあるが)と考える。

後述の解析では周方向に1周巻き付けた場合として解析、検証を実施している。なお、 CFRPの周方向の終端は200mm以上の重ね貼りが推奨されている。

対策工法2の場合、アンカーを打設するスペースが必要となる。また、ワイヤーは日々 の運用時に作業性を悪くする可能性もある。

本工法でも既存のタンクにアンカーボルトが設置されている場合には、アンカーボルト は撤去することを推奨する。なお、アンカーボルトを撤去した場合でも CFRP により法令 上必要な耐震・耐風性能が確保されていることを事前に確認する必要がある。

3.2 解析手法の検討

対策工法の有効性を検討するため、図3-4により、解析パラメータと手法を確認した。

図3-4 解析による検証の流れ

3.3 解析条件

3.3.1 対策工法1 解析条件

下記の条件により解析を実施した。

- 三次元非線形 FEM 解析
- 20 kL、100kL 及び 500 kL について実施
- 内容液貯液率は比較的頻度の高い 50%液位を中心に、20%, 80%を実施

項目	設定値	備考	
タンク鋼材材質	SS400 を想定		
鋼材降伏応力	235 N/mm^2		
鋼材引張強さ	400 N/mm^2		
CFRP 引張強さ	3,400 N/mm ²		
CFRP-鋼材間接着強度 (面外)	15 N/mm ²	メーカ試験値は 27.4 N/mm ² で あるが、安全側評価として製品 保証値を採用	
CFRP-コンクリート間接着強 度(面外)	1.5 N/mm ²	メーカ試験値は4 N/mm ² である が、安全側評価として製品保証 値を採用	
内液比重	0.8		

表 3-1 解析物性值

- 20 kLの解析モデルを図3-5.1~図3-5.2、表3-2に示した。
- 100kLの解析モデルを図3-6.1~図3-6.2、表3-3に示した。
- 500 kLの解析モデルを図3-7.1~図3-7.2、表3-4に示した。

	材質	板厚	備考
屋根	-	-	剛梁にてモデル化
側板	55400	4 Emm	
底板	55400	4. Onim	

表 3-2 20kL タンク 板厚

図3-5.2 20 kL タンク 対策工法1の解析モデル正面図と底板と基礎拡大図

0.04775

0.2

0.25
	表3-3 1	00kL タンク 板厚	
	材質	板厚	備考
屋根板		4.5mm	
側板	SS400	6mm	
底板		8mm	

図3-6.1 100 kLタンク 対策工法1の解析モデル全体図

図3-6.2 100 kLタンク 対策工法1の解析モデル正面図と底板と基礎拡大図

	材質	板厚	備考
屋根板		4.5mm	
側板	SS400	9mm	
側板下部		10mm	最下段(底板より 2460.5mm)
底板		9mm	

図3-7.1 500 kL タンク 対策工法1の解析モデル全体図

図3-7.2 500 kL タンク 対策工法1の解析モデル正面図と底板と基礎拡大図

● 解析で作用させる津波波力はフルード数 Fr ≥1.3 を満足する津波を対象とし、津波 水位 h_d^{max}を漸増させる解析を実施。津波水位は下式により算出した。

$$h_x^{\max}(\theta) = \alpha \eta_{\max} \sum_{m=0}^{5} p_m \cos m\theta$$
 ここで、 α=1.8 (式 3.2-12)

$$p_0 = 0.680$$

$$p_1 = 0.340$$

$$p_2 = 0.015$$

$$p_3 = -0.035$$

 下式により計算した津波荷重の水圧を各要素に一様分布として載荷する。 hdmax>Ziとなる要素に対して津波荷重を載荷した。タンク周囲に作用する津波波 圧は、図3-8に示すような余弦曲線で考慮した。

Pi= (hdmax−Zi) ×9.80665

- ここで、Pi:要素iに載荷する水圧(kN/m²) Zi:要素iの中心位置における RC スラブからの高さ(m)
- 対策工法1では CFRP でタンク基部を RC 基礎に固定していることから、タンク底板 には浸水がなく鉛直波圧が作用しないものとした(浸水を想定した比較ケースも1 ケース実施)。

図3-8 タンク本体に作用する津波波圧分布

3.3.2 対策工法2 解析条件

下記の条件により解析を実施した。

- 三次元非線形 FEM 解析
- 20 kL、100 kL 及び 500 kL について実施
- 内容液貯液率は比較的頻度の高い 50%液位を中心に、20%、80%を実施

項目	設定値	備考
タンク鋼材材質	SS400 を想定	
鋼材降伏応力	235 N/mm^2	
鋼材引張強さ	400 N/mm^2	
CFRP 引張強さ	3,400 N/mm ²	
CFRP-鋼材間接着強度 (面外)	15 N/mm^2	メーカ保証値を採用
CFRP-コンクリート間接着強度(面外)	1.5 N/mm ²	メーカ試験値は4 N/mm ² であるが安 全側評価として製品保証値を採用
タンク底板ーコンクリート間 摩擦係数	0.3	複合構造標準示方書を参考に設定 消防庁の津波算定式では0.5にて算 出するが、安全側評価として採用
内液比重	0.8	

表3-5 解析物性值

● 20 kLの解析モデルを図3-9.1~図3-9.2示した。

- 100 kLの解析モデルを図 3-10.1~図 3-10.2 に示した。
- 500 kLの解析モデルを図3-11.1~図3-11.2に示した。

● 各タンクの板厚諸元は対策工法1と同じである。

図3-9.1 20 kL タンク 対策工法2の解析モデル全体図

図3-9.2 20 kL タンク 対策工法2の解析モデル上面図とワイヤー支持部拡大図

図3-10.1 100 kLタンク 対策工法2の解析モデル全体図

図3-10.2 100 kL タンク 対策工法2の解析モデル上面図とワイヤー支持部拡大図

図 3-11.1 500 kL タンク 対策工法 2 の解析モデル全体図

図3-11.2 500 kL タンク 対策工法2の解析モデル上面図とワイヤー支持部拡大図

● 解析で作用させる津波波力はフルード数 Fr ≥1.3 を満足する津波を対象とし、津波 水位 h_d^{max} を漸増させる解析を実施。津波水位は下式により算出した。

$$h_x^{\max}(\theta) = \alpha \eta_{\max} \sum_{m=0}^{5} p_m \cos m\theta \qquad \exists \exists \exists 0, n \in \mathbb{N}, \ \alpha = 1.8 \qquad (\exists \exists 3.2-12)$$

$$p_0 = 0.680$$

$$p_1 = 0.340$$

$$p_2 = 0.015$$

$$p_3 = -0.035$$

● 対策工法2ではCFRPでタンク基部を RC 基礎に固定しないことから、タンク底板に 鉛直波圧が作用するものとした。

$$h_{\nu}^{\max}(\theta) = \beta \eta_{\max} \sum_{m=0}^{3} q_{m} \cos m\theta \qquad \exists \exists 0, 0 \leq m = 0.2 \qquad (式 3.2-15)$$

$$q_{0} = 0.720$$

$$q_{1} = 0.308$$

$$q_{2} = 0.014$$

$$q_{3} = -0.042$$

- 下式により計算した津波荷重の水圧を各要素に一様分布として載荷する。 hdmax>Ziとなる要素に対して津波荷重を載荷した。タンク周囲に作用する津波波 圧は、図3-12に示すような余弦曲線で考慮した。
 - $Pi = (hdmax Zi) \times 9.80665$
 - ここで、Pi:要素iに載荷する水圧(kN/m²)
 Zi:要素iの中心位置におけるRCスラブからの高さ(m)

図3-12 タンク本体に作用する津波波圧分布

3.4 準備解析

対策工法の効果を確認する前に、無対策構造の解析を実施した。解析ケースは20kL、50%液位とした。

結果を図3-13に示す。無対策構造では津波水位1.45mでタンクが大きく水平移動する (限界津波水位)ことがわかった。

これに対して平成24年に消防庁で制作した津波被害シミュレーションツールにて同条件の計算を実施すると、タンク前面津波水位は1.4m(津波浸水深×1.8倍、摩擦係数を0.3として算出)となり、同様な結果となった。このことから、以降の検討においては無対策構造の津波限界水位は消防庁津波被害シミュレーションツールにて算出し、比較検討を実施する。

図3-13 無対策構造20kLタンク50%液位の場合の津波水位とタンク水平変位の関係

既往の技術の流用として、図3-14のアンカーボルト案が挙げられる。この対策は小規 模タンクの耐震・耐風対策のために実施されているものである。本検討で選定しなかった 理由は、アンカーボルト近傍での応力集中が懸念されたためである。

FEM解析による解析例を図3-15及び図3-16に示す。結果として、タンク前面での津波 高さ3.45m迄耐えることがわかったが、津波波力によりアンカーボルト周りの隅角部(タン ク側板と底板の溶接部)に応力が集中し、降伏応力を超えていることが分かる。

図 3-14 アンカーボルト施工例

図3-15 津波水位-タンク水平変位関係(20kL・CFRP無し・底板張出部4か所固定)

c) 視点2

図 3-16 アンカーボルト案の解析例 隅角部近傍ミーゼス応力σ_{Mi} (20kL・CFRP無し・底板張出部4か所固定、h_d^{max}=3.45m時、変形:5倍)

3.5 解析ケース

表3-6に示す21ケースの解析を実施した。

対策 工法	タンク 仕様	内容 液位 %	浮力	アンカー ボルト の有無	ワイヤー 本数	ワイヤー 位置	ケース 番号	目的
	20	無	無	_	_	\bigcirc		
		20	7.11	無	_		2.*	
2 対策 工法	2014	50	無	有	_	_	3	アンカーボルトを残置 して施工した場合の検 証(ケース②と対比)
	ZUKL		有	無	_	_	4	CFRP 内に浸水した場 合、基礎側より浸水し た場合の効果確認(ケ ース②と対比)
		80	無	無	_	_	5	
	100kL	50	無	無	_	_	6	
		20	無	無	_	_	$\overline{7}$	
	500kL	50	無	無	_	_	8*	
		80	無	無	_	_	9	
		20	有	無	4本	中	10	
	20kL	50	有	無	4本	中	11)*	
		80	有	無	4本	中	(12)	
	100kL	50	有	無	4本	中	13*	
		20	有	無	4本	中	(14)	
対策 工法 2		50	有	無	4本	中	(15)*	
			有	無	4本	低	16	ワイヤー支持箇所変更 の効果を検証(ケース ⑮と対比)
	500kI		有	無	8本	中	17	ワイヤー本数増の効果 を検証(ケース⑮と対 比)
	OUTL		有	無	4本 (波力載荷方 向 0 度)	中	18	津波載荷方向変更の効 果を検証(ケース⑮と 対比)
			有	無	4本	中	19	アイプレートを側板に 接着した場合の効果と タンクへの影響を検証 (ケース(5)との対比)
		80	有	無	4本	中	20	
対策 工法1 + 対策 工法2	500kL	50	無	無	4本	中	21)	二つの対策工法を施工 した場合の効果検証 (ケース②, ⑮と対 比)

表3-6 解析ケース一覧

*ケース番号に網掛けをしたケースは2017-2019年度の競争的資金にて実施したケースである。

3.6 各ケースの FEM 解析結果

表3-7にFEM 解析結果をまとめた。各ケースの応力状態(限界水位でのMISES 応力)とその 比較を次ページ以降に示す。

対策工法	タンク仕様	内容液位	ケーマモロ	無対策限界津波	対策後
		%	クース番号	水位(津波 ST※)	限界津波水位
	20kL	20	1	0.9m	2. 9m
			2	1.4m	3.1m
		50	3	2.25m(アンカー有,CFRP 無)	2.8m
			4	1.4m	2.7m
对東上法 1		80	5	1.8m	3. 3m
	100kL	50	6	2.1m	4.8m
		20	\overline{O}	2. Om	5.8m
	500kL	50	8	3.4m	6. 3m
		80	9	4.4m	6.7m
		20	10	0. 9m	4. Om
	20kL	50	(1)	1.4m	4. Om
		80	12	_	—
	100kL	50	13	2.1m	4.5m
	500kL	20	14)	2. Om	3.9m
対策工法2		50	15		5.1m
			16		5. Om
			17	3.4m	5.4m
			18		4.6m
			19		5.4m
		80	20	4.4m	6. Om
対策工法1 + 対策工法2	500kL	50	21	3. 4m	8. 4m

表3-7 解析結果一覧

各ケースの FEM 解析結果より下記のことがいえる。

- 20kL タンクに対策工法1を適用した場合における各内容液位(ケース①、②、⑤)での解析比較を行った。(表3-8)
 20kL タンクに対策工法1を適用した場合、いずれの内容液位でもCFRPが大きく剥がれ、水平移動を開始する点が限界津波水位となった。無対策の場合、内容液位の変化が限界津波水位に大きく影響するが、対策工法1を適用した場合は、内容液位の変化が限界津波水位に与える影響が小さくなり、内容液位の増減に関わらず、一定の効果を発揮・維持することがわかった。
 ここで、前章の図3-13と表3-8の50%液位の結果は同一の解析条件より得られたものであるため、対策工法1の有効性が確認できる。
- 500kL タンクに対策工法1を適用した場合における各内容液位(ケース⑦~⑨)での 解析比較を行った。(表3-9)
 500kL タンクに対策工法1を適用した場合、20kL タンクと同様、いずれの内容液位で も CFRP が大きく剥がれ、水平移動を開始する点が限界水位となった。無対策の場 合、内容液位の変化が限界津波水位に大きく影響するが、対策工法1を適用した場合 は、内容液位の変化が限界津波水位に与える影響が小さくなり、内容液位の増減に関 わらず、一定の効果を発揮・維持することがわかった。
- 20kL タンクに対策工法2を適用した場合における各内容液位(ケース⑩、⑪)での解析比較を行った。(表3-10)
 20kL タンクに対策工法2を適用した場合、いずれの内容液位でもタンク高さに達する津波水位まで効果を維持したことから、タンク高さ4.0mを限界津波水位とした。 津波波圧により、アイプレートの裏側からタンク側板の塑性が始まり、ケース⑩ではCFRP施工範囲外にも塑性が進展した。また、ケース⑩ではタンク隅角部でも広範囲に塑性が生じたものの、CFRP は破断せず、いずれの部位おいても鋼材の破断応力に達することはなかった。対策工法2は、20kLのような小型のタンクに対してより効果を発揮することがわかった。ケース⑩及び⑪の解析と500kLの解析ケースより、内容液位の増減に対して対策の効果が大きく変わらないことがわかったため、80%液位時の解析は省略した。
 ここで、前章の図3-13と表3-10の50%液位の結果は同一の解析条件より得られたものであるため、対策工法2の有効性が確認できる。
- 500kL タンクに対策工法2を適用した場合における各内容液位(ケース(4)、(5)、(20)での解析比較を行った。(表3-11)
 500kL タンクに対策工法2を適用した場合、いずれの内容液位でもCFRPの引張強度到達点が限界津波水位となった。無対策の場合、内容液位の変化が限界津波水位に大きく影響するが、対策工法2を適用した場合は、内容液位の変化が限界津波水位に与える影響が小さくなり、内容液位の増減に関わらず、一定の効果を発揮・維持することがわかった。なお、20kL タンクに対策工法2を適用した場合ほどの改善効果はなく、その理由としてはタンク側板部の剛性の有無によるものと考えられる。
- 表3-8~表3-11を総括すると、対策工法1、2ともに津波対策として一定の効果 を発揮し、内容液位が低位にあってもその効果は維持されることがわかった。
- 500kLタンクに対策工法2を適用する場合、寸法によるタンク側板部の剛性の弱さにより、対策工法の効果を発揮できていないことがわかった。その対策として支持箇所及び支持ワイヤー本数を増加させ、支持部の荷重を分散することを考えた。このことから、これまでの支持ワイヤーを4本とした場合(ケース⑮)と支持ワイヤーを8本

とした場合(ケース団)の解析比較を行った。(表3-12) 比較の結果、ケース団の津波限界水位 5.1m に対してケース団の津波限界水位は 5.4m と支持部の荷重は分散され、限界津波水位は向上したものの、対策の効果に大きな改 善は見られないことがわかった。

- 500kL タンクに対策工法2を適用する場合、寸法によるタンク側板部の剛性の弱さにより、対策工法の効果を発揮できていないことがわかった。その対策として支持ワイヤー取付け箇所をタンク形状の剛性が利用できる底板側の低い位置とすることを考えた。支持ワイヤーをタンク高さ1/2高さ位置に設置した場合(ケース⑮)と支持ワイヤーをタンク1/4高さ位置に設置した場合(ケース⑯)の解析比較を行った。(表3-13)
 結果として、ケース⑯ではワイヤー支持力による側板応力が隅角部に伝播することにより、隅角部に応力集中が見られた。また、ケース⑮の限界津波水位5.1mに対して、ケース⑯の限界津波水位は5.08mとなり、対策の効果に改善がないことがわかった。
- 対策工法1は、CFRPの防水性によりタンクに浮力を発生させない点が対策効果の1つである。ただし、適用する基礎がリング基礎であったり、CFRPが損傷し防水性能を失った場合には浮力を生じることとなる。このことから、対策工法1を施工した場合にタンク底面に浸水がない場合(ケース②)とタンク底面に浸水し浮力を生じた場合(ケース④)の解析比較を行った。(表3-14)
 20kL タンク 50%液位の場合において、ケース②の限界津波水位3.1mに対して、ケース④の限界津波水位は2.7mとなり、対策工法1としての効果は若干低減するものの、一定の効果は残ることが確認できた。
- 小規模な危険物タンクは地震・強風時の対策としてアンカーボルトが設置されている場合が多いことから、対策工法1を適用する際に既設のアンカーボルトを撤去した場合(ケース②)と既設のアンカーボルトを残置した場合(ケース③)について解析比較を行った。(表3-15)
 20kL タンク 50%液位の場合において、ケース②の限界津波水位3.1mに対して、ケース③では2.8mでタンク隅角部がCFRP内で降伏したことから、これを限界津波水位とした。地震時における応力集中も考慮すると、対策工法1施工時には既設アンカーボルトを撤去することが望ましい。
- 20kL タンクと 500kL タンクでは構造に大きな差があることがわかった。このため、100kL タンクに対し、対策工法1を適用した場合(ケース⑥)と対策工法2を適用した場合(ケース③)の解析を行った。ケース⑥の結果を表3-16に、ケース③の結果を表3-17に示す。
 結果として、いずれも20kL と 500kL の中間程度の結果となったが、ケース③では解析モデルの寸法によりタンク側板部の剛性の弱さが特徴として現れることがわかった。

● 表3-16、表3-17及び表3-8~表3-11より、タンク容量と限界津波水位の関係を図3-17及び図3-18に整理した。

個々のタンクの寸法(高さ、直径、板厚)にもよるが、今回の解析では、対策工法1 ではタンクが大型化するほど効果が高く、対策工法2ではタンクの高さに対して限界 津波水位が向上しない結果となった。100kLを超えるタンクの場合には対策工法1の 方が効果的といえる。

- これまでの結果より、対策工法1と対策工法2は、タンクの支持方法の違いにより津 波波力を受けた際の変形モードが次のように異なることがわかった。
 - 対策工法1では、タンク下部を基礎に固定するため、タンク上部が変形し、その荷 重を CFRP が支持しきれなくなり、接着部の剥離もしくは CFRP の破断が生じて限界 津波水位が決定された。
 - 対策工法2では、タンク中間部をワイヤーにて支持するため、タンク下部が移動し、その荷重を CFRP が支持しきれなくなり、CFRP の破断もしくはアイプレート破断耐力への到達に至り限界津波水位が決定された。

ここでは二つの対策工法を併用することにより、弱点となるモードを互いに補うこと ができないかと考えた。このことから、500kLタンクに対して対策工法1、対策工法2 のどちらかを施工した場合(ケース⑧、ケース⑮)と両方施工した場合(ケース⑪) の解析比較を行った。(表3-18)

ケース⑧では限界津波水位 6.3m、ケース⑮では限界津波水位 5.1m であったものが、ケース⑪では 8.4m にてタンク隅角部(CFRP内)が降伏したことから、これを限界津波水位とした。両対策工法を併用することにより、それぞれの弱点を補完することができ、効果が大きく改善できることがわかった。対策工法1、2との結果比較を図3-19に示す。

図3-19 対策工法による限界津波水位の比較(500kL)

- 対策工法2について、これまでの解析ケースでは津波波力に対して45°方向に支持ワイヤーがあるものとして解析を行ってきたが、実際の津波波力が支持ワイヤーに対してどの角度で載荷されるかは不明なため、500kLタンクにおいて津波波力に対して左右45°方向に支持ワイヤーがある場合(ケース⑮)と0°方向及び左右90°方向に支持ワイヤーがある場合(ケース⑯)の解析比較を行った。(表3-19)結果として、ケース⑮での限界津波水位5.1mに対し、ケース⑱では4.6mと10%程度効果が減少することが分かった。また、ケース⑮では2本の支持ワイヤーにて支持されているが、ケース⑱では左右90°方向の支持ワイヤーによる支持は行われず、0°方向の支持ワイヤー1本のみで支持することとなることがわかった。
- 対策工法2について、これまでの解析ケースではワイヤーを接続するアイプレートを タンク本体とは接着せず、CFRPのみで巻き付け固定するものとして解析を行ってき た。500kLタンクにおけるこれまでの解析(ケース⑮)とアイプレートをタンク側板 にエポキシ樹脂で接着したうえでCFRPにより巻き付け固定した場合(ケース⑲)の

解析比較を行った。(表3-20)

結果として、ケース¹⁰ではタンク側板全体でタンクを支持するイメージとなり、限界 津波水位はケース¹⁵の 5.1m から 5.4m まで効果が向上することがわかった。しかし、 効果が向上した分、アイプレートとアイの接合部の応力が過大となってしまったた め、本構造を成立させるためにはアイプレートの設計に課題があることがわかった。

表3-8 対策工法1 20kLタンク 液位による対策効果の比較

表3-9 対策工法1 500kL タンク 液位による対策効果の比較

表3-10 対策工法2 20kLタンク 液位による対策効果の比較

表3-11 対策工法2 500kLタンク 液位による対策効果の比較

表3-12 対策工法2 500kL タンク 50%液位 支持ワイヤー本数による対策効果の比較

表3-13 対策工法2 500kL タンク 50%液位 支持ワイヤー位置による対策効果の比較

表3-14 対策工法1 20kL タンク 50%液位 底面浮力の有無による対策効果の比較

表3-15 対策工法1 20kL タンク 50%液位 既設アンカーボルトの有無による対策効果の比較

表3-16 対策工法1のタンク容量による対策効果の比較 50%液位

表3-17 対策工法2のタンク容量による対策効果の比較 50%液位

表3-18 対策工法1,対策工法2,対策工法1+2の対策効果の比較 500kLタンク 50%液位

表3-19 対策工法2 500kLタンクの津波波力載荷方向とワイヤー支持方向の差による対策効果の比較 50%液位

表3-20 対策工法2 500kLタンク ワイヤー支持プレートの取付方法の差による対策効果の比較 50%液位

3.7 対策工法の耐震性への影響の確認

二つの対策工法を適用した際に、消防法令に基づく耐震性能が損なわれていないか20kL タンク、500kLタンクモデルにより確認した。(表3-21、表3-22)

結果として、この容量区分のタンクの設計震度として採用される水平地震力0.3G対して 耐震性を有していることを確認した。

表 3-21 対策工法 1 20kL, 500kL タンク 耐震性能に対する影響の確認

表 3-22 対策工法 2 20kL, 500kL タンク 耐震性能に対する影響の確認

3.8 水理模型実験とその目的

ここまでは対策工法1,2の対策効果について、FEM解析により効果を検証してきた。これに対して水理模型実験を実施し、下記の確認・検証を行った。

【実験の目的】

- ①FEM解析では静的津波荷重を作用させ、効果を検証してきた。動的な津波荷重を載荷し、対策工法の効果(タンクを保持できるのか、CFRPは剥離しないのか)を確認する。
- ②小規模タンクによる水理模型実験結果とFEM解析を対比させ、今まで実施のFEM 解析の妥当性を確認する。

③FEM解析にて見落としている、必要な確認事項はあるか確認する。

④実際に実機相当のタンクに施工し、2つの対策工法の施工が可能か確認する。また、 施工手順をまとめる。

3.9 実験の準備

3.9.1 実験場所

水理模型実験は以下の施設で実施することとした。当該施設は現在のところ世界最大の津波(2.5m)を起こすことのできる稀な設備である。施設のイメージ図を図3-20に示す。

神奈川県横須賀市長瀬3丁目1番1号 国立研究開発法人 海上・港湾・航空技術研究所 港湾空港技術研究所 大規模波動地盤総合水路

水路仕様:長さ184m,幅3.5m,深さ12m

図3-20 大規模波動地盤総合水路(国立研究開発法人 港湾空港技術研究所 ホームページより引用)

3.9.2 模型タンクの設計

実験を実施する水路の幅を基準に模型タンクの仕様を決定した。既往の論文等では水 路内の実験モデルと水路幅の比が4以下となると水路壁面の影響が津波力に生じ、津波 力が過大に評価される⁵とされているが、今回は津波力が過大に評価されることは、タン クに対して安全側評価となること、タンクをできるだけ大きなものとし、CFRPのス ケール効果が無いようにし、また、実機さながらにCFRP施工を実施し、施工が可能 かどうか、施工の問題点を抽出できるものとした。

タンクの仕様を表3-23に示す。また、各工法のタンク製作図を図3-21~図3-23 に、タンク基礎図を図3-24に示す。

箇所	仕様	備考
タンク内径	1400mm	水路幅 B=3.5m, タンク内径 d=1.4 のため B/d=2.5 となり、津波力は過大となるが、安 全側評価となるため、本値を選定。
タンク高さ	2240mm	タンク高さと内径の比をこのサイズでは標 準的な1.6とした
タンク容量	3.45kL	
側板板厚	4.5mm	溶接施工と材料入手の容易さ、実機タンク の一般的仕様として 4.5mm を選定
底板板厚	4.5mm	溶接施工と材料入手の容易さ、実機タンク の一般的仕様として 4.5mm を選定
底板外径	1509mm	底板の張り出しは一般的な 50mm とした
基礎外径	2000mm	
基礎高さ	300mm	CFRP施工高さ 200mm が確保できるよう 設定
基礎コーナー部 面取り	30mm	R30 以上を施工方法として推奨するため

表3-23 タンクと基礎の仕様

図 3-22 対策工法 2 向けタンク製作図

図3-23 対策工法2向けアイプレート製作図

基礎重量:約2.3ton

外周端面に90°毎に外部接続のための金物を設ける

スラブ上面に4箇所吊り金具用インサートボルトを設ける

図3-24 実験用タンク基礎図

3.9.3 模型タンクの製作

タンクと基礎を製作し、実験施設に搬入した。図3-25にタンク側板の板曲げ状況、図 3-26に搬入状況を示す。

図3-25 タンク側板の板曲げ

図 3-26 タンク搬入状況

3.9.4 固定床の設置

大規模波動地盤総合水路に陸地となり、タンクを設置するための固定床を設置した。固定床の配置と設置状況を図3-27~図3-29に示す。

図 3-29 設置した固定床

3.9.5 タンクへの対策工法の施工

製作した模型タンク2基に対策工法1、2をそれぞれ施工した。施工の状況は参 考資料-3に示す。

3.9.6 タンクの設置

水路内の固定床上に対策工法1、2を施工したタンクをそれぞれ設置した。タン クの設置状況を図3-30に示す。

(2) 対策工法1_基礎の固定

(1) 対策工法1_全体

(3) 対策工法2_前面側

(4) 対策工法2_背面側

図 3-30 タンク設置状況

3.9.7 計測機器取付け

タンクと津波の挙動を把握するため、また、実験結果と解析結果を対比できるよう、実 験設備側に設置可能な計測機器をできる限り設置した。表3-24に計測機器の取付けの 目的と設置方法を示す。図3-31に示すように計測機器を取り付けた。 図3-32及び図3-33に計測機器の取付け位置と機器番号を示す。

計測機器種類		対策工法	設置目的と設置方法		
	PG1	1、2 共通	タンク側最下部での波圧の受圧状況を確認するために設置。 スラブの上に取り付けた。受圧面はスラブ表面から飛び出 ている。		
		対策工法1	タンク側板部での波圧の受圧状況を確認するために設置。 タンクの壁面に取り付けた。PG2 と PG3 は CFRP の表面に貼 り付けたので、受圧面が CFRP の表面から飛び出ている。 PG4 と PG5 は受圧面がタンク表面と揃うように設置した。		
圧力計	PG2~PG5	対策工法 2	タンク側板部での波圧の受圧状況を確認するために設置。 タンクの壁面に取り付けた。PG2 と PG3 は受圧面がタンク表 面と揃うように設置した。PG4 と PG5 はタンク表面および CFRP の表面に貼り付けたので、受圧面がタンクや CFRP の表 面から飛び出ている。		
	$PG6 \sim PG8$	対策工法1	スラブの底面に作用する揚圧力を測定する代わりに、固定 床の平板の表面に圧力計を埋め込んだ。		
	100 100	対策工法2	タンクの底面に作用する揚圧力を測定する代わりに、スラ ブ天端の表面に圧力計を埋め込んだ。		
ひずみゲージ		1、2 共通	津波時のタンク側板, CFRP部の挙動を把握し、別途実施のFEM解析と対比できるよう、ひずみを測定する。 防水型ひずみゲージをタンクの表面と裏面に貼り付けた。 CFRPの表面は凹凸が大きいので、接着剤で表面を極力平ら にした後にひずみゲージを接着した。		
容量式波	高計	1、2 共通	載荷した津波の状態を把握するために設置。 タンクの上端に長さが2mのセンサーを取り付けた。取付 け位置は90度(正面)、270度(背面)、180度(側面)の 箇所である。取付け位置の構造などにより、取付け高さは 若干異なる。		
ポテンシ (鉛直変	´ョメータ 〔位〕	1、2 共通	 津波受圧時のタンクの挙動(鉛直変位)を得るために設置。 水路壁上の台車にポテンショメータを設置し、ポテンショメータのワイヤをタンク上端の中心に取り付けた。 		
変位計 (水平変位)		1、2 共通	 津波受圧時のタンクの挙動(水平変位)を得るために設置。 接触式変位計をタンク上端付近の正面(90度)に設置した。設置高さはタンクの上端から約0.2 m下(タンク下端から約2.04 m上)である。水路壁間に突っ張り棒として単管パイプを取り付け、変位計は単管パイプから伸ばした取付け棒に取り付けた。 		
加速度計		1、2 共通	変位計と共に2種類の加速度計を設置し、変位計と共にタ ンクの挙動を把握する。加速度計の定格容量を2種類用意 し、一方が測定できない場合に他方で補完できるようにし た(実際には5G以上の加速度を計測。これは校正範囲内の 加速度ではないため、得られた加速度値は参考値となる)。 タンクの天端部分の0度側に定格容量が5Gを、180度側に 定格容量が1Gの加速度計を設置した。		

表3-24 タンク周辺に設置した計測機器の種類と内容

(1) ひずみゲージ

(3) タンクに取り付けた圧力計

(4) 平板に取り付けた圧力計

(5) ポテンショメータ(鉛直変位)

(6) 変位計(水平変位)

図3-31 計測機器取付け状況

図3-32 タンク周辺に設置した計測機器の設置位置と機器番号(対策工法1)

3.9.8 波高計設置

載荷した津波の状態を把握するために図3-34に示す波高計を設置した。 図3-35に波高検定(参考資料2)における波高計と流速計の配置を示す。WG1から WG6の波高計設置位置はタンクを設置した実験においても同じ位置である。

図3-36にタンク周辺の波高計配置を示す。実験時の波高計WG7、WG8、WG9はタン クに近接して設置しているが、タンクについているフランジ(外径1.5 m)の数cm外 側となっている。

(1) 壁面波高計(赤矢印)

(3)対策工法1の波高計(赤矢印)図3-34

(2) 波高検定用の波高計と流速計(赤矢印)

(4)対策工法2の波高計(赤矢印) 波高計設置状況

図3-35 波高検定における波高計と流速計の設置位置

又同何天之时

図3-36 波高検定時と実験時(タンクあり)のタンク周辺の波高計配置

3.10 実験結果

実験は各工法のタンクに対して、浸水実験と津波実験の2種の実験を行った。結果を以 下に示す。

- 3.10.1 浸水実験
 - (1) 実験方法

固定床の上にタンクを設置した状態で実験水路に給水を行い、徐々に水位を高 くしてタンクの浮上の有無を確認した。水位の上昇速度は約2 cm/分である。

- (2) 実験実施状況
 - ア 無対策

無対策での浸水実験の実験実施状況を図3-37に示す。また、図3-38に無対策の浸水実験における水位測定の時系列データを示す(2600~3400秒間)。WG1からWG6は水路壁に設置した波高計による測定結果である。WG7からWG9はタンクに設置した波高計による測定結果である。

壁に設置した波高計はタンク浮上の影響をほとんど受けないが、タンクに設置した波高計はタンクが浮上すると波形が乱れる。WG9は2810秒に波形の乱れがはじまり、約2900秒にてWG7からWG9の波形が大きく変化している。WG9は180度位置に設置してある。タンクには0度位置にバルブが設置されているので、0度側が重い。そのため、0度の正反対の180度側が最初に浮き始めたと考えられる。

図3-39に無対策の浸水実験における初期状態と浮上開始時刻の画像データ を示す。観測窓の目盛りで、初期状態は0.25m、浮上開始時は1.09mである。初 期状態の水位はスラブの天端から0.02m低い。したがって浮上開始時の水位はタ ンク下端(スラブの天端)を基準として、1.09-0.25-0.02=0.82mである。こ れらの結果から、無対策のタンクの浮上開始は、タンク下端からの水位で0.82m である。

なお、タンク重量より予測された浮力計算での浮上予測水位は0.77mであり、 ノズルやバルブ、漂流防止の安全索等実験設備の重量を踏まえると概ね計算通 りであったと考える。

図 3-37 無対策の浸水実験状況

図3-38 無対策の浸水実験における水位測定の時系列データ

図3-39 無対策の浸水実験における初期状態と浮上開始時の画像

イ 対策工法1

対策工法1での浸水実験の実験実施状況を図3-40に示す。また、対策工法 1の浸水実験における水位とスラブ上圧力の時系列データを図3-41に示す。

初期状態の水位はタンクの下端(スラブの天端)と一致している。WG1から WG6は水路壁に設置した波高計である。水路への給水(水位の上昇)は約4200 秒で停止している(当日の設備上の水位の限界)ので、以降の水位は一定であ る。一定部分の水位には若干ばらつきがあるが、最後の10秒の平均値で、6地 点の平均値では135cmである。スラブ上の圧力は最後の10秒の平均値で 13.63kPaであり、水深に換算すると1.39mである。

これらの結果から、対策工法1はタンクの下端からの水位で1.35mでも浮上しないことが確認できた。

2日間の浸水実験および、津波実験後に対策工法1のCFRP部を切断し、タンクと基礎間の浸水の有無を確認した(図3-42)。結果として浸水した形跡は見られず、CFRPの防水性とタンクに浮力が生じていないことを確認できた。

図3-40 対策工法1の浸水実験状況

図3-41 対策工法1の浸水実験における水位とスラブ上圧力の時系列データ

図3-42 対策工法1の実験後のCFRP内の状況(浸水のないことを確認)

ウ 対策工法2

対策工法2での浸水実験の実験実施状況を図3-43に示す。また、対策工法2 の浸水実験における水位とスラブ上圧力の時系列データを図3-44に示す。 初期状態の水位はタンクの下端(スラブの天端)より2cm低いが、図3-44に

示す水位はそれを考慮してタンク下端がゼロとなるように補正してある。デー タ収録装置が途中で停止してしまったため、4000秒以降のデータを取得できて いない。水路への給水(水位の上昇)は4000秒以降も継続している。そこで給 水終了後(当日の設備上の水位の限界)に10秒間のデータ取得を行い、その結 果を約4800秒につけ足した。したがって、約4800秒の値が実験終了時の水位や 圧力である。最後の10秒間の水位であるWG1からWG9の平均値は1.285cmである。 スラブ上の圧力は最後の10秒の平均値で12.49kPaであり、水深に換算すると 1.27mである。これらの結果から、対策工法2はタンクの下端からの水位で 1.27mでも浮上しなかった。

これらの結果から、対策工法2はタンクの下端からの水位で1.27mでも浮上しないことが確認できた。

図3-43 対策工法2の浸水実験状況

図3-44 対策工法2の浸水実験における水位とスラブ上圧力の時系列データ

(3) 実験結果

浸水実験の結果を表3-25にまとめた。 無対策では計算通り浮力によりタンクは浮上することが確認できた。 対策工法1では浮上しないことが確認できた。また、CFRPへの浸水がなかったことから、タンクに浮力を生じていないことが確認できた。 対策工法2では対策工法が浮力に耐え、浮上しないことが確認できた。

表3-25 浸水実験におけるタンク浮上の有無

対策工法	タンク浮上の有無	備考
無対策	タンク下端から約 0.82 mの水位で 浮上した	浮力計算での浮上予測水位は 0.77m であり、概ね計算通り
対策工法1	タンク下端から 1.35 mの水位でも 浮上しない	CFRP 内への浸水のないことを 確認
対策工法2	タンク下端から 1.27 mの水位でも 浮上しない	

3.10.2 津波実験

(1) 実験方法

固定床の上に対策工法1、2及び無対策のタンクを設置した状態で実験水路に て津波を載荷させ、「タンクが保持できるのか」、「CFRPが剥離しないか」 を確認した。

載荷する津波は事前に実施した波高検定(参考資料2)にて選定した3種の津 波を用いることとした(表3-26)。

なお、対策工法1では3回の実験のうち、実験1回目では基礎部に津波が当た り砕波してしまったことで、想定する津波とならなかった。対策工法2は初期水 位を30cmとした2回の実験を実施した。

対策工法	実験ケース	初期水位	造波板 ストローク	流速	フルード数
無対策 *	—	30 cm	810 cm	3.262 m/s	1.193
	実験1回目	-5 cm	1100 cm	4.252 m/s	1.560
対策工法1	実験2回目	20. om	810 cm	3.262 m/s	1.193
	実験3回目	50 CIII	1100 cm	4.128 m/s	1.315
计 生 注 9	実験1回目	20. om	810 cm	3.262 m/s	1.193
刈束上法 2	実験2回目	50 CIII	1100 cm	4.128 m/s	1.315

表3-26 津波載荷実験ケースおよび実験条件

* 対策工法2の固定ワイヤーを緩めて実施した。

対策工法1、2ともに実験が進むにつれ、CFRPが剥離した場合、その後の実験での対 策工法の効果の確認ができなくなる懸念があるため、実験毎にCFRPの剥離状況の確認を 行うこととした。確認方法は、基本的には触診と打診で確認し、その他に赤外線サーモ グラフィ法と超音波法により確認を行った。実験が進むにつれ、対策工法1ではタンク 隅角部のスペーサー部分で剥離が増加した。写真の色調に差はあるが、対策効果を失う ような剥離がないことを確認し、実験を継続した。赤外線サーモグラフィ法のイメージ を図3-45に示した。結果として、超音波法ではコンクリート基礎上のCFRPの剥離は計 測できないこと、赤外線サーモグラフィ法は広範囲の剥離の検査に向くこと、触診と打 診でもサーモグラフィ法と同等な剥離の確認ができることが得られた。

図3-45 赤外線サーモグラフィ法のイメージ

(2) 実験実施状況

ア 無対策

無対策時の津波載荷実験の実施状況を図3-46に示す。対策工法1の実験2、対策 工法2の実験1と同仕様の津波を載荷し、タンクが移動することを確認した。本実験 ではタンクが大きく移動し、施設側貸与のセンサーを破損することが予想されるた め、変位計は外して実験を実施した。

結果として、無対策ではスラブ上でタンクが 367 mmの水平変位を生じた。この変 位は、緩めていた支持ワイヤーの余長分だけタンクが移動したものであり、無対策の タンクの移動量は制限を受けていることから、無対策の本来の移動量を示すものでは ないことに注意されたい。

(1) 初期水位 30 cm ストローク 810 cm
 (2) 津波作用後の状況
 図 3-46 津波載荷実験の実験実施状況(無対策)

イ 対策工法1

対策工法1の津波載荷実験の実施状況を図3-47に示す。実験1から実験3まで仕様を変化させた津波(表3-26)を載荷し、対策工法1により想定通りにタンクが保持されること、CFRPには対策工法を逸するような剥離が生じない(スペーサー部に想定通りの小規模な剥離を生じた)ことを確認した。結果のまとめを表3-27に示す。また、本実験で計測した結果を図3-48~図3-50に示す。各図は最大波襲来近傍時刻の水位、加速度、変位、各種ひずみの時刻歴データを示す。変位とひずみについては概略の挙動を把握しやすいよう、0.2 秒間の移動平均データを掲載している

対策工法1の各実験では、津波波力により基礎に変位を生じた。CFRPにより一体となったタンクと基礎を固定床にワイヤーを緊張し拘束したが、津波波力により変位を 生じる結果となった(表3-28、表3-29)。これはワイヤーの伸び(特にワイヤー のループ部)によると思われ、対策工法1本来の移動量を示すものではない(FEM 解 析による変位量を表中に示す)。

(1)実験1回目初期水位-5 cm ストローク 1100 cm

(2)実験2回目初期水位30 cm ストローク810 cm

(3)実験3回目初期水位30 cm ストローク1100 cm

(4) 実験3回目後の状況

	実施目的	タンク位置で の浸水深 実験値 [*]	タンク前面 での波高 実験値	フルード数	確認1 タンク 保持	確認2 CFRP 剥離
1	タンク設置部ドライ状態での設 備最大波高 初期水位-5cm	0.758m	2.263m	1.560	0	大きな 剥離なし
2	初期水位を 30cm とした場合 の中規模波での実験	0.762m	1.474m	1.193	0	大きな 剥離なし
з	初期水位を 30cm とした場合 の設備最大波高での実験	1.005m	2.189m	1.315	0	大きな 剥離なし

表3-27 対策工法1実験結果まとめ

*: タンクを無しとした波高検定時の計測値

表3-28 対策工法1実験結果 タンク水平方向変位

水平変位	FEM	実験	備考
実験1回目	0.12mm	37.98mm	実験場での基礎の固定が不
実験2回目	0.12mm	11.18mm	FEM と実験の数値の差分が
実験3回目	8.55mm	19.86mm	基礎の移動量(ワイヤの伸 び)と考えられる。

表3-29 対策工法1実験結果 タンク鉛直方向変位

鉛直変位	FEM	実験	備考
実験1回目	0.06mm	2.12mm	FEM と実験の数値の差分が
実験2回目	0.06mm	2.20mm	基礎の移動量(ワイヤの仲 び)と考えられる
実験3回目	5.28mm	39.51mm	

ウ 対策工法2

対策工法2の津波載荷実験の実施状況を図3-51に示す。実験1と実験2で仕様を 変化させた津波(表3-26)を載荷し、対策工法2により想定通りにタンクが保持さ れること、CFRPには対策工法を逸するような剥離が生じないことを確認した。結 果のまとめを表3-30に示す。また、本実験で計測した結果を以下の図3-52~図3 -55に示す。各図は最大波襲来近傍時刻の水位、加速度、変位、各種ひずみの時刻歴 データを示す。変位とひずみについては概略の挙動を把握しやすいよう、0.2 秒間の 移動平均データを掲載している

対策工法2の各実験ではタンク本体が津波波力により変位を生じた。対策工法2の 支持材を緊張しタンクを固定床に拘束したが、津波波力により変位を生じる結果となった(表3-31、3-32)。これは支持材のガタと伸びによると思われ、対策工法2 本来の移動量を示すものではない(FEM 解析による変位量を表中に示す)。

(1)実験1回目初期水位30 cm ストローク810 cm

(2)実験2回目初期水位30 cm ストローク1100 cm

図3-51 津波載荷実験の実験実施状況(対策工法2)

	実施目的	タンク位置で の浸水深 実験値 [*]	タンク前面 での波高 計測値	フルード数	確認1 タンク 保持	確認2 CFRP 剥離
1	初期水位を 30cm とした場合 の中規模波での実験	0.762m	欠測	1.193	0	大きな 剥離なし
2	初期水位を 30cm とした場合 の設備最大波高での実験	1.005m	2.411m	1.315	0	大きな 剥離なし

耖	3	-30	対策工法2 実験結果キとめ	
1X	J	00		

*: タンクを無しとしだ波高検定時の計測値

水平変位	FEM	実験	備考
実験1回目	0,85mm	0,98mm	実験場でのタンクの固定が不十 分であり移動を生じた。FEMと
実験2回目	1.88 mm	5.28mm	実験の数値の差分がタンクの支 持材のガタと伸びと考えられる

表3-31 対策工法2実験結果 タンク水平方向変位

表3-32 対策工法2実験結果 タンク鉛直方向変位

鉛直変位	FEM	実験	備考
実験1回目	Omm	2.24 mm	FEM と実験の数値の差分がタン
実験2回目	0.04mm	3.38mm	うの文が利のカラと伸びと考え られる

3.11 3.45kL タンクのFEM解析の実施

実験と並行し、3.45kLタンクのFEM解析を実施した。3.3章と同様に「危険物施設の津 波・浸水対策に関する調査検討報告書」に示される計算式により求めた波圧(図3-8、 3-12)を静的に漸増載荷させ、解析を実施した。

3.11.1 対策工法1のFEM解析

- (1) 解析モデル 下記の条件により解析を実施した。
 - 三次元非線形 FEM 解析
 - 内容液貯水率は実験時と同じ20%
 - 解析モデルを図3-56.1~図3-56.3、表3-33、3-34に示す。

	크미즈	
項目	設定値	備考
タンク鋼材材質	SS400	
鋼材降伏応力	235 N/mm^2	
鋼材引張強さ	400 N/mm^2	
CFRP 引張強さ	3,400 N/mm ²	
CFRP-鋼材間接着強度 (面外)	15 N/mm ²	メーカ試験値は 27.4 N/mm ² で あるが安全側評価として製品保 証値を採用
CFRP-コンクリート間接着強度(面外)	1.5 N/mm ²	メーカ試験値は4 N/mm ² である が安全側評価として製品保証値 を採用
内液比重	1.0	実験時の内液は水のため1.0とする

表 3-33 解析物性值

表 3	-34	3.45kL	タンク	板厦
10	01	O. IONL	/ ~ /	

		·. · ·	
	材質	板厚	備考
屋根	-	-	
側板	55400	4 5	
底板	55400	4. Olim	

図3-56.2 3.45kLタンク 対策工法1の解析モデル正面図

図3-56.3 3.45kL タンク 対策工法1の解析モデル底板と基礎拡大図

(2) 解析結果

津波波圧の漸増解析結果を図3-57~図3-59に示す。タンク高さ2.24m を超 える津波波高でもCFRPの接着力は保持され、タンクには大きな損傷や移動がない 結果となったため、タンク高さを限界津波水位とした。津波波高2.2m時には、タ ンク隅角部のMISES応力は160MPa(図3-58 橙色部)となるが、鋼材の降伏応力 235MPaには達しないことが確認できた。また、同波高ではCFRP-RCスラブ間の剥 れ時相対変位0.0075mmを超えないことも確認した。

図3-57 津波水位-タンク頂部の水平変位関係(3.45kL・対策工法1、液位20%)

図 3-59 CFRPとタンク、RCスラブ間インターフェース要素の法線方向相対変位 (3.45kL・対策工法 1、液位 20%、2.200m 時)

3.11.2 対策工法1の津波実験とFEM解析の対比

FEM解析で得られたひずみ等の値と3.10.2で実施した津波実験で得られた計測値との対 比を行うこととした。

対策工法1でFEM解析と実験計測値の対比をするにあたり、対比条件は次のとおりとした。

(1) 実験波圧に応じた解析結果の抽出

タンク前面波高2.5mまで波圧を漸増し実施したFEM解析結果のうち、各実験時に得られた波圧に近い波圧となる解析結果を抽出し、実験時に得られた計測値との対比を行うこととした。

図3-60は、3.10.2で実施した対策工法1の各実験で計測された各波圧計位置における最大波圧をプロットしたグラフによく合うFEM解析波圧を重ね書きした図である。

○実験計測値と対比するFEM解析結果

- ・実験1回目と2回目:タンク前面波高1.275m時のFEM解析値
- ・実験3回目
 : タンク前面波高2.1m時のFEM計測値

(3.45kL・対策工法1、液位20%)

(2) 対比項目の選定

対策工法1の性能は、タンク隅角部(鋼材部)と同箇所(CFRP部)の強度及びCFRP とRCスラブ基礎の接着力によって決定されることから、対比する数値等は次のとおり とした。

①タンク隅角部(鋼材部)の鉛直方向ひずみ

②タンク隅角部(鋼材部)のひずみ値から変換した主応力

③タンク隅角部(CFRP部)の鉛直方向ひずみ

※CFRP部については、炭素繊維と樹脂の特性によりひずみと応力の線形関係が成立 しないことから、主応力の対比は行わないこととした。

(3) 実験時の状況

実験の各回における計測データの時刻歴については図3-48~図3-50、タンクの 最大変位については表3-28及び表3-29を参照されたい。 ※タンクの最大変位状況について

- 各回ともにFEM解析に比して水平及び鉛直方向変位が大きく計測された。(固定 床に基礎を固定するためのワイヤーの伸びに伴う基礎の移動によるものと考え られる。)
- 特に実験3回目では、水平変位、鉛直変位ともにFEM解析を大きく上回った。このため、当該実験で得られた計測値及び当該数値とFEM解析値との対比は参考扱いとした。
3.11.2.1 対策工法1の実験1回目計測値と解析結果の対比

(1) 計測值抽出時刻

実験1回目では、砕波した波が基礎とタンクに当たったことにより、局所的に衝撃的 な波圧が計測された時刻があった。静的なFEM解析と対比においては、その衝撃的な波 圧時刻を除き、水平変位が高く、かつ鉛直変位も高くなる48.111secが適当と考え、実 験の計測値を抽出することとした(図3-48青線部)。

(2) タンク隅角部(鋼材部)のひずみ対比

タンク隅角部(鋼材部)内側のひずみゲージG3、G4位置(図3-32参照。)でのタンク鋼材ひずみ量の対比を図3-61に示す。

G3及びG4の鉛直方向ひずみ(図中の黄枠部)は、FEM解析では18.71 μ、計測値では 37.45~44.71 μとなっており、いずれも鋼材降伏時のひずみ1,175 μに対して非常に小 さいひずみであることがわかる。また、計測値の方が値は大きいが、FEM解析と発生ひ ずみのオーダーは同様である。

(3) タンク隅角部(鋼材部)の主応力の対比

FEM解析及び計測値それぞれのひずみから主応力(タンク円周方向 σx 、鉛直方向 σy)に変換した結果を図 3 -62に示す。

FEM解析、計測値ともに正の応力場にあることがわかる。また、図3-63及び図3-64に示すFEM解析での主応力の分布図においても、計測した点(タンク隅角部近傍の側板部)の周囲では図3-62と同様に正の応力場を示す黄緑色となっていることがわかる。

応力値については、FEM解析の円周方向発生応力が1.96MPa、鉛直方向発生応力が 4.48MPaであるのに対し、計測ひずみから変換した応力値は、G3の円周方向発生応力が 8.82MPa、鉛直方向発生応力が12.08MPa、G4の円周方向発生応力が7.85MPa、鉛直方向 発生応力が10.27MPaとなっており、計測値の方で大きな値が出ているものの、FEM解 析、計測値ともに降伏応力(235MPa)に対して非常に小さい応力しか発生していない ことがわかる。

FEM解析と計測値の発生応力は、正負の傾向が一致し、いずれも値は小さいことから、傾向としては合っているといえる。

(4) タンク隅角部(CFRP部)のひずみの対比

タンク隅角部(CFRP部)外側のひずみゲージG1、G2位置(図3-43参照。)での CFRPのひずみ量の対比を図3-65に示す。

G1とG2の鉛直方向ひずみ計測値はばらついており、G1とG2の鉛直方向ひずみ計測値はFEM解析結果と対比すると乖離があるが、そのひずみ値はFEM解析では-5.05、計測値では-1.37 μ ~17.55 μ とCFRPの破断ひずみ15,419 μ に対して非常に小さく、安全な領域であることがわかる。

なお、図3-65の円周方向ひずみ(灰色文字部)は、タンク底板外張り出し部に設置したスペーサー上のCFRPのたわみの影響により値が乖離しているものと考えられるが、非強度方向のため参考値として扱うこととした。

以上より、実験1回目の着目すべきタンク隅角部(鋼材部)の鉛直方向ひずみ及び主応力並びにタンク隅角部(CFRP部)の鉛直方向ひずみについて、FEM解析結果と実験計測 値は大きく乖離していないことが確認できた。

図 3-61 鋼材内側 側板鉛直・底板半径方向のひずみ (3.45kL・対策工法1実験1回目、液位20% 1.275m時 変形倍率5倍)

図3-62 タンク隅角部G3, G4のひずみから主応力への変換(対策工法1、実験1回目)

図 3-63 鋼材内側 側板円周・底板円周方向応力 σ x (3.45kL・対策工法1、液位20% 1.275m時)

図3-64 鋼材内側 側板鉛直・底板半径方向応力 σy (3.45kL・対策工法1、液位20% 1.275m時)

図 3-65 CFRPの側板鉛直・RCスラブ半径方向ひずみ (3.45kL・対策工法1実験1回目、液位20% 1.275m時)

3.11.2.2 対策工法1の実験2回目計測値と解析結果の対比

(1) 計測値抽出時刻

実験2回目は基礎が水平移動してしまい、この影響がひずみゲージの計測値及んでいることが懸念された。静的なFEM解析との対比においては、タンクが水平に移動しきり、鉛直方向に浮き上がる状態と考えられた48.946secが適当と考え、当該時刻の計測値を抽出することとした(図3-49緑線部)。

(2) タンク隅角部(鋼材部)のひずみの対比

タンク隅角部(鋼材部)内側のひずみゲージG3、G4位置(図3-32参照。)でのタンク鋼材ひずみ量の対比を図3-66に示す。

G3とG4の鉛直方向ひずみ(図中の黄枠部)は、FEM解析では18.71 μ 、計測値では 0.12~22.53 μ (G3とG4は対象位置であり、その平均値は11.33 μ)となっており、い ずれも鋼材降伏時のひずみ1.175 μ に対して非常に小さいひずみであることがわかる。

(3) タンク隅角部(鋼材部)の主応力の対比 FEM解析及び計測値それぞれのひずみから主応力(タンク円周方向 σ x、鉛直方向 σ

y) に変換した結果を図3-67に示す。

FEM解析、計測値ともに正の応力場にあることがわかる。また、図3-68及び3-69 に示すFEM解析における波圧載荷時の主応力の分布図においても、計測した点の周囲で は図3-67と同様に正の応力場を示す黄緑色となっていることがわかる。

応力値については、FEM解析の円周方向発生応力が1.96MPa、鉛直方向発生応力が 4.48MPaであるのに対し、計測ひずみから変換した応力値は、G3の円周方向発生応力が 0.06MPa、鉛直方向発生応力が0.04MPa、G4の円周方向発生応力が0.41MPa、鉛直方向発 生応力が4.75MPaとなっており、計測値ではG3とG4でばらつきがみられるものの、FEM 解析、計測値ともに降伏応力(235MPa)に対して非常に小さい応力しか発生していな いことがわかる。

FEM解析と計測値の発生応力は、正負の傾向が一致し、いずれも値が小さいことから、傾向としては合っているといえる。

(4) タンク隅角部 (CFRP部) のひずみの対比

タンク隅角部(CFRP部)外側のひずみゲージG1、G2位置(図3-32参照。)での CFRPのひずみ量の対比を図3-70に示す。

G1とG2の鉛直方向ひずみはFEM解析結果よりも大きいが、そのひずみ値はFEM解析では-5.05 μ 、計測値では-17.92~-25.19 μ となっており、CFRPの破断ひずみ15,419 μ に対して非常に小さく、安全な領域であることがわかる。また、FEM解析と計測値は共に負方向のひずみを生じ、傾向は近似しているといえる。

なお、実験1回目と同様の理由から、図3-70の円周方向ひずみ(灰色文字部)は 非強度方向のため参考値として扱うこととした。

以上より、実験2回目の着目すべきタンク隅角部(鋼材部)の鉛直方向ひずみ及び主 応力並びにタンク隅角部(CFRP部)の鉛直方向ひずみについて、計測値の方が大きい値 があるものの、FEM解析結果と実験計測値は大きく乖離していないことが確認できた。

図 3-66 タンク隅角部内側 側板鉛直・底板半径方向のひずみ (3.45kL・対策工法1実験2回目、液位20% 1.275m時 変形倍率5倍)

図3-67 タンク隅角部G3, G4のひずみから主応力への変換(対策工法1、実験2回目)

(3.45kL·対策工法1、液位20% 1.275m時)

図3-69 タンク隅角部内側 側板鉛直・底板半径方向応力 σy (図3-79の再掲) (3.45kL・対策工法1、液位20% 1.275m時)

図 3-70 CFRPの側板鉛直・RCスラブ半径方向ひずみ (3.45kL・対策工法1実験2回目、液位20% 1.275m時)

3.11.2.3 対策工法1の実験3回目計測値と解析結果の対比

(1) 計測值抽出時刻

実験3回目は基礎が大きく移動してしまった影響により、最大波圧時のタンクの変形 モードは静的解析と異なり、FEM解析との比較ができなかったことから、静的なFEM解 析との対比においては、タンクが水平に移動しきり、鉛直方向に浮き上がる状態と考 えられた49.569secが適当と考え、当該時刻の計測値を抽出することとした(図3-50 緑線部)。

(2) タンク隅角部(鋼材部)のひずみの対比

タンク隅角部(鋼材部)内側のひずみゲージG3、G4位置(図3-32参照。)でのタンク鋼材ひずみ量の対比を図3-71に示す。

G3とG4の鉛直方向ひずみ(図中の黄枠部)は、FEM解析では-317.51 μ 、計測値では -34.96~-35.23 μ となっており、計測値がFEM解析よりも小さい値となった。これは最 大波圧時に基礎が大きく移動した影響により、最大波圧時に静的なFEM解析と同様な変 形モードが得られなかったためと考えられる。

しかし、FEM解析で大きなひずみが発生した箇所において計測値でも同様な圧縮ひず みを示していること、いずれのひずみも鋼材降伏時のひずみ-1,175μに対して小さな ひずみであることを考えると、同様な傾向であるといえる。

(3) タンク隅角部(鋼材部)の主応力の対比

FEM解析及び計測値それぞれのひずみから主応力(タンク円周方向 σx 、鉛直方向 σ y)に変換した結果を図3-72に示す。

FEM解析、計測値ともに負の応力場にあることがわかる。実験2回目までは正の応力 場であったのに対して、負の応力場となったのは、波圧と内液による内圧のバランス と、波圧による変形の2つが要因と考えられる。また、図3-73及び3-74に示すFEM 解析における波圧載荷時の主応力の分布図においても、計測した点の周囲では図3-72と同様に負の応力場を示す水色~青色となっていることがわかる。

応力値については、FEM解析の円周方向発生応力が-24.8MPa、鉛直方向発生応力が -73.27MPaであるのに対し、計測ひずみから変換した応力値は、G3の円周方向発生応力 -3.7MPa、鉛直方向発生応力-8.39MPa、G4の円周方向発生応力-3.66MPa,鉛直方向発生 応力-8.43MPaであった。FEM解析、計測値ともに降伏応力(235MPa)に対して小さな応 力ではあるが、前述のとおり、最大波圧時に基礎が大きく動いたことにより発生応力 の値は計測値が大きくFEM解析を下回った。

FEM解析と計測値の主応力は、正負の傾向が一致し、傾向としては合っていたものの、実験での基礎移動により応力値は数値の違いがみられた。

(4) タンク隅角部CFRP部のひずみの対比

タンク隅角部(CFRP部)外側のひずみゲージG1、G2位置図3-32参照。)でのCFRP のひずみ量の対比を図3-75に示す。

G1とG2の鉛直方向ひずみは、FEM解析では42.26 μ 、計測値ではG1が6.08 μ 、G2が 56.07 μ (G1とG2は対象位置であり、平均値は31.075 μ)とばらつきがみられるもの の、CFRPの降伏時のひずみ15,419 μ に対して非常に小さいひずみであることがわか る。

なお、実験1回目と同様の理由から、図3-75の円周方向ひずみ(灰色文字部)は 非強度方向のため参考値として扱うこととした。

以上、対策工法1の実験3回目の計測値とFEM解析の数値対比を行ったが、実験では最 大波圧時に基礎が大きく移動したことにより、FEM解析のような理想的な波圧載荷を再現 することができなかった。このことから計測値がFEM解析よりも小さな値で計測されたと 考えられる。よって、本項に示す数値対比は参考扱いとする。

図 3-71 タンク隅角部内側 側板鉛直・底板半径方向のひずみ (3.45kL・対策工法1実験3回目、液位20% 2.1m時 変形倍率5倍)

図3-72 タンク隅角部G3,G4のひずみから主応力への変換(実験3回目)

^{(3.45}kL・対策工法1、液位20% 2.1m時)

図 3-74 タンク隅角部内側 側板鉛直・底板半径方向応力 σy (3.45kL・対策工法1、液位20% 2.1m時)

(3.45kL·対策工法1実験3回目、液位20% 2.1m時)

3.11.3 対策工法2のFEM解析

(1) 解析モデル

下記の条件により解析を実施した。

- 三次元非線形 FEM 解析
- 内容液貯水率は実験時と同じ20%
- 解析モデルを図3-76.1~図3-76.4、表3-35、3-36に示す。

表 3-35 解析物性值

項目	設定値	備考
タンク鋼材材質	SS400 を想定	
鋼材降伏応力	235 N/mm^2	
鋼材引張強さ	400 N/mm^2	
CFRP 引張強さ	3,400 N/mm ²	
CFRP-鋼材間接着強度 (面外)	15 N/mm^2	メーカ保証値を採用
タンク底板-コンクリート間 摩擦係数	0.3	複合構造標準示方書を参考に設定 消防庁の津波算定式では0.5にて算 出するが、安全側評価として採用
内液比重	1.0	実験時の内液は水のため 1.0 と する

表 3-36	3.45kL タンク	板厚

	材質	板厚	備考
屋根	-	-	
側板	55400	4 Emm	
底板	33400	4. OMM	

図3-76.1 3.45kLタンク 対策工法2の解析モデル全体図

図3-76.3 3.45kLタンク 対策工法2の解析モデル底板と基礎拡大図

図 3-76.4 3.45kL タンク 対策工法 2の解析モデル アイプレート部

(2) 解析結果

津波波圧の漸増解析結果を図3-77~図3-79に示す。タンク高さ2.24mを超 える津波波高でもタンクには大きな損傷や移動がない結果となったため、タンク 高さを限界津波水位とした。津波波高2.2m時にアイプレートのアイ取付け部近傍 にて MISES 応力は212MPa (図3-78 橙色部)となるが、鋼材の降伏応力235MPa には達しないことが確認できた。また、同波高ではアイプレートの端部でCFRP-タンク側板間の剥れ時相対変位0.0075mmを超えないことを確認した。

図3-77 津波水位-タンク頂部の水平変位関係(3.45kL・対策工法2、液位20%)

(側板・プレート外側、変形10倍、3.45 k L・対策工法2、液位20%、2.20m時)

図 3-79 CFRPとタンク側板、プレート間インターフェース要素の法線方向相対変位 (3.45 kL・対策工法2、液位20%、2.20m時)

3.11.4 対策工法2の津波実験とFEM解析の対比

FEM 解析で得られたひずみ等の値と 3.10.2 で実施した津波実験で得られた計測値との対 比を行うこととした。

対策工法2でFEM解析と実験計測値の対比をするにあたり、対比条件は次のとおりとした。

(1) 実験波圧に応じた解析結果の抽出

タンク前面波高 2.5m まで波圧を漸増し実施した FEM 解析結果のうち、各実験時に得られた波圧に近い波圧となる解析結果を抽出し、実験時に得られた計測値との対比を 行うこととした。

図3-80は、3.10.2で実施した対策工法2の各実験で計測された各波圧計位置に おける最大波圧をプロットしたグラフによく合うFEM解析波圧を重ね書きした図で ある。

○実験計測値と対比する FEM 解析結果

・実験1回目:タンク前面波高1.35m時のFEM解析値

・実験2回目:タンク前面波高1.925m時のFEM解析値

図 3-80 津波波圧と水位の関係及び解析波圧ケースとの対比 (3.45kL・対策工法2、液位20%)

(2) 対比項目の選定

対策工法2の性能は、タンク隅角部の強度及びCFRP部の円周方向引張強度によって 決定されることから、対比する数値等は次のとおりとした。

- ①タンク隅角部の鉛直方向ひずみ
- ②タンク隅角部のひずみ値から算出した主応力
- ③アイプレート廻り (CFRP部) の円周方向ひずみ

※CFRP部については、炭素繊維と樹脂の特性によりひずみと応力の線形関係が成立 しないことから、主応力の対比は行わないこととした。

④アイプレート内側鋼材部(タンク側板部)のひずみ

⑤アイプレート内側鋼材部(タンク側板部)のひずみ値から算出した主応力

(3) 実験時の状況

実験の各回における計測データの時刻歴については図3-52~図3-55、タンクの 最大変位については表3-31及び表3-32を参照されたい。

- ※タンクの最大変位状況について
 - 各回ともにFEM解析に比して水平及び鉛直方向変位が大きく計測された。(タン クの支持材(ターンバックル)のガタ及び伸びによるものと考えられる。)

3.11.4.1 対策工法2の実験1回目計測値と解析結果の対比

(1) 計測値抽出時刻

実験では、動的な津波波圧載荷によりタンクに変位が生じ、アイプレート取付け部 とタンク隅角部周りで静的解析との対比において適当と考えられるひずみの計測時刻 に差が生じていた。このため、以下のとおり計測値の抽出時刻を分けて選定すること とした。

- ①アイプレート周りについては、最大波圧が計測された49.148秒の点が静的載荷に 近いと考え、計測値を抽出した(図3-52赤丸部)。
- ②タンク隅角部周りについては、タンクの変位が一定になった50.552秒の点が静的 解析に近いと考え、計測値を抽出した(図3-52桃線部)。
- (2) タンク隅角部のひずみの対比

タンク隅角部外側のひずみゲージG1とタンク隅角部内側のひずみゲージG4位置(図 3-33参照。)でのタンク鋼材ひずみ量の対比を図3-81、3-82に示す。

対策工法2で拘束されながら津波波力により側板を押されている状態となっている と考えられ、G1の鉛直方向ひずみ(図3-81黄枠部)は、FEM解析では119.59 μ 、計測 値では200.28 μ となっている。また、G4の鉛直方向ひずみ(図3-82黄枠部)は、FEM 解析では-128.35 μ 、計測値では-216.03 μ となっており、どの値も鋼材部の降伏ひず み1,175 μ 、-1,175 μ に対して小さいひずみであるといえる。また、計測値がFEM解析 より大きな値となっているものの、正負は一致しており、同様の傾向を示していると いえる。

(3) タンク隅角部の主応力の対比

タンク隅角部のFEM解析及び計測値それぞれのひずみから主応力(タンク円周方向 σx 、鉛直方向 σy)に変換した結果を図 3-83に示す。

G1ではFEM解析、計測値ともに正の応力場、G4ではFEM解析、計測値ともに負の応力 場にあることがわかる。また、図3-84及び図3-85に示すFEM解析でのG1部主応力の 分布図では、計測点G1の周囲では図3-83と同様に正の応力場を示す黄緑色となって いることがわかる。同様に、図3-86及び図3-87に示すFEM解析でのG4部主応力の分 布図においても、計測点G4の周囲では図3-83と同様に負の応力場を示す水色となっ ていることがわかる。

応力値については、G1のFEM解析の円周方向発生応力が10.57MPa、鉛直方向発生応力 が28.00MPaであるのに対し、計測ひずみから変換した応力値は、円周方向発生応力が 10.65、鉛直方向発生応力が44.57MPaとなった。また、G4のFEM解析の円周方向発生応 力が-8.43MPa、鉛直方向発生応力が-29.09MPaであるのに対し、計測ひずみから変換し た応力値は、円周方向発生応力が-25.60、鉛直方向発生応力が-52.74MPaとなった。

FEM解析と計測値の発生応力は、いずれも値は近似しており、傾向としては合っているといえる。

- ※ 図3-81及び図3-82では、円周方向ひずみはFEM解析と計測値で正負が逆の値となっている。FEM解析では、対策工法2により拘束されながら波圧により側板が押されたことによって、G1及びG4の円周方向ひずみが正の値を示す(図3-94の青丸部参照。ただし、波圧の違い、ひずみ値の正負を見やすくするためコンター階を極端としていることに注意。)と考えられるが、G1及びG4の上方では円周方向ひずみが波圧により負となる領域がみられた。このことから、実験計測値では波圧による負の円周方向ひずみがFEM解析よりも大きくなったものと推定した。なお図3-83でも示すように、ひずみを応力に変換したところ、円周方向発生応力の値の正負は一致している。
- (4) アイプレート部CFRP部のひずみの対比

アイプレート部外面側(CFRP部)のひずみゲージG2、G3位置(図3-33参照。)でのCFRPのひずみ量の対比を図3-88に示す。

アイ取付け部近傍のG2における円周方向ひずみは、FEM解析が170.41μ、計測値が 89.83μとなっており、共に正の値であることから、同様の傾向を示しているといえ る。また、どちらの値もCFRPの破断ひずみ15,419μに対して十分に小さく、安全な領 域であることわかる。

一方、アイプレート外縁近傍のG3における円周方向ひずみは、FEM解析と計測値で正 負の違いがみられる。当該部位はアイプレートとタンク側板との製作時の曲率精度に よっては"浮き"が生じやすい部位であり、実験用タンクでもこうした"浮き"が生 じていた。このため、解析どおりにアイプレートの変形がタンク側板に伝達しにくか ったものと考えられる。とはいえ、FEM解析、計測値ともに発生ひずみの値としては非 常に小さいことがわかる。

- (5) アイプレート内側鋼材部(タンク側板部)のひずみの対比
 - アイプレート内側鋼材部(タンク側板部)のひずみゲージG5、G6位置(図3-33参 照。)での鋼材のひずみ量の対比を図3-89に示す。

G5、G6ともにFEM解析も計測値も同様な傾向を示しており、鋼材降伏時のひずみ 1,175μに対して非常に小さい値となっている。

(6) アイプレート内側鋼材部(タンク側板部)の主応力の対比

アイプレート内側鋼材部(タンク側板部)のFEM解析及び計測値それぞれのひずみから主応力(タンク円周方向 σx 、鉛直方向 σy)に変換した結果を図3-90に示す。

G5、G6ともに鉛直方向応力はFEM解析と計測値とで正負が逆の応力値として算出された。図3-92に示すFEM解析のG5、G6部における鉛直方向応力の分布図では、G5の周囲では負の応力場を示す水色となっており、G6の周囲では正の応力場を示す黄緑色をとなっている。これは、FEM解析のひずみより算出した応力場と対応している。

計測値のひずみから変換した応力値の正負が逆の値となった原因としては、図3-92に示されるようにアイプレート周りの鉛直方向応力は非常に複雑な応力場となって いること、対比しているタンク側板の応力発生箇所はアイプレートの裏側で直接荷重 を受ける箇所ではなく、発生応力が非常に小さいことが挙げられる。複雑な応力場 で、非常に小さな応力の範囲内で計測値から変換した応力の正負が逆となったと考え られる。

一方、G5、G6の円周方向応力はFEM解析と計測値ともに負の応力値として算出された。また、図3-91に示すFEM解析のG5、G6部における円周方向応力の分布図では、ともに負の応力場となっており、こちらはFEM解析と計測値との傾向が合っているといえる。

以上より実験1回目のFEM解析と計測値の対比において、一部乖離の見られる部位はあったが、対策工法2で特に注意して対比する部分では同様なひずみ・応力の傾向であることが確認できた。

(3.45kL・対策工法2実験1回目、液位20% 1.35m時)

図3-83 タンク隅角部G1,G4のひずみから主応力への変換(実験1回目)

(3.45kL・対策工法2、液位20% 1.35m時)

図3-87 タンク隅角部鋼材内側 側板鉛直・底板半径方向応力 σy (3.45kL・対策工法2、液位20% 1.35m時)

図 3-88 CFRP表面の円周方向ひずみ (3.45kL・対策工法2実験1回目、液位20% 1.35m時)

図 3-89 タンク側板内側の円周方向ひずみ (3.45kL・対策工法2実験1回目、液位20% 1.35m時)

図3-90 タンク隅角部G5,G6のひずみから主応力への変換(実験1回目)

図 3-91 アイプレート部側板内側 側板円周・底板円周方向応力 σ x (3.45kL・対策工法 2、液位20% 1.35m時)

図 3-92 アイプレート部側板内側 側板鉛直・底板半径方向応力 σy (3.45kL・対策工法 2、液位20% 1.35m時)

3.11.4.2 対策工法2の実験2回目計測値と解析結果の対比

(1) 計測值抽出時刻

実験では、動的な津波波圧載荷によりタンクに変位が生じ、アイプレート取付 け部とタンク隅角部周りで静的解析との対比において適当と考えられるひずみの 計測時刻に差が生じていた。このため、以下のとおり計測値の抽出時刻を分けて 選定することとした。

①アイプレート周りについては、最大波圧が計測された47.212秒の点が静的載荷に 近いと考え、計測値を抽出した(図3-54橙線部)。

- ②タンク隅角部周りについては、タンクの変位が一定になった49.400秒の点が静的 解析に近いと考え、計測値を抽出した(図3-54桃線部)。
- (2) タンク隅角部のひずみの対比
 - タンク隅角部外側のひずみゲージG1とタンク隅角部内側のひずみゲージG4位置(図 3-33参照。)でのタンク鋼材ひずみ量の対比を図3-93、3-95に示す。

対策工法2で拘束されながら津波波力により側板を押されている状態となっている と考えられ、G1の鉛直方向ひずみ(図3-95黄枠部)は、FEM解析では274.96 μ 、計測 値では241.36 μ となっている。また、G4の鉛直方向ひずみ(図3-93黄枠部)は、FEM 解析では-296.31 μ 、計測値では-315.16 μ となっている。また、これらの値は鋼材部 の降伏ひずみ1,175 μ , -1,175 μ に対して小さいひずみであるといえる。また、G4では 計測値がFEM解析より大きな値となっているものの、正負は一致しており、同様の傾向 を示しているといえる。

(3) タンク隅角部の主応力の対比

図3-96にタンク隅角部のFEM解析及び計測値それぞれのひずみから主応力(タンク 円周方向 σx ,鉛直方向 σy)に変換した。

G1ではFEM解析、計測値ともに正の応力場、G4ではFEM解析、計測値ともに負の応力 場にあることがわかる。また、図3-97及び図3-98に示すFEM解析でのG1部主応力の 分布図では、計測点G1の周囲では図3-96と同様に正の応力場を示す黄緑色となって いることが分かる。同様に、図3-99及び図3-100に示すFEM解析でのG4部主応力の 分布図においても、計測点G4の周囲では図3-96と同様に負の応力場を示す水色とな っていることがわかる。

応力値については、G1のFEM解析の鉛直方向発生応力が64.49MPa、円周方向発生応力 が24.60MPaであるのに対し、計測ひずみから変換した応力値は、鉛直方向発生応力が 52.00MPa、円周方向発生応力が7.64MPaとなった。また、G4のFEM解析の鉛直方向発生 応力が-67.08MPa、円周方向発生応力が-19.20MPaであるのに対し、計測ひずみから変 換した応力値は、鉛直方向発生応力が-76.56MPa、円周方向発生応力が-36.21MPaとな った。

FEM解析と計測値の発生応力は、いずれも値は近似しており、傾向としては合っているといえる。

- ※ 図3-93及び図3-95では、円周方向ひずみはFEM解析と計測値で正負が逆の値となっている。FEM解析では、対策工法2により拘束されながら波圧により側板が押されたことによって、G1及びG4ともに円周方向ひずみが大きくなっている(図3-94の青丸部参照。ただし、ひずみ値の正負を見やすくするためコンター階を極端としていることに注意)が、G1及びG4の上方では円周方向ひずみが波圧により負となる領域がみられた。このことから、実験計測値では波圧による負の円周方向ひずみが解析よりも大きくなったものと推定した。なお図3-96でも示すように、ひずみを応力に変換したところ、円周方向発生応力の値の正負は一致している。
- (4) アイプレート部 (CFRP部) のひずみの対比

アイプレート部外面側(CFRP部)のひずみゲージG2、G3位置(図3-33参照。)でのCFRPのひずみ量の対比を図3-101に示す。

アイ取付け部近傍のG2における円周方向ひずみは、FEM解析が391.70μ、計測値が 362.15μとなっており、共に正の値であることから、同様な結果を示しているといえ る。また、どちらの値もCFRPの破断ひずみ15,419μに対して十分に小さく、安全な領 域であることがわかる。

一方、アイプレート外縁近傍のG3における円周方向ひずみは、FEM解析と計測値で正 負の違いがみられる。当該部位はアイプレートとタンク側板との製作時の曲率精度に よっては"浮き"が生じやすい部位であり、実験用タンクでもこうした"浮き"が生 じていた。このため、解析どおりにアイプレートの変形がタンク側板に伝達しにくか ったものと考えられる。とはいえ、FEM解析、計測値ともに発生ひずみの値としては非 常に小さいことがわかる。

(5) アイプレート内側鋼材部(タンク側板部)のひずみの対比

アイプレート内側鋼材部(タンク側板部)のひずみゲージG5、G6位置(図3-33参 照。)での鋼材のひずみ量の対比を図3-102に示す。

G5、G6ともにFEM解析も計測値も同様な傾向を示しており、鋼材降伏時のひずみ 1,175 μ に対して十分小さな値となっている。

(6) アイプレート内側鋼材部(タンク側板部)の主応力の対比

アイプレート内側鋼材部(タンク側板部)のFEM解析及び計測値それぞれのひずみから主応力(タンク円周方向 σx ,鉛直方向 σy)に変換した結果を図3-103に示す。

G5、G6ともに鉛直方向応力はFEM解析と計測値とで正負が逆の応力値として算出された。

図3-105に示すFEM解析のG5、G6部における鉛直方向応力の分布図では、G5の周囲では負の応力場を示す水色となっており、G6の周囲では正の応力場を示す黄緑色となっている。これは、FEM解析のひずみより算出した応力場と対応している。

計測値のひずみから変換した応力値の正負が逆の値となった原因としては、図3-105に示されるようにアイプレート周りの鉛直方向応力は非常に複雑な応力場となって いること、対比しているタンク側板の応力発生箇所はアイプレートの裏側で直接荷重 を受ける箇所ではなく、発生応力が非常に小さいことが挙げられる。複雑な応力場 で、非常に小さな応力の範囲内で計測値から変換した応力の正負が逆となったと考え る。

一方、G5、G6の円周方向応力はFEM解析及び計測値ともに負の応力値として算出された。また、図3-104に示すFEM解析のG5、G6部における円周方向応力の分布図では、ともに負の応力場となっており、こちらはFEM解析と計測値との傾向が合っているといえる。

以上より実験2回目のFEM解析と計測値の対比において、一部乖離の見られる部位はあったが、対策工法2で特に注意して対比する部分では同様なひずみ・応力の傾向であることが確認できた。

図 3-98 タンク隅角部 鋼材外側 側板鉛直・底板半径方向応力 σy (3.45kL・対策工法2、液位20% 1.925m時)

図3-99 タンク隅角部 鋼材内側 円周鉛直・底板円周方向応力 σ x (3.45kL・対策工法2、液位20% 1.925m時)

図 3-100 タンク隅角部 鋼材内側 側板鉛直・底板半径方向応力 σy (3.45kL・対策工法 2、液位20% 1.925m時)

図 3-101 CFRP表面の円周方向ひずみ (3.45kL・対策工法2実験1回目、液位20% 1.925m時)

図 3-102 タンク側板内側の円周方向ひずみ (プレート非表示) (3.45kL・対策工法2実験1回目、液位20% 1.925m時)

図3-103 タンク隅角部G5,G6のひずみから主応力への変換(実験2回目)

図3-104 アイプレート部側板内側 側板円周・底板円周方向応力 σx (3.45kL・対策工法2、液位20% 1.925m時)

図3-105 アイプレート部側板内側 側板鉛直・底板半径方向応力 σy (3.45kL・対策工法2、液位20% 1.925m時)

3.12 実験のまとめ

実験により下記の4点が得られた。

- FEM解析では静的荷重を作用させてきたが、実験により動的波圧に対してもタンクを 保持できることが確認できた。
- 2つの対策工法を施工した模型タンクに対して津波載荷実験を実施し、津波に耐える一例を示すことができた。
- 津波載荷実験で用いた模型タンクと同じモデルに対するFEM解析を行い、実験で得られた計測値との対比を行った。数値の対比においては、これまでのFEM解析で大きなひずみが発生すると考えられる部位について、CFRPのひずみ、タンク本体鋼材部のひずみ及び応力に関する比較を行った。これら実施した数値の対比において、実験の計測値とFEM解析結果は大きく乖離しておらず、同じような傾向であることが確認できた。
- 模型タンクに対策工法1及び対策工法2を施工し、施工が可能であることを確認した。施工手順については、参考資料3にまとめた。

3.13 まとめ

FEM解析により、対策工法1、2ともに内容液位の増減に関わらず、津波対策の効果を確認するとともに、各対策工法の懸案に対して解析を行い、各対策工法に適した適用条件を確認することができた。

また、実機スケールに近い模型タンクを製作し、津波載荷実験、浸水実験を行い、各対 策工法が津波・浸水に耐えることを確認するとともに、FEM解析と実験計測値とを対比し た。対策工法1の実験3回目では基礎が大きく動いたことにより想定どおりの結果を得る ことはできなかったものの、その他の実験結果では、計測点におけるひずみ、応力の数値 がFEM解析と実験と大きく乖離していないことから、本検討で行ったFEM解析はおおむね妥 当な結果を与えていると考えられる。

第4章 まとめ

第4章 まとめ

4.1 まとめ

第2章では、過去の津波・風水害におけるタンクの被害状況を調査するとともに、現在、 タンクに津波対策として講じられている対策の問題点等について整理を行った。また、第3 章では平成29年度~令和元年度まで消防庁の競争的資金において開発が行われた小規模屋外 貯蔵タンクに対する2つの津波・水害対策工法について、数値解析、津波載荷実験を行い、 その有効性を確認することができた。

検討会では、これら対策としての有効性の確認結果を踏まえ、別記に「小規模屋外貯蔵タンクの津波・水害対策工法に係るガイドライン」をとりまとめた。

このガイドラインで示す2つの対策工法は、沿岸部や河川等の周辺に設置されている小規 模なタンクのうち、タンクの所有者等が津波・水害対策の自主保安として施工を希望するタ ンクに施工されることを想定している。ガイドラインを適用するか否かについては、所有者 等がハザードマップ等を活用してタンクへの影響を確認し、判断することとなると考えられ るが、ハザードマップの浸水想定区域外のタンクに適用することを妨げるものではない。

また、検討会では既設のタンクを念頭において検討を行ってきたが、今後、小規模なタンクの所有者等においては、新設、既設を問わずタンクの立地状況に応じた津波・水害等 による浸水被害への対策を検討されることが望まれる。

4.2 今後の課題

(1) 500kL以上のタンクに対する津波・水害対策の検討

今回、500kL未満の小規模なタンクを対象として考案された津波・水害への対策工法 について、数値解析により対策の有効性を確認してきたが、静的な力を作用させた状 況の解析にとどまっていることから、実実験において模型タンクに対して動的な力を 作用させた場合に数値解析結果と実験結果とが整合性を有するか否か確認したとこ ろ、数値解析の妥当性を確認することができた。

なお、500kL以上の大規模なタンクに本対策工法を適用した場合、地震時にタンクに 生ずる慣性力によりCFRP等の対策工法を構成する部材が損傷するおそれがあるため、 500kL以上のタンクへの津波・水害対策工法については、こうした懸念点を解決する技 術の出現を待たなければならない。

(2) 対策工法1、2の設計仕様の見直しによるコスト削減 例えば対策工法1では、20kLのタンクにおいては、当初設定していたタンク側板部への CFRP施工高さを半分(1mを0.5m)としても津波対策の効果に大きな変化がないことが解析 上で確認できている。(参考資料3、表3-2)

今後、これらの数値解析に基づくCFRPの施工範囲やアイプレート等の設計仕様の見直し が進めば、対策効果を確保しつつ、コスト削減を図ることが可能となる。

参考文献

- 1 「危険物施設の津波・浸水対策に関する調査検討報告書」, 平成21年3 月, 総務省消防庁
- 2 「東日本大震災を踏まえた危険物施設等の地震・津波対策のあり方に係る検討報告 書」, 平成23年12 月, 消防庁危険物保安室・特殊災害室
- 3 「洪水浸水想定区域図作成マニュアル(第4 版)」, 平成27年7月, 国土交通省 水管 理・国土保全局 河川環境課 水防企画室 国土技術政策総合研究所 河川研究部 水害 研究室
- 4 「危険物屋外貯蔵タンクの津波・水害による滑動等対策工法の確立」,令和2年5 月, 藤井ら
- 5「水理模型実験における陸上構造物に作用する津波力に及ぼす実験水路幅の影響」 2017,池谷ら

実験動画

対策工法1津波実験 <u>https://youtu.be/sv8As5gexPM</u>

対策工法2津波実験 https://youtu.be/D180ydLdZiM

対策工法2浸水実験 <u>https://youtu.be/0LEqT-0te0Y</u>

無対策津波実験 https://youtu.be/yL_rqxyd60E

無対策浸水実験 <u>https://youtu.be/xySsFP0TnGU</u>

別記 小規模屋外貯蔵タンクの津波・水害対策工法に係るガイドライン

1 ガイドラインの概要

(1) ガイドラインの目的

平成23年に発生した東日本大震災では、小規模な屋外貯蔵タンクが津波により滑動・転倒する事故が発生した。また、近年激甚化・頻発化する風水害においては、洪水等に伴う浸水により屋外貯蔵タンクの浮揚・滑動等による事故も発生している。

一方、近年の技術開発により、PC工法による津波対策を施工した屋外貯蔵タンクの建 設をはじめ、コンクリート被覆型タンクの設置、ターンバックル等を用いたタンクの基 礎固定等、津波等による屋外貯蔵タンクの浸水被害を軽減するための方策も検討されて きているところである。

これらの対策と比べ、本ガイドラインで示す津波・水害対策工法は、小規模な屋外貯 蔵タンクに比較的安価かつ容易な方法で施工することができるという特徴があり、浸水 時の滑動等を防止し又は軽減する効果により、屋外貯蔵タンクに起因する流出事故等の 防止に一定の有効性を有していることが確認された。

本ガイドラインは、大規模な津波や水害には対応できないものの、一定の津波・水害 には有効に働く小規模屋外貯蔵タンクの設備的対策の工法例として、タンクの所有者等 が自主保安を推進するために参考となる指針として策定するものである。

(2) ガイドラインで対象とする屋外タンク貯蔵所

本ガイドラインでは、500kL未満の小規模な屋外貯蔵タンクで、底板を地盤面に接して 設置される縦置き円筒型タンク(以下「小規模屋外貯蔵タンク」という。)を対象とす る。

(3) 津波・水害対策の施工が想定される小規模屋外貯蔵タンク

沿岸部や河川等の周辺に設置されている小規模屋外貯蔵タンクのうち、所有者等が津 波・水害対策の自主保安として施工を希望するタンク。

なお、所有者等がハザードマップ等を活用してタンクへの影響を確認し、判断することとなるが、ハザードマップの域外のタンクについても対策をとることが望ましい。

2 津波・水害対策工法

本ガイドラインで規定する津波・水害対策工法は、次に示す対策工法1及び対策工法2 とし、タンクの所有者等は実情に応じて何れかの工法を選択できるものとする。

(1) 対策工法1

小規模屋外貯蔵タンクと基礎を炭素繊維強化プラスチック(以下「CFRP」という。) で面的に固定する工法(図1)。

図1 対策工法1

(2) 対策工法2

小規模屋外貯蔵タンクの側板中間段にワイヤーを接続するための接続孔(以下「ア イ」という。)が溶接されたプレートをCFRPで固定し、防油堤内に設けられたアンカー とアイをワイヤーで緊結固定する工法(図2)。

(3) 施工方法等

対策工法1及び2の施工方法の詳細等は、別添1及び別添2のとおりとする。

3 その他

- (1) 津波・水害対策として対策工法1、対策工法2を既設タンクに施工する場合は、原則 として消防法第11条の規定による変更許可を要するものであること。なお、対策工法を 施工する場合は、タンクを開放して施工することが必要である。
- (2) 対策工法の効果を定量的に示すには、有限要素法等による数値解析が必要となるが、 別添1及び別添2に従い対策工法の設計及び施工がなされる場合においては、数値解析 を行う必要はない。
- (3) 別添1及び2のCFRP施工にあたっては、CFRPの品質確保のため専門的技術及び経験を 有する技術者による施工・管理がなされることが望ましいこと。専門的技術及び経験を 有することを確認する方法としては、CFRPの施工・管理技術に関する第三者機関による 資格証又は講習を修了したことを示す資料等の確認が考えられる。
- (4) 別添1及び2の対策工法を施工することによる津波対策としての対策効果は、次の図 3及び図4が目安となる。

別添1 対策工法1に関する設計・施工要領

- 1 小規模屋外貯蔵タンクと当該タンクの基礎又は基礎の補強措置(コンクリート製で200mm 以上の立ち上がり部を有するものに限る。)を連続炭素繊維シートを用いた炭素繊維強化 プラスチック(以下「CFRP」という。)で面的に固定する工法(以下「対策工法1」とい う。)の設計、施工及び維持管理は本要領に基づき行うこと。
- 2 設計等
- (1) 設計
 - 設計は次によること。
 - ア CFRP施工範囲

- イ タンクがアンカーボルト等で固定されている場合は、対策工法の施工前に既設アン カーボルト等を撤去すること。
- ウ アンカーボルト等に替えて対策工法1を施工した場合のCFRPが負担する地震及び風 に対する抵抗モーメント及び抵抗力の計算は次の例により、アンカーボルトが無い状 態でも耐震性等が確保されていることを予め確認すること。

(ア) 抵抗モーメント

$$\begin{split} M_{FRP} &= (\sigma_b \cdot h_B \cdot Do2 \cdot \pi \cdot R) \cdot \left\{ Do2 - \frac{(Do2 - D)}{2} \right\} \\ & \text{MFRPは, CFRPによる抵抗モーメント (kN-m)} \\ & \text{Dit, } \beta \sim \rho \parallel \phi \otimes \phi \otimes (m) \\ & \text{Do2it, } \beta \sim \rho \pm @ \text{deg} \otimes \phi \otimes (m) \\ & \sigma \text{ bit, CFRPのコンクリートへのせん断方向付着応力度 (メーカー保証値 kN/m²)} \\ & \text{h Bit, } \beta \sim \rho \pm @ \text{deg} \otimes \text{OCFRP貼付け高さ (m)} \\ & \text{Rit, CFRPの有効範囲を示す定数=15/360} \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

- (イ) 抵抗力
 - $Q_{FRP} = \left(\frac{\pi \cdot Do2^{2}}{_{4}} \frac{\pi \cdot Do1^{2}}{_{4}}\right) \cdot \sigma_{b}$ QFRPは、CFRPによる抵抗力(kN) Do1は、外張り出し寸法を含むタンク底板の外形(m) ※ 計算の結果、以下の関係となることを確認すること。 (タンク自重等による抵抗力+QFRP) > 滑動力
- (2) 使用材料

使用材料は次によること。なお、ア~エに掲げる材料については、複合材料としての 強度保証がされた同一メーカーの製品を使用すること。

ア 炭素繊維シート(一方向材、高強度型、目付量200g/mポ以上のものに限る。)

- イ エポキシ樹脂(硬化剤を含む。ウ及びエにおいて同じ。)
- ウ プライマー
- エ 不陸修正用パテ
- オ 発泡スチロール板 (スペーサーとして使用。)
- (3) 施工環境
 - ア雨天でないこと。
 - イ 気温が5℃以上、湿度が85%以下であること。
 - ウ 結露が発生し、又は発生するおそれがないこと。
 - エ コンクリート素地面にあっては、表面含水率が8%以下であること。
- 3 施工方法等(施工・検査・不具合部補修) 施工は次によること。
 - (1) 施工前処理
 - ア 基礎の調整
 - (ア) 基礎の形状等に応じて、必要な修正を次のとおり行うこと。
 - a 犬走り部がアスファルト舗装されている場合は、コンクリート舗装に変更する こと。
 - b 基礎立ち上がり部と犬走り部境界の角部は、R30以上に成形すること。
 - (イ) 基礎の不具合箇所に対する補修を次のとおり行うこと。
 - a 幅0.3mm以上のひび割れ箇所には、エポキシ樹脂を注入すること。
 - b コンクリートの不良部(モルタルの浮き、欠損部等)は、当該箇所をはつり取 ったうえでポリマーセメントモルタル等により補修すること。

c 補修に際し、鉄筋の露出がある場合は防錆処理を行うこと。

イ 既設アンカーボルトの撤去

アンカーボルトによりタンクを基礎に固定している場合は、当該アンカーボルトを 撤去すること。

(2) 下地処理及び表面清掃

施工範囲の基礎及び鋼板部の下地処理は、ディスクサンダー等を用いて次により行う こと。

ア 基礎部

泥膜層、離型剤、風化部、剥離モルタル、塗装等を除去し、平滑化すること。

イ 鋼板部

2種ケレン相当の下地処理を行うこと。鋼板部に腐食減肉等不具合がある場合に は、必要に応じて当該不具合箇所を補修した後に(4)の工程を実施すること。

- ウ 下地処理後は、素地表面の粉塵、異物等を十分に除去するとともに、鋼板部につい てはアセトンを染み込ませたウェスを用いる等により脱脂を行うこと。
- (3) 樹脂、プライマー及び不陸修正用パテ(以下「樹脂等」という。)の調合
樹脂等に硬化剤を添加し、撹拌調合すること。樹脂等の調合は次のとおりとする。 ア 樹脂等及び硬化剤は厳正に計量すること。

- イ 専用の機器等により十分な撹拌を行うこと。
- ウ 硬化剤撹拌調合後の樹脂等は使用時間内で使用すること。
- (4) プライマー塗布
 - ア 刷毛、ローラー等で塗布すること。
 - イ 塗り残しがないよう施工範囲全体に塗布すること。
 - ウ 指触乾燥するまで養生すること。
- (5) スペーサーの設置

タンク隅角部保護のため、側板と底板の外側溶接継手止端部から底板外張り出し部に かけてスペーサーを設置すること。スペーサーの設置方法は次のとおりとする。

ア 底板板厚に5mmを加えた板厚の発泡スチロール板をカッターナイフ等を用いて底板 外張り出し部を覆う鍵型の断面形状に成形すること。

イ 成形した発泡スチロール板を両面テープ、接着剤等で底板外張り出し部全周に接着 すること。

図1-2 スペーサー形状と配置

(6) 不陸修正

CFRPに未接着範囲(スペーサー設置部を除く。)が生じることを防ぐための不陸修正 は次によること。

- ア 施工範囲の素地面に1mmを超える段差がある場合は、不陸修正用パテを用いて当該 段差を1mm以内に修正すること。特に基礎については、コンクリート面の凹凸、気泡 等が存在する箇所が多いことから、全面が平滑となるよう施工すること。
- イ 指触乾燥するまでシート等で養生すること。
- (7) CFRPの積層

プライマー及び不陸修正用パテの指触乾燥確認後、CFRPを次のとおり施工すること。 ア 一層目

- (ア) ローラー等を用いて樹脂を下塗りすること。
- (イ) 次のとおり、下塗り樹脂の上から炭素繊維シートを貼り付けること。
 - a 繊維方向が鉛直方向となるようシートを貼り付けること。
 - b タンクの鉛直方向にシートを継ぎ足す場合の重ね代は200mm以上とすること。
 - c タンクの円周方向にシートを配置する場合は、シート相互に隙間が生じないよ うに貼り付けること。
- (ウ) 炭素繊維シートの上からローラー等を用いて樹脂を上塗りすること。
- (エ) 脱泡ローラー等を用いて炭素繊維シートに樹脂を十分含浸させるとともに、気泡

の除去を行うこと。

- イ 二層目
- (7) 一層目の指触乾燥確認後、二層目の炭素繊維シートを貼り付けること。なお、基礎水平部には二層目は施工しなくてよい。
 - a 繊維方向が円周方向となるようシートを貼り付けること。
 - b 円周方向にシートを継ぎ足す場合の重ね代は200mm以上とすること。
 - c 鉛直方向にシートを配置する場合はシート相互に隙間が生じないように貼り付けること。
- (イ) ア(ウ)及び(エ)の作業を行うこと。
- ウ ノズル等付属物取付け部の補強措置 ノズル等付属物取付け部等に対する補強措置は、ア又はイの施工前にア、(ア)、
 - (ウ)及び(エ)に準じて以下のとおり行うこと。
- (7) 基礎の水抜き穴、タンク付属物取付箇所等、基礎及び側板部に貼り付ける炭素繊維の連続性が途切れる箇所がある場合は、付属物等の大きさに応じて、図1-3に示すいずれかの補強措置を行うこと。

(イ) ノズルネック部には、(ア)の補強措置に加えて図1-4に示す補強措置を行うこと。

エ 養生 樹脂が十分硬化するまでシート等で養生すること。

- (8) CFRP仕上げ面の保護 CFRP仕上げ面には、耐候性が確認された塗料を塗布すること。
- 4 試験及び補修
 - (1) 試験
 - ア 外観試験
 - (ア) しわ等による浮きにより素地面との隙間が生じていないこと。
 - (イ) 塗り漏れがないこと。
 - (ウ) 異物の混入がなく、白化等が生じていないこと。
 - イ 指触・打診試験
 - (ア) 硬化不良を生じていないこと。
 - (イ) 素地面からの剥離等が以下の基準に適合すること。なお、円形以外の剥離等については、短径と長径の平均値を直径と見なすこととする。
 - a 直径30mm以上の剥離、膨れが生じていないこと。
 - b 直径10mm以上30mm未満の剥離、膨れが1m²当たり10個未満であること。
 - (2) 補修
 - ア(1)、ア、(ア)の隙間部は、樹脂を充填して隙間を完全に埋めること。
 - イ (1)、ア、(イ)の塗り漏れ部は、塗り漏れ箇所の端部から50mm以上の範囲をサンドペー パー等で目荒らしし、清掃及び脱脂した上で2、(7)、ア、(ウ)及び(エ)により補修を行 うこと。
 - ウ その他の不具合箇所については、当該不具合箇所を完全に除去し、不具合箇所の端 部から50mm以上の範囲をサンドペーパー等で目荒らしし、清掃及び脱脂した上で2、(6) により不陸修正を行ったのち、2、(7)により補修を行うこと。

5 維持管理

(1) 対策工法1を施したタンクについては、次の表を参考に点検を行うこと。

点検項目	点検内容	点検方法	点検 結果	措置年月日及 び措置内容
	塗装状況	目視		
対策工法1 による	変形、損傷又は亀裂等の 有無	目視		
固定措置	膨れ、浮き又は 剥離等の有無	目視及び打診テ スト等による		

表1 対策工法1の点検内容等

(2) (1)の点検の結果、不具合箇所が確認された場合は、塗装状況の不具合は再塗装をする ことにより、それ以外のCFRPの不具合は3、(2)の補修方法により補修を行うこと。

別添2 対策工法2に関する設計・施工要領

- 1 小規模屋外貯蔵タンクの側板中央部に連続炭素繊維シートを用いた炭素繊維強化プラス チック(以下「CFRP」という。)を用いて面的に固定したアイプレートに取り付けたアイ と防油堤内に打設したアンカーをワイヤーで接続して固定する工法(以下「対策工法2」 という。)の設計、施工及び維持管理は本要領に基づき行うこと。
- 2 設計等
 - (1) 設計
 - 設計は次によること。
 - ア アイプレート
 - (ア) 設計及び製作
 - a アイプレートは津波等による荷重に対して、タンクを支持する部材である。
 - b アイプレートはワイヤーが接続されるアイとそれを剛にベースプレートに伝達 する剛プレート、タンク側板に接するベースプレートにて構成される。アイプレ ートの構造例を図2-1に示す。

- c アイプレートの設計に当たっては、アイプレートの各部材及び溶接部に生ずる 応力が降伏応力以下であることを確認すること。
- d アイプレートの設計荷重とその計算方法に関しては、参考資料「アイプレート の設計及び製作に関する参考例」を参考とすること。
- (イ) 設置位置

タンク円周上の4箇所以上に均等な間隔で配置すること。このときアイプレート の高さ方向中心位置とタンクの側板高さの中心位置とを合わせること。

- イ アンカー
- (ア) 側板とワイヤーのなす角度が30°程度となる位置にアンカーを設けること。
- (イ) アンカーは、タンク容量に応じて決定されるワイヤー強度の反力以上の強度を有 するものとすること。

 $T_d = \frac{T_W}{\cos \alpha}$

Tdは、設計アンカー力(kN)

Twは、ウにより決定するワイヤー強度(kN)

- *α*は、タンク側板とワイヤーの角度(°)
- (ウ) 地盤の液状化層や地下水位,設置するアンカーに有害な影響を与える成分を含む 地盤等を避けることが望ましいこと。

ウ ワイヤー等

次の計算により算出した値以上の強度を有するものとすること。

 $T_W = 100.84 \ln(x) - 87.023$

Twは、ワイヤー等の必要強度(kN)

xは、タンク容量(kL)

エ CFRPの施工範囲

図2-2に示す範囲の全周にCFRPを施工し、アイプレートを固定すること。

図2-2 対策工法2の施工概要

- オ タンクがアンカーボルトで固定されている場合で、当該アンカーボルトが底板外 張り出し部に直接取り付けられている(別図参照。)等、津波波力載荷時にタンク 隅角部に応力が集中するおそれのある固定方法が採用されている場合は、対策工 法の施工前に既設アンカーボルトを撤去することを推奨する。
- カ アンカーボルトに替えて対策工法2を施工した場合の対策工法2が負担する地震及 び風に対する抵抗モーメント及び抵抗力の計算は次の例により、アンカーボルトが無 い状態でも耐震性等が確保されていることを予め確認すること。
- (ア) 対策工法2による抵抗モーメント
 - $M_{W} = T_{W} \cdot \sin \alpha \cdot h_{EP} + T_{W} \cdot \cos \alpha \cdot D$ Mwは、ワイヤーによる抵抗モーメント(kN-m)
 Twは、ワイヤー強度(kN) α は、タンク側板とワイヤーのなす角度(°)
 h E Pは、アイプレート中心高さ(m)
 Dは、タンク側板の外径(m)
 ※ 計算の結果、以下の関係となることを確認すること。
 - (タンク自重等による抵抗モーメント+MFRP)>転倒モーメント
- (イ) 対策工法2による抵抗力

 $Q_W = T_W \cdot \sin \alpha$

Qwは、ワイヤーによる抵抗力(kN)

※ 計算の結果、以下の関係となることを確認すること。
 (タンク自重等による抵抗力+QFRP) > 滑動力

(2) 使用材料

使用材料は次によること。なお、イ~オに掲げる材料については、複合材料としての 強度保証がされた同一メーカーの製品を使用すること。

- ア 2、(1)、オにより設計・製作するアイプレート
- イ 炭素繊維シート(一方向材、高強度型、目付量200g/m²以上のものに限る。)
- ウ エポキシ樹脂(硬化剤を含む。ウ及びエにおいて同じ。)
- エ プライマー
- オ 不陸修正用パテ
- (3) 施工環境
 - ア雨天でないこと。
 - イ 気温が5℃以上、湿度が85%以下であること。
 - ウ 結露が発生し、又は発生するおそれがないこと。
- 3 施工方法等(施工・検査・不具合部補修)

施工は次によること。なお、アンカーについては所定の強度が発揮されるよう施工がなされていること。

- 下地処理及び表面清掃 施工範囲の鋼板部の下地処理は、ディスクサンダー等を用いて次により行うこと。
 - ア 下地処理
 - ディスクサンダー等を用いて2種ケレン相当の下地処理を行うこと。
 - ウ 下地処理後は、素地表面の粉塵、異物等を十分に除去するとともに、アセトンを染 み込ませたウェスを用いる等により脱脂を行うこと。
- (2) 樹脂、プライマー及び不陸修正用パテ(以下「樹脂等」という。)の調合 樹脂等に硬化剤を添加し、撹拌調合すること。樹脂等の調合は次のとおりとする。
 - ア 樹脂等及び硬化剤は厳正に計量すること。
 - イ 専用の機器等により十分な撹拌を行うこと。
 - ウ 硬化剤撹拌調合後の樹脂等は可使時間内で使用すること。
- (3) プライマー塗布
 - ア 刷毛、ローラー等で塗布すること。
 - イ 塗り残しがないよう施工範囲全体(アイプレート取付け部及びアイプレートの表裏 面を含む。)に塗布すること。
 - ウ 指触乾燥するまで養生すること。
- (4) アイプレートの仮止め
 - 2、(1)、ア、(イ)の位置にアイプレートを仮止めすること。この際、接着材等を用いた 仮止めを行うこととし、溶接をしてはならないこと。
- (5) 不陸修正

CFRPに未接着範囲が生じることを防ぐための不陸修正は次によること。

- ア 施工範囲の素地面に1mmを超える段差がある場合は、不陸修正用パテを用いて当該 段差を1mm以内に修正すること。
- イ 指触乾燥するまでシート等で養生すること。
- (6) CFRPの積層

プライマー及び不陸修正用パテの指触乾燥確認後、CFRPを次のとおり施工すること。

- ア アイプレート固定部の積層
- (ア) ローラー等を用いて樹脂を下塗りすること。

- (イ) 次のとおり、下塗り樹脂の上から炭素繊維シートを貼り付けること。
 - a 繊維方向が円周方向となるようシートを貼り付けること。
 - b 円周方向にシートを継ぎ足す場合の重ね代は200mm以上とすること。
 - c 鉛直方向にシートを配置する場合は、シート相互に隙間が生じないように貼り 付けること。
- (ウ) 炭素繊維シートの上からローラー等を用いて樹脂を上塗りすること。
- (エ) 脱泡ローラー等を用いて炭素繊維シートに樹脂を十分含浸させるとともに、気泡の除去を行うこと。
- イ 付属物等取付け部等の補強措置

アイ取付箇所、その他タンク付属物取付箇所等、側板部に貼り付ける炭素繊維の連続性が途切れる箇所がある場合は、付属物等の大きさに応じて、図2-3に示すいずれかの補強措置を行うこと。なお、当該補強措置はアの施工前にア、(7)、(ウ)及び(x)に準じて行うこと。

図2-3 付属物等周辺の補強措置

ウ 養生

樹脂が十分硬化するまでシート等で養生すること。

- (7) CFRP仕上げ面の保護 CFRP仕上げ面には、耐候性が確認された塗料を塗布すること。
- 4 CFRP施工部の試験及び補修
 - (1) 試験
 - ア 外観試験
 - (ア) しわ等による浮きにより素地面との隙間が生じていないこと。
 - (イ) 塗り漏れがないこと。
 - (ウ) 異物の混入がなく、白化等が生じていないこと。
 - イ 指触・打診試験
 - (ア) 硬化不良を生じていないこと。
 - (イ) 素地面からの剥離等が以下の基準に適合すること。なお、円形以外の剥離等については、短径と長径の平均値を直径と見なすこととする。
 - a 直径30mm以上の剥離、膨れが生じていないこと。
 - b 直径10mm以上30mm未満の剥離、膨れが1m²当たり10個未満であること。
 - (2) 補修
 - ア(1)、ア、(ア)の隙間部は、樹脂を充填して隙間を完全に埋めること。

- イ (1)、ア、(イ)の塗り漏れ部は、塗り漏れ箇所の端部から50mm以上の範囲をサンドペー パー等で目荒らしし、清掃及び脱脂した上で3、(6)、ア、(ウ)及び(エ)により補修を行 うこと。
- ウ その他の不具合箇所については、当該不具合箇所を完全に除去し、不具合箇所の端 部から50mm以上の範囲をサンドペーパー等で目荒らしし、清掃及び脱脂した上で3、 (5)により不陸修正を行ったのち、3、(6)により補修を行うこと。
- 5 維持管理
 - (1) 対策工法2を施したタンクについては、次の表を参考に点検を行うこと。

点検項目		点検内容	点検方法	点検 結果	措置年月日 及び 措置内容
	С	塗装状況	目視		
	F R P 部	変形、損傷又は 亀裂等の有無	目視		
丹 笙 丁 注 9		膨れ、浮き又は	目視及び打診テ		
刈泉上伝 ム		剥離等の有無	スト等による		
による 田安姓署	ワイヤー	塗装状況	目視		
回足伯匣		腐食の有無	目視		
		固定ワイヤーの			
	一直定	断線・摩耗等の	目視		
		有無			

表1 対策工法2の点検内容等

(2) (1)の点検の結果、CFRP部に不具合箇所が確認された場合は、塗装状況の不具合は再塗装をすることにより、それ以外のCFRPの不具合は4、(2)の補修方法により補修を行うこと。

別図 対策工法2を適用した場合におけるタンク隅角部への応力集中の対比 (上段:アンカーボルト残置、下段:アンカーボルト撤去。20kL、50%液位時。)

別添2-参考資料 アイプレートの設計及び製作に関する参考例

1. 設計条件

1)	参考資料	平成24年版	道路橋	喬示方	書Ⅱ	鋼橋編	(日本道路協会)	
2)	設計方法	設計方法	許習	容応力	」度法	÷		
		判定	設言	计荷重	tσ	<σy	(降伏点)	
3)	荷重および荷重	の作用方向角	度					
	設計荷重	:Tw ワ	イヤー	·強度	(kN)		
	ケーブルの負	角度 :α						
	水平分力	:Twh =	Τw	× s	sin	α	(kN)	Twv
	鉛直分力	: Twv =	Tw	× c	cos	α	(kN)	

4)アイプレートの使用鋼材は側板と同材以上の鋼材グレードとし、以下の強度計算が成立するもの
 5)アイプレートの1辺の寸法は下図による。またワイヤーの強度は下記により求める。

Twh

b0

t5 t4

2. 寸法

設計例として基本的な形状と寸法を右図に示す。

c1 b1 a1 = 100 幅 mm以上 a1 t1 b2 S2 b0 = c1+b1(mm) b1 = 設計時に決定 (mm) ป₽ $b2 = b1 \div 2$ (mm) Ч ₽Ŧ Ŧ t3 h1 = 100高さ mm以上 YE=hof h2 = h0 - h3(mm) **f**1 Ч d $h3 = h1 \div 2$ (mm) t1 = 設計時に決定 厚さ (mm) ベースプレート t2 = 設計時に決定 (mm) アイ XF t3 = t2(mm) Ľ₹ t4 = タンク側板厚さの2倍以上 ∟₹ t5 = タンク側板厚さの2倍以上 剛プレート 穴径 d = 支持ワイヤーもしくはシャックルの径以上 アイプレートの構造 アイプレートは**アイ**とそれを剛に 隙間 c1 = 穴位置より決定 ベースプレートに伝達する**剛プ** レートとタンク側板に接するペー 穴位置 XE、YEは支持ワイヤーの角度より求める V スプレートにて構成される

 $(\sigma/\sigma y)^2 + (\tau s/\tau y)^2 \leq 1.2$

5. 剛プレート取付部(C点)の照査

2) 溶接断面の断面性能の算出
 上図の様に溶接箇所を分割し、断面二次モーメント、断面性能を算出する。
 横リブ(すみ肉溶接)
 すみ肉溶接のサイズは、道路橋示方書にならい、以下とする。

t1>S かつ S≧ $\sqrt{(2\cdot t2)}$ のど厚 a = S $\sqrt{\sqrt{2}}$

$$I = \Sigma A Y^{2} + \Sigma I_{0} - \Sigma A \times y1^{2} \quad (cm^{4})$$

$$y1 = \Sigma A Y \swarrow A \quad (cm)$$

$$Z = 1/y \quad (cm^{3})$$

3) 溶接部の応力度

曲げ応力度

 $\tau b = Ph/A + M/Z$ (N/mm²) < τ_y であることを確認する。

せん断応力度

 $\tau s = Pv/A$ (N/mm²) < τ_y であることを確認する。

合成応力度

溶接部に生じる合成応力度は、下式を満たさなければならない。 $(\tau b/\tau y)^2 + (\tau s/\tau y)^2 \leq 1$. すみ肉溶接

- 6. ベースプレート取付部(D点)の照査
 - 1) 照査位置(D点)の断面力

曲げモーメント

 $M = Mb-Ph\cdot b2$ (kN·m)

溶接部に生じる合成応力度は、下式を満たさなければならない。 $(rb/ry)^2 + (rs/ry)^2 \leq 1.$ すみ肉溶接

7. アイ部

道路橋示方書にならい、下記を満たすことを確認する。 ビン孔を通る横断面における引張部材の純断面積(a-a)は、計算上必要な純断面積の140%以 上、 引張部材のピン孔背後における純断面積(b-b)は、計算上必要な純断面積の100%以上とす

必要断面積

Aa = Tw/σy (mm²)
 各断面にて断面積と必要断面積の比を確認する。
 a-a 断面 A/Aa >140%であることを確認

b-b 断面 A/Aa >100%であることを確認

8. 参考図

次頁に20kL, 100kL, 500kL級タンクのアイプレートの設計図面例を示す。

参考資料

- ・参考資料1-対策工法に関する要素実験及び再現解析(競争的資金での実施項目)
- ・参考資料2-津波実験前の波高検定
- ・参考資料3-模型タンクへの対策工法の施工

2 要素実験

(1) 実験概要

CFRPの接着・剥離特性に着目するため、実物タンクの一部を切り出した要素実験を実施した。要素実験の荷重載荷イメージを図1-1に示す。実験は高さ1500 mm、平面寸法 1000 mm×1000 mmの矩形模型を対象とした。模型は高さ250 mm、平面寸法1500 mm×1500 mmのRC基礎上に設置し、模型の一辺をRC基礎とピン接合している。荷重載荷時に模型の 変形が剥離特性に影響を及ぼさないよう、模型は剛体として取り扱えるように模型内部 を鉄筋および鋼材により補強した上、内部にコンクリートを打設した。

模型の材質はSS400、タンク側板および底板ともに板厚は全て4.5 mmである。なおタン ク底板は実際のタンク構造を模擬するため、側面から50 mm張り出した構造としている。

また、実タンクは円形であることから、剥離状況を確認するため、直径約1000 mmの円 形タンクも用意した。RC基礎は直径約1500 mmとしている。その他の条件は上述した矩形 の模型と同様である。

図1-1 載荷実験のイメージ

ア CFRP材

実験で使用したCFRP材の特性を表1-1に示す。CFRPとは炭素繊維を織り込んだシ ート状の製品をエポキシ樹脂(レジン)を含侵させ硬化させたものである。炭素繊維 の引張強度が優れており、近年、橋脚部の耐震対策等に用いられており、入手しやす い材料となっている。

CFRPの一般的な施工方法に倣い、タンク側面およびRC基礎上面と側面にプライマーと下塗り材(エポキシ樹脂)を塗布した後、炭素繊維シートを貼付し、さらにエポキシ樹脂を上塗りして接着硬化させた。

表1-1 CFRP補強材

目付量	200	(g/m ²)
厚み	0.167	(mm)
引張強度	3400	(N/mm^2)
引張弾性率	230×10^{3}	(N/mm^2)

イ 緩衝材

CFRPを用いた対策工法は、津波波力等が作用した際に、タンク底板の隅角部におい て大きな応力が発生する可能性が懸念される。隅角部付近が損傷した場合はタンク内 容液の流出に繋がるため、損傷を防ぐ対策が必要である。そこで本研究では、図1-2に示すスペーサーを設置する方法を考案した。実験で使用したスペーサーは発泡ス チロールで、発泡率が90倍のものである。スペーサーの効果を確認するため、要素実 験においてスペーサーのないケース(以下、Case1)、スペーサーの厚さ5 mmを設置す るケース(以下、Case2)、厚さ20 mmを設置するケース(以下、Case3)の計3ケース を実施した。

図1-2 スペーサーの設置状況(厚さ5mm)

ウ 実験ケースおよび計測項目

実験は、1000 kNの載荷ジャッキを用いてタンク頂部に水平荷重を作用させた。載荷 速度は、載荷初期から緩衝材上面のCFRPの剥離が始まる区間までを0.02 mm/sとし、そ の後タンク頂部の水平変位が20 mm増加する毎に0.02 mm/sずつ速度を上げ、0.1 mm/s からは速度一定としてCFRPが完全に剥離するまで載荷を実施した。

計測項目として、図1-3に示すように載荷位置における載荷荷重と水平変位、およびタンク側面、底板張り出し部、RC基礎においてひずみを計測した。タンク側面や底板張り出し部においてはCFRPの剥離状況を捉えるため、CFRPとタンク本体、CFRPと底板張り出し部の同位置にひずみゲージを貼付した。

(2) 実験結果

実験ではCFRPの剥離状況とその後の終局状態を観察した。(図1-4、図1-5) 矩形模型に関してはCFRPが一様に剥離したのに対し、円形模型では鉛直方向に裂けな がら剥離している。

今回の実験では繊維方向が一方向のみのCFRP材を用いており、繊維の向きは鉛直方向 として貼付している。矩形模型においては発生応力がほとんど鉛直方向のみであること から一様に剥離する結果となったが、円形模型では模型周方向にも応力が分散するた め、CFRP材が周方向に発生する応力に抵抗できないことから裂ける結果となったと考え られる。したがって、CFRP材のタンクへの実施工においては、鉛直方向だけでなく周方 向へも貼付する、もしくは2方向に強度を有するCFRP材を用いることが必要であることが わかった。

そのほかのCFRPの剥離特性に関わる結果は、次節において実験と再現解析を比較、考察する。

タンク底板の張り出し部の応力状況を確認するため、張り出し部の鋼板とCFRPそれぞれで計測されたひずみを図1-6に示す。

スペーサーを設置していないCase1では、張り出し部の底板側に降伏ひずみ(=1781 μ)を超える大きなひずみが発生している一方で、CFRPに発生したひずみは2000 μ程度 に留まっている。タンク頂部の水平変位が大きくなると張り出し部には浮き上がりが生 じるが、浮き上がりの際に張り出し部に貼付しているCFRPが底板部の上向き変位を拘束 するため、大きなひずみが発生していると考えられる。

一方、スペーサーを設置したCase2やCase3においては、張り出し部の底板側にはひず みが発生しておらず、CFRPにひずみが集中している。このことから、スペーサーの設置 により底板張り出し部の損傷を回避し、CFRPが載荷荷重を負担していることが分かっ た。

次にスペーサーの圧縮変形量を定量的に把握するために、図1-7に示すようにCFRP を貼付している箇所(DV-08)とスペーサーのみの箇所(DV-10)の変位量をそれぞれ計測 し、その差分から圧縮変形量を求めた。(図1-8)

図の変形量の正値が圧縮量を示しており、Case2、Case3のいずれにおいても緩衝材が 最大で2.5 mm程度圧縮されていることが分かる。その後圧縮量が減少するのは、CFRPが 底板部から剥離していくためである。

このことから、タンク変位時にスペーサーが圧縮されることで底板張り出し部には応 力が発生せず損傷を防ぐことが可能であること、本研究で対象としたような底板張り出 し部長さが50 mm程度であれば、厚さ5 mm 程度のスペーサーを設置すればよいことが明 らかとなった。

図1-4 実験模型の終局状態(矩形)

図1-5 実験模型の終局状態(円形)

2 要素実験の再現解析

(1) 再現解析の概要

CFRPの剥離特性を把握するため、要素実験で使用した矩形模型および円形模型の再現 解析を実施した。解析には汎用FEMプログラムDIANA5を用いた。矩形模型の解析モデルを 図1-9.1、図1-9.2に示す。また円形模型の解析モデルを図1-10.1~図1 -10.3に示す。

再現解析の目的は、CFRPの剥離特性を明らかにすることであるため、以降は矩形模型の解析を中心に説明することとする。解析モデルは奥行き方向に模型幅を考慮した三次元モデルとしている。タンク鋼板およびCFRPをシェル要素、RC基礎およびタンク内部コンクリートをソリッド要素としてモデル化した。鋼材は降伏条件にVon Mises基準を用い、2次勾配をE/100とするバイリニアモデルとした。

CFRPは繊維方向の引張試験をJIS K 7165、圧縮試験をJIS K 7018に基づき実施し、それぞれの弾性係数を設定している。一般にCFRP単体では圧縮方向へはほとんど抵抗しないが、CFRPにエポキシ系樹脂を含浸・硬化した状態の試験片を用いて試験を実施しているため、圧縮時の弾性係数は引張方向の半分ほどとなっている。なお、部材間の境界条件として、タンク鋼板~CFRPおよびRC基礎~CFRPには、法線方向の応力が面外強度に達した場合に剥離し、せん断強度に達した場合に滑るモデルとした。

ここでは、要素実験が再現できる法線方向の面外強度を解析的に求める。緩衝材についても境界要素でモデル化し、法線方向およびせん断方向の初期剛性は非常に小さな値とし、圧縮変位量が5 mm以上となると非常に大きな剛性となるバイリニアモデルとした。タンク底板~RC基礎にはクーロン摩擦モデルを適用し、摩擦係数には複合構造標準示方書)を参考に0.3を設定した。要素実験の計測位置を図1-11、解析物性値の一覧を表1-2、表1-3に示す。

図1-11 要素実験の計測位置(単位:mm)

表1-2 使用材料の機械的性質

部 材	应出甘油	弹性係数	ポアソン比	降伏点	引張強度	単位体積重量
	降伏基準	$E (\text{N/mm}^2)$	v	$f_y (\text{N/mm}^2)$	$f_t (\text{N/mm}^2)$	$\rho (kN/m^3)$
タンク鋼板	Von Mises バイリニア	2.0×10 ⁵	0.3	362.5	475.2	77.0
RC基礎	線形	2.5×10^4	0.2	-	_	24.5
CFRP	線形	2.7×10 ⁵ (引張時)	0.0		4,181	10.4
		1.3×10 ⁵ (圧縮時)	0.0	_	1,288(圧縮)	10.4

表1-3 境界要素の解析物性値

陸田田主	法線方向初期剛性	せん断方向初期剛性	面外強度	せん断強度		
児小安糸	(kN/m^3)	(kN/m^3)	(N/mm^2)	(N/mm^2)		
タンク鋼板 ~CFRP	2.0×10 ⁸	1.0×10 ⁸	15**	8.66		
RC基礎 ~CFRP	2.0×10 ⁸	1.0×10 ⁸	15**	8.66		
应用要求	法線方向初期剛性	せん断方向初期剛性	摩擦係数	粘着力		
境界要素	(kN/m^3)	(kN/m^3)		(N/mm^2)		
タンク底板 ~RC基礎	2.0×10 ⁸	1.0×10 ⁸	0.3	0.0		

(2) 矩形モデル再現解析の結果

本節では、タンク鋼板~CFRPの面外強度を15 N/mm²、RC基礎~CFRPの面外強度を15 N/mm²と設定した際の結果を示す(パラメータスタディにより最も近似な結果が得られたケース)。

載荷ジャッキ位置における荷重と水平変位の関係を図1-12に示す。実験結果に対して、その状況を解析で概ね捉えることができている。

タンク側面およびRC基礎に貼付したCFRPのひずみを図1-13に示す。CFRPが剥離する タイミングで大きなひずみが発生するが、解析結果は実験の傾向を概ね再現できてい る。

なお、タンク側板部のCFRPのひずみ(GC-05)の解析結果は、水平変位10-20mmにて負の 大きなひずみが発生した後、変位が進行してもひずみが小さい状態となった。解析の方 が実験モデルに比べて接着力が弱く、CFRPに大きなひずみを生じることなく水平変位が 100 mm 程度までCFRPが剥離している状況である(解析モデルでの鋼材部の接着力が弱い ことを示している)。

一方、基礎スラブ上のGC-08の結果は実験同様、引張りのひずみを生じている。これ は、解析と実験での接着力が同等であることを示す(解析の方がひずみがやや小さく、 接着力が弱いといえる)。これより、要素実験はRC基礎が必要強度に達した後に間もな く実施したことから、コンクリートの風化や劣化が進行していなければ鋼材と同等の接 着強度15N/mm²を有することが分かった。ただし、第3章の実機スケールでの解析時には 現地状況を考慮し、製品保証値である1.5 N/mm²を採用することとした。

図1-13 CFRPに発生したひずみの比較(実験と解析)

(3) 円形モデル再現解析の結果

円形モデルでの載荷ジャッキ位置における荷重と水平変位の関係を図1-14に示す。 第3章の実機タンクを模擬したFEM解析では、津波波高(=波圧)とタンクの水平変 位量が着目点となるため、本解析では基礎スラブ上のCFRPの浮き上がり量と載荷ジャッ キの水平変位にについて、実験と解析結果を比較した。

円形モデルにおけるジャッキ荷重と水平変位の関係は、変位80mmあたりまでは実験結 果よりもやや低めの荷重値を示す結果となった。ここで、ジャッキの荷重が小さく変位 が進行している、つまりCFRPの剥離が進行しているということは、円形モデルの解析が 安全側評価となっていると考えられる。

また、図1-15にて基礎スラブ上CFRPの浮き上がり量と載荷ジャッキの水平変位について実験と解析結果を比較した。結果としてタンクの隅角部近傍に相当するDV-02のCFRP 浮き上がり量が実験結果と合うことが確認できた。

また、実験においてはCFRPが鉛直方向に裂けるという現象が生じた。このことから、 浸水を防ぐため炭素繊維シートを周方向にも施工、もしくは2方向に繊維を有する炭素繊 維シートにて施工する必要があることが分かった。

参考資料2-津波実験前の波高検定

津波実験にて載荷する波を波高検定として模型タンクを設置する前の状態(固定床は設置) で実施した。図2.1に波高検定状況を示す。

波高検定ではサンプリング周波数100 Hzで12000 個のデータ収録を実施した。データ収録の時間長さは120秒である。

図2-1 波高検定状況

33種の波高検定を実施し、結果として津波の高さを基準に造波のパラメータを選定し、表 2-1~表2-3、図2-2~図2-4に示す津波を実験にて用いることとした。流速とフ ルード数の数値データは、タンク前面位置での水位が最大となった時刻の値である。したが って、流速とフルード数はそれぞれの最大値ではないことに注意する必要がある。

時系列データは上段が生データ、下段が移動平均データである。移動平均時間は前後0.1秒 ずつの0.2秒間である。流速計は水平床の天端から15 cmと40 cmの二つの高さに設置してあ る。波高が小さいと40 cmの高さの流速計には波が当たらない、又は十分に当たらない状態と なる。そのようなケースでは、フルード数Frを評価する際に高さ15 cmの流速データを使用し た。この場合、図中の凡例を「PV1」、「Fr1」としてある。高さ40 cmの流速計にも波が十分 に作用する条件の場合には、フルード数Frを評価する際に高さ15 cmと40 cmの流速の平均値 を用いており、そのケースでは図中の凡例を「PV1_2」、「Fr1_2」とした。

図2-2 波高(水位)と流速の測定・解析結果 対策工法1の実験1にて使用 (初期水位:-5cm 造波板ストローク:1100cm 周期:28秒)

表 2-1 初期水位:-5cm 造波板ストローク:1100cm時の流速とフルード数 対策工法1の実験1にて使用

タンク前	流速	流速	流速	Fr	Fr	Fr	
面波高	(15cm)	(40cm)	(平均)	(15cm)	(40cm)	(平均)	
[m]	[m/s]	[m/s]	[m/s]	_		_	
0.758	4.433	4.070	4.252	1.626	1.493	1.560	
本津波の選定の理由:タンク基礎部をドライサイトとできる状態で、設備の最 大波高を得られるため選定							

図2-3 波高(水位)と流速の測定・解析結果 対策工法1の実験2,対策工法2の実験1,無対策の津波実験にて使用 (初期水位:30cm 造波板ストローク:810cm 周期:28秒)

表2-2 初期水位:30cm 造波板ストローク:810cm時の流速とフルード数 対策工法1の実験2,対策工法2の実験1,無対策の津波実験にて使用

タンク前	流速	流速	流速	Fr	Fr	Fr	
面波高	(15cm)	(40cm)	(平均)	(15cm)	(40cm)	(平均)	
[m]	[m/s]	[m/s]	[m/s]	_			
0.762	3.276	3.248	3.262	1.198	1.188	1.193	
本津波の選定の理由:タンク基礎部は水没した状態で実験開始となるが、想定 する中規模な津波波形となるため選定							

図2-4 波高(水位)と流速の測定・解析結果 対策工法1の実験3,対策工法2の実験2にて使用 (初期水位:30cm 造波板ストローク:1100cm 周期:28秒)

表 2 - 3	初期水位:30cm	造波板	ミ ストローク	: 11000	cm時の流速。	とフルー	ド数
	対策工法1の実	₹験3,	対策工法2	の実験	2にて使用		

タンク前	流速	流速	流速	Fr	Fr	Fr	
面波高	(15cm)	(40cm)	(平均)	(15cm)	(40cm)	(平均)	
[m]	[m/s]	[m/s]	[m/s]	_			
1.005	3.988	4.268	4.128	1.270	1.360	1.315	
本津波の選定の理由:タンク基礎部は水没した状態で実験開始となるが、仕様 設備での最大波高となるため選定							

参考資料3-模型タンクへの対策工法の施工

1 対策工法1の施工

1.1 施工フロー

実験施設に搬入した模型タンクに対して対策工法1を施工した。施工のフローを図3-1に示す。

図3-1 模型タンクへの対策工法1概略施工フロー

1.2 施工方法

対策工法1の施工としてタンク側のCFRP施工高さを600mm、基礎部のCFRP施工高 さを200mmとした。施工イメージを図3-2に示す。

1.3 施工状況

製作したタンクに対して対策工法1を施工した。問題なく施工できることを確認した。 また、不具合箇所の補修方法も確認できた。施工手順の詳細については施工マニュアル 対策工法1に示す。施工状況を図3-3~図3-8に示す。

図3-3 有機溶剤による脱脂

図3-4 プライマー塗布

図3-5 スペーサーの設置

図 3-6 CFRP貼付け

図3-7 不連続部の工法確認

図3-8 不具合箇所の補修方法確認

2 対策工法2の施工

2.1 施工フロー

製作し、実験施設に搬入したタンクに対して対策工法2を施工した。施工のフローを図 3-9に示す。

図3-9 模型タンクへの対策工法2概略施工フロー

2.2 施工寸法

対策工法2のタンク部のCFRP施工高さは800mmとした。施工イメージを図3-10に示す。

図3-10 対策工法2模型への施工寸法

2.3 施工状況

製作したタンクに対して対策工法2を施工した。問題なく施工できることを確認した。 また、不具合箇所の補修方法も確認できた。施工手順の詳細については施工マニュアル 対策工法2に示す。施工状況を図3-11~図3-16に示す。

図 3-11 側板部の目粗し

図 3-12 プライマー塗布

図3-13 アイプレートの設置と不陸修正

図 3-14 CFRP貼付け

図 3-15 不連続部の工法確認

図 3-16 不具合箇所の補修方法確認

3 維持管理

ここでは施工後の補修方法とCFRP施工に関する懸案に対する調査結果を述べる。

- 3.1 補修方法
 - (1) CFRP施工後にタンク側板内面が減肉した場合の補修方法

鋼製タンクは経年により側板や底板が腐食する。CFRPを施工した箇所やその近傍に て腐食減肉した場合には下記の4つのステップで補修を行う(CFRPメーカ2社へヒアリ ング実施)。

①タンク内面よりサンダーにて傷んだ鋼材とCFRPをカットする。

②鋼材を突合せ溶接にて溶接する

③熱焼けしたCFRPをサンダーにて削り取る(削り取るCFRPの下にあるタンク鋼材に注意し実施)。

- ④元の施工CFRPと同層数(1層又は2層)の炭素繊維シート(熱焼け部+各方向 200mm)を繊維方向に注意し重ね貼りする。重ね貼りの際には元の施工CFRPと同メー カ、同種のエポキシを用いること
- (2) CFRPの耐候性と樹脂減肉時の補修方法

CFRPは耐候性を有する(耐震補強部材(図3-17)として採用して20年程度の実績。30-50年と考えられる)が、経年によりCFRP表面の樹脂が痩せていく。それを防止するため、CFRP施工表面には通常のタンク表面と同様にペンキ等にて表面塗装を行い、CFRP層を保護する。

表面塗装が傷んだ場合には、表面の清掃・目粗し後、再塗装を実施する。 CFRPの表層のエポキシが傷み、繊維が見え始めた時にはエポキシ樹脂(元の施工 CFRPと同メーカ,同種)を塗り重ね、最後に表面塗装を実施する。(CFRPメーカ2社へ ヒアリング実施)。

3.2 CFRP施工に関する懸案に対する調査結果

CFRP施工に関する懸案に対してメーカヒアリングを実施した。結果を下記に示す。

(1) タンク側板とCFRP間で腐食しないか タンク側板とCFRP間に水が入り込むと、タンクの鋼材を腐食させる恐れがある。そ
れを防止するため、CFRP施工時のタンク側板部の入念な洗浄とケレンを実施し、CFRP とをエポキシ樹脂にてタンク鋼材に密着させる。また、定期的な塗装によりCFRP端部 の劣化防止をはかる。

(2) タンク鋼材とCFRP間で電蝕しないか

鋼材とCFRPの炭素繊維は直接接触すると電蝕の恐れがある。CFRP施工時には下地に 不陸調整・プライマーとしてエポキシパテを1層塗る。また、プライマーの上にエポキ シを下塗りし、そこに炭素繊維シートを貼りつけることから、炭素繊維と鋼材の確実 な絶縁を果たし、電蝕は生じない。本件については炭素繊維補修・補強工法技術研究 会にて実験を実施し、電蝕しないことを確認している。

(3) 炭素繊維の施工により危険物設備に落雷しないか 橋梁等に採用する際に同様の質疑あり。炭素繊維の露出部に落ちるわけではなく、 高いところに落ちるので懸案はない。煙突補強にも用いており、今のところ被害は報 告されていない。

図 3-17 橋梁部, 煙突施工の例 (メーカホームページhttp://www.mp-infratec.co.jpより)

4 現状の一般的な小型屋外貯蔵タンクの設置状況と施工可否の確認

現在設置されている小型屋外貯蔵タンクの設置状況について千葉県を例に調査した。 15基の内、2基が横置円筒貯槽であった(表3-1)。残りの13基は縦置円筒型貯槽(図 3-18)であり、その内、12基では対策工法1,対策工法2ともに施工ができると思われ る。1基は基礎が八角形であり、対策工法1の施工に際しては基礎の成形(肉盛りもしく は削る)もしくは八角形の形に合わせCFRPの施工をする必要がある。

いずれのタンクも対策工法1,対策工法2のいずれかの施工は可能であることが確認できた。

	タンク形式	容量	内容物	アンカーボルト 有無	対策工法1 施工可否	対策工法2 施工可否
漁港1	縦型円筒	350kL	灯油	無	可(丸スラブ)	न
	縦型円筒	350kL	重油	無	可(丸スラブ)	न
漁港2	縦型円筒	60kL,2基	重油	4本(アンカーチェア)	△ (八角形スラ ブ)	न
漁港3	縦型円筒	97kL	軽油	無	可(丸スラブ)	न
	横置円筒	30kL	灯油	8本	不可	न
漁港4	縦型円筒	100kL,2基	軽油	4本(アンカーチェア)	可(丸スラブ)	न
漁港5	横置円筒	100kL,2基	軽油	6本	不可	न
漁港6	縦型円筒	10kL	ガソリン	4本(アンカーチェア)	可(丸スラブ)	न
	縦型円筒	20kL	軽油	4本(アンカーチェア)	可(丸スラブ)	न
	縦型円筒	5kL	灯油	4本(アンカーチェア)	可(丸スラブ)	न
漁港7	縦型円筒	9. 5kL	ガソリン	4本	可(丸スラブ)	न
	縦型円筒	20kL	重油	4本	可(丸スラブ)	न

表3-1 小型屋外貯蔵タンクの設置状況の例

図3-18 小型屋外貯蔵タンクの例

5 タンク付属品等の津波対策

対策工法1、2により、タンク本体に対して津波漂流対策効果を発揮することがわかった。東日本大震災では、付属配管が被害を受けるケースが見られたことから、配管と配管 ノズル部の津波対策の検討を行った。

5.1 配管

配管は敷設長が長く形状が複雑であること、配管を支持する基礎が一様ではないこと から、配管に対して直接的に津波対策を施すことは難しい。

ここでは、平成23年度の東日本大震災を踏まえた危険物施設の地震・津波対策のあり 方に係る検討会での結論と同様に「緊急遮断弁の設置又はタンク元弁を閉止できる体制 の構築」を提案する。これによりタンク内の大容量の危険物の流出を防止できると考え る。

5.2 配管ノズル部

タンクの弱点部位の一つとして配管ノズル部が挙げられる。配管の変位を受け、タン クとノズルの境界部での部材塑性とそれによる割れに対する対策として、CFRP施工によ るタンク内液の漏洩対策を提案する。CFRPは施工面(鋼材)への密着度、密閉性が高い ことから、各対策工法実施の際に、併せてノズル周囲に対策として施工するものであ る。

第3章に示す水理模型実験設置の際に配管ノズル部へのCFRP施工を実施した。施工方法は大きく3つのステップとなる。施工方法の詳細は各対策工法と同様である。 なお、本施工を水理模型実験時に施工し、津波載荷により剥離を生じないことを確認し

た。

- STEP1: 短冊型の炭素繊維シートをノズルよりタンク側板に向けて貼り付ける。ノズル に対して炭素繊維を長手方向に貼り付けることにより、万一のノズル変形時に CFRPの密閉性が期待できる。ノズル全周に隙間なく施工する。施工後はタンク側 板部にCFRPが放射状に施工されることとなる(図3-19)。
- STEP2: 短冊型の炭素繊維シートをノズルの周方向に巻き付け施工する(図3-20)。 本ステップはSTEP1にて施工したCFRPの割れを防ぐために実施する。
- STEP3: 炭素繊維シートをノズルの周囲に井桁状に貼り付け、密閉を補強する(図3-21)。

図3-19 短冊型炭素繊維シートの貼付け

図3-20 ノズル周方向への貼付け

図3-21 ノズル周囲の井桁状の補強

6 コスト低減の方策

コスト低減の方策としてCFRP施工範囲の削減が挙げられる。対策工法2ではアイプレートの大きさの確保の観点から、CFRP施工範囲の削減はできないが、対策工法1は基礎への 接着性能が津波対策性能を左右することが検討の中で判明した。

ここでは20kLタンクを例に、対策工法1のタンク側板部へのCFRP設置高さを半減した場合の解析を行った。結果としてこのクラスのタンクではタンク側板部へのCFRP施工高さを 半分(1mを0.5m)としても津波対策の性能に大きな変化がないことを確認した(表3-2)。

表3-2 対策工法1 20kLタンク 50%液位 CFRP施工範囲の差による効果比較